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APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

THE LOS ALAMOS PRIMER

————

The following notes are based on a set of five lectures given by R. Serber
during the first two weeks of April 1943, as an "indoctrination course" in
connection with the starting of the Los Alamos Project. The notes were written
up by E. U. Condon.

————

1. Object

The object of the project is to produce a practical military weapon in
the form of a bomb in which the energy is released by a fast neutron chain
reaction in one or more of the materials known to show nuclear fission.

2. Energy of Fission Process

The direct energy release in the fission process is of the order of 170 MEV
per atom. This is considerably more than 107 times the heat of reaction per
atom in ordinary combustion processes.

This is 170 · 106 · 4.8 · 10−10/300 = 2, 7 · 10−4 erg/nucleus. Since the weight
of 1 nucleus of 25 is 3.88 · 10−22 gram/nucleus the energy release is

7 · 1017 erg/gram

The energy release in TNT is 4 · 1010 erg/gram or 3.6 · 1016 erg/ton. Hence

1 kg of 25 ≈ 20000 tons of TNT

3. Fast Neutron Chain Reaction

Release of this energy in a large scale way is a possibility because of
the fact that in each fission process, which requires a neutron to produce
it, two neutrons are released. Consider a very great mass of active material,
so great that no neutrons are lost through the surface and assume the material
so pure that no neutrons are lost in other ways than by fission. One neutron
released in the mass would become 2 after the first fission, each of these
would produce 2 after they each had produced fission so in the nth generation
of neutrons there would be 2n neutrons available.

Since in 1 kg. of 25 there are 5·1025 nuclei it would require about n =
80 generations (280 ≈ 5 · 1025) to fissile the whole kilogram.
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While this is going on the energy release is making the material very hot,
developing great pressure and hence tending to cause an explosion.

In an actual finite setup some neutrons are lost by diffusion out through
the surface. There will be therefore a certain size of say a sphere for which
the surface losses of neutrons are just sufficient to stop the chain reaction.
This radius depends on the density. As the reaction proceeds the material
tends to expand, increasing the required minimum size faster than the actual
size increases.

The whole question of whether an effective explosion is made depends on
whether the reaction is stopped by this tendency before an appreciable fraction
of the active material has fissiled.

Note that the energy released per fission is large compared to the total

binding energy of the electrons in any atom. In consequence even if but
1
2
%

of the available energy is released the material is very highly ionized and
the temperature is raised to the order of 40·106 degrees. If 1% is released
the mean speed of the nuclear particles is of the order of 108 cm/sec. Expansion
of a few centimeters will stop the reaction, so the whole reaction must occur
in about 5·10−8 sec otherwise the material will have blown out enough to stop
it.

Now the speed of a 1 MEV neutron is about 1.4·109 cm/sec and the mean free
path between fissions is about 13 cm so the mean time between fissions is
about 10−8 sec. Since only the last few generations will release enough energy
to produce much expansion, it is just possible for the reaction to occur to
an interesting extent before it is stopped by the spreading of the active
material.

Slow neutrons cannot play an essential role in an explosion process since
they require about a microsecond to be slowed down in hydrogenic materials
and the explosion is all over before they are slowed down.

4. Fission Cross-sections

The materials in question are U235
92 = 25, U238

92 = 28 and element 94239 =
49 and some others of lesser interest.

Ordinary uranium as it occurs in nature contains about 1/140 of 25, the
rest being 28 except for a very small amount of 24.

The nuclear cross-section for fission of the two kinds of U and of 49 is
shown roughly in Fig. 1 where σf is plotted against the log of the incident
neutron’s energy. We see that 25 has a cross-section of about σf ≈ 1.5·10−24 cm2

for neutron energies exceeding 0.5 MEV and rises to much higher values at
low neutron energies (σf ≈ 640·10−24 cm2 for thermal neutrons). For 28 however
a threshold energy of 1 MEV occurs below which σf = 0. Above the threshold
σf is fairly constant and equal to 0.7 · 10−24 cm2.

5. Neutron Spectrum

In Fig. 2 is shown the energy distribution of the neutrons released in
the fission process. The mean energy is about 2 MEV but an appreciable fraction
of the neutrons released have less than 1 MEV of energy and so are unable
to produce fission in 28.

One can give a quite satisfactory interpretation of the energy distribution
in Fig. 2 by supposing it to result from evaporation of neutrons from the
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Figure 1: (thermal) log neutron energy in EV.

fission product nuclei with a temperature of about 1
2 MEV. Such a Maxwellian

velocity distribution is to be relative to the moving fission product nuclei
giving rise to a curve like Fig. 2.

6. Neutron number

The average number of neutron produced per fission is denoted by ν. It
is not known whether ν has the same value for fission processes in different
materials, induced by fast or slow neutrons or occurring spontaneously.

The best value at present is

ν = 2.2± 0.2

although a value ν = 3 has been reported for spontaneous fission.

7. Neutron capture

When neutrons are in uranium they are also caused to disappear by another
process represented by the equation

28 + n → 29 + γ

The resulting element 29 undergoes two successive β transformations into elements
39 and 49. The occurrence of this process in 28 acts to consume neutrons
and works against the possibility of a fast neutron chain reaction in material
containing 28.
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Figure 2: neutron energy in MEV.

It is this series of reactions, occurring in a slow neutron fission pile,
which is the basis of a project for large scale production of element 49.

8. Why ordinary U is safe

Ordinary U, containing only 1/140 of 25, is safe against a fast neutron
chain because, (a) only 3/4 of the neutrons from a fission have energies above
the threshold of 28, (b) only 1

4 of the neutrons escape being slowed below
1 MEV, the 28 threshold before they make a fission.

So the effective neutron multiplication number in 28 is

ν ≈ 3/4× 1/4× 2.2 = 0.4

Evidently a value greater than 1 is needed for a chain reaction. Hence a
contribution of at least 0.6 is needed from the fissionability of the 25 constituent.
One can estimate that the fraction of 25 must be increased at least 10-fold
to make an explosive reaction possible.

9. Material 49

As mentioned above this material is prepared from the neutron capture reaction
in 28. So far only microgram quantities have been produced so bulk physical
properties of this element are not known. Also its ν value has not been measured.
Its σf has been measured and found to be about twice that of 25 over the whole
energy range. It is strongly α-radioactive with a half-life of about 20000
years.

Since there is every reason to expect its ν to be close to that for U and
since it is fissionable with slow neutrons it is expected to be suitable for
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our problem and another project is going forward with plans to produce it
for us in kilogram quantities.

Further study of all its properties has an important place on our program
as rapidly as suitable quantities become available.

10. Simplest Estimate of Minimum Size of Bomb

Let us consider a homogeneous material in which the neutron number is ν
and the mean-time between fissions is τ. In Sec. 3 we estimated τ = 10−8 sec.
for uranium. Then if N is the number of neutrons in unit volume we have

Ṅ + div j =
ν − 1

τ
N

The term on the right is the net rate of generation of neutrons in unit volume.
The first term on the left is the rate of increase of neutron density. In
the second term on the left j is the net diffusion current stream of the neutrons

(net number of neutrons crossing 1 cm2 in 1 sec across a plane oriented in
such a way that this net number is maximum).

In ordinary diffusion theory (which is valid only when all dimensions of
boundaries are large compared to the mean free path of the diffusing particles
— condition not fulfilled in our case) the diffusion current is proportional
to the gradient of N,

j = −D gradN

where D is the diffusion coefficient (cm2/sec).
Hence we have

Ṅ = D ∆N +
ν − 1

τ
N

Assume a solution whose time dependence is of the form

N = N1(x, y, z) eν′t/τ

where ν ′ is called the "effective neutron number". The equation to be satisfied
by N1 is

∆N1 +
−ν ′ + ν − 1

D τ
N1 = 0

together with a boundary condition. In the simple case in which we are dealing
with a sphere of radius R, we may suppose that N1 is spherically symmetric.

At r = R we would have, on simple theory N1 = 0. (In point of fact N1 >
0 due to the effect of the mean free path’s not being small compared with
R, but this will not be considered here). For spherical symmetry the equation
for N1 has the solution

N1(r) =
sin(πr/R)

r

provided that ν ′ has the value

ν ′ = (ν − 1)− π2 D τ/R2.

This shows that in an infinitely large sphere the neutron density would build
up with the time constant (ν−1)/τ. Smaller spheres build up less rapidly.
Any sphere so small that ν ′ < 0 is one for which the neutrons leak out the
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surface so rapidly that an initial density will die out rather than build
up. Hence the critical radius is given by

R2
c =

π2 D τ

ν − 1
ν ′ = 0

Now D is given by D = λ v/3 where λ is the transport mean free path, λ =
1/nσt, n is the number of nuclei per cc and

σt =
[
σf +

∫∫
σs(1− cosΘ) dω

]

which brings out the reason for measurements of the angular scattering of
neutrons in U. In metallic U we have

σt = 4 · 10−24cm2,

which, for a density of 19 gm/cm3, gives λ = 5 cm.
Also

τ =
1

nσf v
=

`

v

σt

σf

so π2 D τ =
π2

3
`2 σt

σf

= 220.

Therefore

Rc =
220
1.3

= 183 and Rc = 13.5 cm.

The critical volume is therefore 10.5·103 cm3 giving a critical mass of 200
kilograms.

Exercise:
Show that if the gadget has the shape of a cube, 0 < x < a, 0 < y < a,

0 < z < a, that the critical value of a is given by

a =
√

3Rc

Hence the critical mass for a cubical shape is 35/2/4π = 1.24 times as great
as for a sphere.

The value of the critical mass is, however, considerably overestimated
by the elementary diffusion theory. The more exact diffusion theory allowing
for the long free path drops Rc by a factor about 2/3 giving

Rc ∼ 9 cm Mc ∼ 60 kg of 25.

The elementary treatment just given indicates the dependence of Mc on the
principal constants

Mc ∼
1
ρ2

1
[σf σt(ν − 1)]3/2

where ρ is the density. For R 6= Rc we have the time dependence of neutron
multiplication given by

e
(ν−1)t

[
1−(Rc

R )2
]
/τ

Hence for a sphere of twice the critical mass the time constant, for multiplication
of neutron density by e is 2.4 · 10−8 sec.

11. Effect of Tamper
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If we surround the core of active material by a shell of inactive material
the shell will reflect some neutrons which would otherwise escape. Therefore
a smaller quantity of active material will be enough to give rise to an explosion.
The surrounding case is called a tamper.

The tamper material serves not only to retard the escape of neutrons but
also by its inertia to retard the expansion of the active material. (The
retardation provided by the tensile strength of the case is negligible.) For
the latter purpose it is desirable to use the densest available materials
(Au, W, Re, U). Present evidence indicates that for neutron reflecting properties
also, one cannot do better than use these heavy elements. Needless to say,
a great deal of work will have to be done on the properties of tamper materials.

We will now analyze the effect of tamper by the same approximate diffusion
theory that was used in the preceding section. Let D′ be the diffusion coefficient
for fast neutrons material and suppose the lifetime of a neutron in the tamper
is τ/α. Here α = n′ σ′cap/nσf, with n′ the nuclear density of the tamper and

σ′cap its capture cross-section. If the tamper material is itself fissionable
(U tamper) the absorption coefficient is reduced by a factor (1−νt), with
νt the number of neutrons produced per caption.

At the boundary between active material and tamper, the diffusion stream
of neutrons must be continuous so

D

(
∂N

∂r

)

active

= D′
(

∂N

∂r

)

tamper

In the tamper the equation for neutron density is

Ṅ = D′∆N − κ
T

N

or for the spatial dependence,

∆N1 −
ν ′ + α

D′ T
N1 = 0

As an easy special case suppose the tamper has the same neutron diffusion
coefficient as the active material (i.e. the same mean free path) but has
no absorption, so α = 0. Then under critical conditions (ν ′ = 0) we have

N1 = A/r + B

in the tamper material and

N1 =
sin kr

r

in the active material.
At the outer boundary of the tamper, r = R′, we must have N1 = 0 hence

N1 = A

(
1
r
− 1

R′

)

On each side of the boundary r = R between active material and tamper material,
the slopes must be equal so, equating the densities and slopes on both sides
of the boundary we find the following equation to determine k,

kR cos kR +
R/R′

1−R/R′ sin kR = 0
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In the limit of a very large tamper radius R →∞ this requires that

k = π/2R

which is just half the value it had in the case of the untampered gadget.
Hence the critical mass needed is one-eighth as much as for the bare bomb.

Actually on better theory the improvement is not as great as this because
the edge effect (correction for long free path) is not as big in this case
as in the bare bomb. Hence the improvement of non-absorptive equal diffusion
tamper over the critical mass, both bundled by more accurate diffusion theory
only turns out to be a factor of four instead of eight.

Exercise:
Consider a non-absorptive tamper material for which the diffusion coefficient

D′ is small compared to D. In the limit if D′ = 0, no neutrons could escape
from the active material by diffusion, so the critical radius would vanish
and any amount of active core would be explosive.

To get an idea of the improvement obtainable from tamper material of shorter
mean free path than the active material show that if D′ = 1

2 D then the critical
mass is 1/2.40 times what it is in the case of thick tamper (R′ = ∞) if D′ =
D. From this we see that it would be very much worth while to find tamper
materials of low diffusion coefficient.

(It turns out that κ = kR is a root of

κ cosκ = (1−D′/D) sinκ

which is 1.17 approximately when D′/D = 0.5.)

——

If the tamper material is absorptive then the neutron density in it will
fall off like e−kr/r instead of 1/r which tends to make the critical mass greater
than if the tamper did not absorb.

The distance the neutrons get into the tamper is 1/k = `′
√

s
3(1−νt)

where

`′ is the mean free path and s the number of collisions before capture. Guessing
s ∼ 20 this gives, with `′ = 5 cm, an effective tamper thickness ∼ 13 cm.
For a U tamper νt ∼ 0.6, and the effective thickness is raised to 17 cm. These
figures give an idea of the tamper thickness actually required; the weight
of the tamper is about a ton.

For a normal U tamper the best available calculations give Rc = 6 cm and
Mc = 15 Kg of 25 while with Au tamper Mc = 22 kg of 25.

The critical mass for 49 might be, because of its larger fission cross
section, less than that of 25 by about a factor 3. So for 49

Mc = 5 Kg for U tamper
Mc = 7.5 Kg for Au tamper.
These values of critical masses are still quite uncertain, particularly

those for 49. To improve our estimates requires a better knowledge of the
properties of bomb materials and tamper: neutron multiplication number, elastic
and inelastic cross sections, overall experiments on tamper materials. Finally
however, when materials are available, the critical masses will have to be
determined by actual test.

12. Damage
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Several kinds of damage will be caused by the bomb.
A very large number of neutrons is released in the explosion. One can

estimate a radius of about 1000 yards around the site of explosion as the
size of the region in which the neutron concentration is great enough to produce
severe pathological effects.

Enough radioactive material is produced that the total activity will be
of the order of 106 curies even after 10 days. Just what effect this will
have in rendering the locality uninhabitable depends greatly on very uncertain
factors about the way in which this is dispersed by the explosion. However
the total amount of radioactivity produced, as well as the total number of
neutrons, is evidently proportional just to the number of fission processes,
or to the total energy released.

The mechanical explosion damage is caused by the blast or shock wave. The
explosion starts acoustic waves in the air which travel with the acoustic
velocity, c, superposed on the velocity u of the mass motion with which material
is convected out from the center. Since c ∼ √

T where T is the absolute
temperature and since both u and c are greater farther back in the wave disturbance
it follows that the back of the wave overtakes the front and thus builds up
a sharp front. This is essentially discontinuous in both pressure and density.

It has been shown that in such a wave front the density just behind the
front rises abruptly to six times its value just ahead of the front. In back
of the front the density falls down essentially to zero.

If E is the total energy released in the explosion it has been shown that
the maximum value of the pressure in the wave front varies as

P ∼ E/r3

the maximum pressure varying as 1/r3 instead of the usual 1/r2 because the
width of the strongly compressed region increases proportionally to r.

This behavior continues as long as P is greater than about 2 atmospheres.
At lower pressures there is a transition to ordinary acoustic behavior the
width of the pulse no longer increasing.

If destructive action may be regarded as measured by the maximum pressure
amplitude, it follows that the radius of destructive action produced by an
explosion varies as 3

√
E. Now in a 1

2 ton bomb, containing 1
4 ton of TNT the

destructive radius is of the order of 150 feet. Hence in a bomb equivalent
to 100000 tons of TNT (or 5 kg of active material totally converted) one would
expect a destructive radius of the order of 3

√
100000 · 150 = 1.1 · 104 feet or

about 2 miles.
This points roughly to the kind of results which may be expected from a

device of the kind we hope to make. Since the one factor that determines
the damage is the energy release, our aim is simply to get as much energy
from the explosion as we can. And since the materials we use are very precious,
we are constrained to do this with as high an efficiency as is possible.
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13. Efficiency

As remarked in Sec. 3, the material tends to blow apart as the reaction
proceeds, and this tends to stop the reaction. In general then the reaction
will not go to completion in an actual gadget. The fraction of energy released
relative to that which would be released if all active material were transformed
is called the efficiency.

Let Rc 0 = critical radius figured for normal density ρ0, also R0 initial
radius and R = radius at a particular instant. Assume homogeneous expansion.
Then the density when expanded is

ρ = ρ0 (R0/R)3

and the critical radius Rc figured with the actual density ρ is

Rc = Rc 0 (ρ0/ρ)

The reaction will proceed until expansion has gone so far that Rc = R. Therefore
the radius R at which expansion stops is given by

R/R0 = 12

√
R0/Rc 0

Since the ratio of R0/Rc 0 is equal to the cube root of the ratio of M0 s
the actual active mass, to Mc the critical mass we see that

R0/R0 = 6

√
M0/Mc 0

therefore a gadget having twice the critical mass will expand to a radius
only 6

√
2 = 1.12 times its original radius before the reaction stops.

The next problem is to find a simple expression for the time taken for
this expansion to occur, since we already know how to calculate the time constant
ν ′/τ of the reaction. Of course ν ′ is not a constant during the expansion
since its value depends on the radius but this point will be ignored at first.

At a place where we have N neutrons/cm3 there will be N/τ fissions/cm3 sec
and therefore if ε is the energy release in erg/fission the volume rate of
energy generation is (ε/τ)N. Hence the total energy released in unit volume
between time −∞ and time t is

W = (ε/ν′) N eν′t/τ

Most of this energy goes at once into kinetic energy of the fission fragments
which are quickly brought to rest in the material by communication of their
energy largely to thermal kinetic energy of motion to the other atoms of the
active stuff.

The course of events is shown in Fig. 3. The units on the scale of abscissas
are units of ν ′t/τ. If there was no expansion, and if the rate of reaction
toward the end was not slowed down by depletion of active material, then the
energy released up to a given time in erg/cm3 would be given by the values
on the upper logarithmic scale. The places on this scale marked 100%, 10%
and l% respectively show the energy released in unit volume for these three
values of the efficiency. A second logarithmic scale shows the growth of
the neutron density with time under these assumptions.
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It can be calculated that the pressure in atmosphere is very roughly like
the values given on the third scale. At a point just below 1017 erg/cm3 evolved
the radiation pressure is equal to the gas pressure, after that radiation
pressure predominates. Near 1010 erg/cm3 is the place where the solid melts
so up to this time nothing very drastic has happened — the important phenomena
occur in the next 20 units of ν ′t/τ.

Very roughly we may estimate, as follows for masses not much larger than
the critical mass, the combination of factors on which the efficiency depends:
In a time of the order τ/ν ′ the material moves from R0 to R so acquires a
velocity v ∼ (ν ′/τ)(R−R0). Writing R0 = Rc 0(1 + ∆) we find that

R−R0 =
1
2

∆Rc 0.

The kinetic energy per gram that is acquired by the material is

v2/2 ∼ 1
4
(ν ′/τ)2 ∆2 R2

0c

The total energy released is greater in the order pV ÷p dV or 2/3∆. Let
ε = 7 ·1017 erg/gram be the energy release for complete conversion then the
efficiency is of the order

f ≈ (ν ′2/ετ2) (∆2/4)R2
c 0 (2/3∆)

or
f ≈ (1/6)(ν ′2/ετ2) R2

c 0 ∆3

For an untampered gadget
ν ′ ≈ 2(ν − 1)∆

giving

f =
2
3

(ν − 1)2 R2
c 0

ε τ2
∆3

Putting in the known constants

ε = 7 · 1017 τ = 10−8 Rc = 9

we find
f = K ∆3 with K = 1.1

If this very rough calculation is replaced by a more accurate one the only
change is to alter the value of the coefficient K. The calculations are not
yet complete, but the true value is probably K ≈ 1

4 to 1
2.

Hence for a mass that is twice the critical mass, R0 = 3
√

2Rc so ∆ = 0, 25
and the efficiency comes out less than l%. We see that the efficiency is
extremely low even when this much valuable material is used.

Notice that τ varies inversely as the velocity of the neutrons. Hence
it is advantageous for the neutrons to be fast. The efficiency depends on
the nuclear properties through the factors

f ∼ v2(ν − 1)
ε

σf

σt

∆3

where v is the mean speed of the neutrons and the other symbols are already
defined.
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In the above treatment we have considered only the effect of the general
expansion of the bomb material. There is an additional effect which tends
to stop the reaction: as the pressure builds up it begins to blow off material
at the outer edge of the bomb. This turns out to be of comparable importance
in stopping the reaction to the general expansion of the interior. However
the formula for the efficiency can be shown to be unchanged in form; the edge
expansion manifests itself simply in a reduction in the constant K. The effect
of blowing off the edge has been already taken into account in the more accurate
estimate of K given above.

14. Effect of Tamper on Efficiency

For a given mass of active material, tamper always increases efficiency.
It acts both to reflect neutrons back into the active material and by its
inertia to slow the expansion thus giving opportunity for the reaction to
proceed farther before it is stopped by the expansion.

However the increase in efficiency given by n good tamper is not as large
as one might judge simply from the reduction in the critical mass produced
by the tamper. This is due to the fact that the neutrons which are returned
by diffusion into and back out of the tamper take a long time to return, particularly
since they are slowed down by inelastic impacts in the tamper material.

The time scale, for masses near critical where one has to rely on the slowest
neutrons to keep the chain going, now becomes effectively the lifetime of
neutrons in the tamper, rather than the lifetime in the bomb. The lifetime
of neutrons in a U tamper is ∼ 10−7 sec, ten times that in the bomb. The
efficiency is consequently very small just above the critical mass, so to
some extent the reduction in critical mass is of no use to us.

One can get a picture of the effect of tamper on efficiency from Fig. 4,
in which U ν ′ is plotted against bomb radius for various tamper materials.
The time scale is given by τ/ν ′; the efficiency, as we have seen in the preceding
section, is inversely proportional to the square of the time scale. Thus
f ∼ ν ′2.

If we use good tamper (U) the efficiency is very low near the critical
mass due to the small slope of the ν ′ vs. R curve near ν ′ = 0. When one
uses a mass sufficiently greater than the critical to get good efficiency
there is not very much difference between U and Au as tamper materials.

It turns out that if one is using 4Mc and the U tamper, then only about
15% more active material is needed to get the same energy release with a gold
tamper, although the critical masses differ by 50%.

In addition to reflecting neutrons, the tamper also inhibits the tendency
of the edge of the bomb to blow off. The edge expands into the tamper material,
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starting a shock wave which compresses the tamper material sixteenfold. These
edge effects as remarked in Sec. 13 always act to reduce the factor K in the
formula, f = K ∆3, but not by as great an amount in the case of tamped bomb
as in the case of the untamped bomb.

15. Detonation

Before firing, the active material must be disposed in such a way that
the effective neutron number ν ′ is less than unity. The act of firing consists
in producing a rearrangement such that after the rearrangement ν ′ is greater
than unity.

This problem is complicated by the fact that, as we have seen, we need
to deal with a total mass of active material considerably greater than the
critical in order to get appreciable efficiency.

For any proposed type of rearrangement we may introduce a coordinate χ
which changes from 0 to 1 as the rearrangement of parts proceeds from its
initial to its final value.

Schematically ν ′ will vary with χ along some such curve as is indicated in
the sketch. Since he rearrangement proceeds at a finite speed there will
be a finite time interval during which ν ′ though positive is much smaller than
its final value. As considered in more detail, for there will always be some
unavoidable sources of neutrons in the active material. In any scheme of
rearrangement some fairly massive amount of material will have to be moved
a distance of the order of Rc ∼ 10 cm. Assuming a speed of 3000 ft/sec can
be imparted with some type of gun this means that the time it takes to put
the pieces of the bomb together is ∼ 10−4 sec. Since the whole explosion
is over in a time ∼ 75τ/ν ′ = 10−6

ν′ sec, we see that, except for very small
ν ′ (ν ′ < .01), an explosion started by a premature neutron will be all finished
before there is time for the pieces to move an appreciable distance. Thus
if neutron multiplication happens to start before the pieces reach their final
configuration an explosion will occur that is of lower efficiency corresponding
to the lower value of ν ′ at the instant of explosion.

To avoid predetonation it is therefore necessary to keep the neutron background
as low as possible and to effect the rearrangement as rapidly as possible.

16. Probability of predetonation

Since it will be clearly impossible to reduce the neutron background rigorously
to zero, there will always be some chance of predetonation. In this section
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we try to see how great this chance is in order to see how this affects the
firing problem.

The chance of predetonation is dependent on the likelihood of a neutron
appearing in the active mass while ν ′ is still small and on the likelihood
that such a neutron will really set off a chain reaction. With just a single
neutron released when ν ′ > 0 it is by no means certain that a chain reaction
will start, since any particular neutron may escape from the active material
without causing a chain reaction.

The question can be considered in relation to a little gambling problem.
In tossing loaded coins suppose p is the probability of winning and q that
of losing. Let Pn be the probability of losing all of an initial stock of
n coins. On the first toss either one wins and thus has (n+1) coins or loses
and thus has (n− 1) coins. Hence the probability Pn is given by

Pn = pPn+1 + q Pn−1

the solution of which is
Pn = (q/p)n

Identifying this with the neutron multiplication problem one can show that
q/p = 1 − ν ′. Hence the probability of not starting a chain reaction with
one neutron is (1−ν ′) or ν ′ is the probability that any one neutron will start
a chain reaction.

Suppose now that there is a source of N neutron/sec. Let P (t) be the probability
of not getting a predetonation up to the instant t. In the interval dt we
have

dP = −N dt ν ′ P

On the left the first three factors together give the probability of going
off a time dt, and the factor P is the probability of not having had a predetonation
up to that time.

Near the value ν ′ = 0 we may suppose that ν ′ varies linearly with time,
ν ′ = ct. Hence, integrating the differential equation

P = e−
1
2

N c t2 = e−
1
2

N ν′

where N = N t is the number of neutrons expected in the interval between
t = 0, when ν ′ = 0, and the time when the multiplication number has reached
the value ν ′. Evidently for a particular type of firing rearrangement N will
vary inversely as the velocity with which the firing rearrangement is carried
out.

For example consider a bomb whose mass is between two and three critical
masses, for which the final value of ν ′ is 0.3 and suppose that N = 104 neutrons/sec
from unavoidable sources. Also suppose that one piece must move d = 10 cm
from the ν ′ = 0.0 configuration to the final ν ′ = 0.3 configuration. Suppose
that this piece has a velocity of 105 cm/sec then N = 1 and

P = e−0.15

so there is approximately a 15% chance of predetonation.
This is the chance of predetonation, any time up to that at which the final

value of ν ′ is reached. In this example the exponent is small enough that
the chance of predetonation, (1−P ), is given by the linear approximation

(1− P ) =
1
2

N ν ′
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Since the efficiency varies as ν ′3 one will get an explosion of less than 1
4

of the maximum if it goes off before ν ′ has reached the value 0.3/ 3
√

4 = 0, 19.
Hence the probability of an explosion giving less than 25% of the maximum
value is

(.19/.3)2 × .15 = 6%

The example serves to indicate the importance of taking great pains to
get the least possible neutron background, and of shooting the firing rearrangement
with the maximum possible velocity. It seems one should strive for a neutron
background of 10000 neutron/sec or less and firing velocities of 3000 ft/sec
or more. Both of these are difficulty of attainment.

17. Fizzles

The question now arises: what if by bad luck or because the neutron background
is very high, the bomb goes off when ν ′ is very close to zero? It is important
to know whether the enemy will have an opportunity to inspect the remains
and recover the material. We shall see that this is not a worry; in any event
the bomb will generate enough energy to completely destroy itself.

It has been remarked in the last section that for very small ν ′ (ν ′ < 0.1),
the explosion takes so long that the pieces do have time to move an appreciable
distance before the reaction ends. Thus even if a neutron enters and starts
a chain just when ν ′ = 0 there will be time for ν ′ to rise to a positive value,
and give an efficiency small, but greater than zero.

Suppose, then, that a neutron is released when ν ′ = 0. The number of neutrons
builds up according to the equation

Ṅ = (ν ′/τ) N

As of ... approximation we may suppose ν ′ varies linearly on the distance
x the pieces move from the point where ν ′ = 0, so

ν ′ = ν0 (x/d0)

where ν0 is the same value of ν ′ when the pieces reach their final optimal
configuration, and d0 is the distance to reach this configuration. If the
velocity of fire is v, we have x = vt,

ln N =

t∫

0

(ν ′/τ) dt =
1
2

ν0 v

d0 τ
t2

Suppose the reaction continues until about 1022 neutrons are produced, which
would correspond to an energy production equivalent to 100 tons of TNT. Then,
at the end of the reaction

ln N = ln 1022 ' 50.

(We can check this assumption after we have completed our estimate of the
energy release. However, since the final number of neutrons enters only in
the logarithm of a large number, our result is quite insensitive to what we
take for N at this point.)

Thus the reaction ends when

1
2

ν0 v

d0 τ
t2 = 50, χ2 = v2 t2 = 100

d0 v τ

ν0

t2 ν ′ = ν0

χ

d0
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The efficiency is

f ∼ 1
2

ν ′3 = 500ν
3/2
0

(
v τ

d0

)3/2

= 10
√

ν0

v τ

d0

Using the same figures as in the preceding section (ν0 = .3, v = 105, d0 =
10) we find

f = 8× 10−5

The mass of 25 in the bomb is about 40 kg. The mass used up is thus 40×
8 × 103 = .003 kg, and the energy release is .003 × 20000 = 60 tons of TNT
equivalent, ample to destroy the bomb.

18. Detonating Source

To avoid predetonation we must make sure that there is only a small probability
of a neutron appearing while the pieces of the bomb are being put together.
On the other hand, when the pieces reach their best position we want to be
very sure that a neutron starts the reaction before the pieces have a chance
to separate or break. It may be possible to make the projectile seat and
stay in the desired position. Failing in this, or in any event as extra insurance,
another possibility is to provide a strong neutron source which becomes active
as soon as the pieces come into position. For example one might use a Ra
+ Be source in which the Ra is on one piece and the Be on the other so neutrons
are only produced when the pieces are close to the proper relative position.

We can easily estimate the strength of source required. After the source
starts working, we want a high probability of detonation before the pieces
have time to move more than say 1 cm. This means that N, the neutrons/sec
from the source must be large enough that

1
2

N d ν ′

v
À 1 (say = 10)

N = 107neutrons/sec.

This is the yield from 1 gr Ra intimately mixed with beryllium. Hence
it might be necessary to rise several grams of radium since it will probably
not be used efficiently in this type of source.

Some other substance such as polonium that is not so γ-active as radium
will probably prove more satisfactory.

Evidently a source of this strength that can be activated within about
10−5 sec and is mechanically rugged enough to stand the shocks associated
with firing presents a difficult problem.

19. Neutron Background

There are three recognized sources of neutrons which provide the background
which gives rise to danger of predetonation: (a) cosmic ray neutrons, (b)
spontaneous fission, (c) nuclear reactions which produce neutrons.

(a) Cosmic Rays. The number of cosmic ray neutrons is about 1 per cm2 per
minute which is too few to be of any importance.

(b) Spontaneous fission. The spontaneous fission rate is known only for
28 which is responsible for the fission activity of ordinary U. At present
we have only upper limits for 25 and 49 since the activity of these has not
been detected, The known facts are
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28 gives 15 neutrons/kg·sec
25 >> <150 >>
49 >> <500 >>

It is considered probable that the rates for 25 and 49 are much smaller
than these upper limits. Even if 25 and 49 were the same as 28, a 40 kg bomb
would have a background from this source of 600 neutron/sec. This does not
seem difficult to beat.

But if U is used as tamper this will weigh about a ton which gives 15000 neutron/sec.
Of course not all of these will get into the active material but one may expect
a background of several thousand per second from this source.

Thus with a U tamper one is faced with the problem of high velocity firing.
In the range of moderately high efficiencies, say 4Mc of active material,
it might for this reason not be worth while to use a U tamper, since as we
have seen, an inactive tamper will cost only about 15% more active material.
Or one might use a compromise in which the tamper was an inner layer of U,
backed up by inactive material; for masses this large the time scale is so
short that neutrons do not have time to penetrate more than about 5 cm into
the tamper anyway.

(c) Nuclear reactions. The only important reactions are the (α, n) reactions
of light elements which might be present as impurities. The (γ, n) reactions
have a negligible yield. Let us examine what sort of limit on light element
impurities in the active material is set by the need of holding down the neutron
background from this source.

The problem is particularly bad for 49 since its half-life is only 20000
years. Its mean life is thus 30000 years = 1012 sec. Thus 10 kg of 49, containing
2.5× 1025 nuclei gives 2.5× 1013 α-particles/sec.

The yield from Ra α’s on Be is 1.2×10−4 and the shorter range from α’s
of 49 as compared with those of Ra and its equilibrium products will perhaps
cut this figure in half, say 6·10−5. Since the stopping power for α’s of
these energies is proportional to

√
A where A is the atomic weight, the stopping

power per gram is proportional to 1/
√

A.

If the concentration by weight of Be in the active material is C then the
yield of neutron/see is √

239/9 · C ·Nα · y

where Nα is the number of α’s per second, and y is the yield. Hence to get
10000 neutrons/sec one would need to have a concentration given by

√
239/9 · C · 2.5 · 1013 · 6× 10−5 = 104

that is C ∼ 10−6, which is, of course, a very low concentration of anything
in anything else.

The yield drops rapidly as one goes to elements of higher atomic weight
because of the increased Coulomb barrier. So it is unnecessary to consider
limits on elements beyond Ca as long as ordinary standards of purity are maintained.

Experiments on the yields with light elements need to be done. One can
base some rough guesses on the standard barrier penetration formulas and find
the following upper limits on the concentration by weight for several light
elements for production of 104 neutron/sec/
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Li 2× 10−5

Be 10−6

B 2 · 10−6

C 2 · 10−4 *
N — **

O 2× 10−3 ***

F 2× 10−5

* Low yield because only C13 contributes.
** (α-n) reaction not energetically possible.
*** Low yield because only 017 contributes.
The effect of several impurities simultaneously present is of course additive.
It is thus recognized that the preparation and handling of the 49 in such

a way as to attain and maintain such high standards of purity is an extremely
difficult problem. And it seems very probable that the neutron background
will be high and therefore high velocity firing will be desirable.

With 25 the situation is much more favorable. The α’s come from 24 present
in normal U to about 1/10000. If all 24 goes with 25 in the separation from
28 we shall have 1/100 of 24 in the 25. The lifetime of 24 is 100 times that
of 49 so the concentration of impurities in 25 may be 104 times that in 49
for the same background, which is not at all difficult of attainment.

To summarize: 49 will be extremely difficult to work with from the stand-point
of neutron background whereas 25 without U tamper will be not very difficult.

20. Shooting

We now consider briefly the problem of the actual mechanics of shooting
so that the pieces are brought together with a relative velocity of the order
of 105 cm/sec or more. This is the part of the job about which we know least
at present.

Figure 3:

One way is to use a sphere and to shoot
into it a cylindrical plug made of some
active material and some tamper, as in the
sketch. This avoids fancy shapes and gives
the most favorable shape for shooting; to
the projected piece whose mass would be
of the order of 100 lbs.

The highest muzzle velocity available
in U.S. Army guns is one whose bore is 4.7

inches and whose barrel is 21 feet long This gives a 50 lb. projectile a
muzzle velocity of 3150 ft/sec. The gun weighs 5 tons. It appears that the
ratio of projectile mass to gun mass is about constant for different guns
so a 100 lb. projectile would require a gun weighing about 10 tons.

The weight of the gun varies very roughly as the cube of the muzzle velocity
hence there is a high premium on using lower velocities of fire.

Another possibility is to use two guns, and to fire two projectiles at
each other. For the same relative velocity this arrangement requires about
1/8 as much total gun weight. Here the worst difficulty lies in timing the
two guns. This can be partly overcome by using an elongated tamper mass and
putting all the active material in the projectiles so it does not matter exactly
where they meet. We have been told that at present it would be possible to
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synchronize so the spread in places of impact on various shots would be 2
or 3 feet. One serious restriction imposed by these shooting methods is that
the mass of active material that can be gotten together is limited by the
fact that each piece separately must be non-explosive. Since the separate
pieces are not of the best shape, nor surrounded by the best tamper material,
one is not limited to two critical masses for the completed bomb, but might
perhaps get as high as four critical masses. However in the two gun scheme,
if the final mass is to be ∼ 4Mc, each piece separately would probably be
explosive as soon as it entered the tamper, and better synchronization would
be required. It seems worthwhile to investigate whether present performance
might not be improved by a factor ten.

Severe restrictions on the mass of the bomb can be circumvented by using
pieces of shape more difficult to shoot. For example a flat plate of actual
material tamped on only one side, has a minimum thickness below which it can
no longer support a chain reaction, no matter how large its area, because
of neutron leakage across the untamped surface. If two such plates were slid
together, untamped surfaces in contact, the resulting arrangement could be
well over the critical thickness for a plate tamped on both sides, and the
mass would depend only on the area of the plates.

Calculations show that the critical mass of a well tamped spheroid, whose
major axis is five times its minor axis, is only 35% larger than the critical

Figure 4:

mass of a sphere. If such a spheroid
10 cm thick and 50 cm in diameter were
sliced in half, each piece would be sub-critical
though the total mass, 250 Kg, is 12
times the critical mass. The efficiency
of such an arrangement would be quite

good, since the expansion tends to bring the material more and more nearly
into a spherical shape.

Thus there are many ordnance questions we would like to have answered.
We would like to know how well guns can be synchronized. We shall need information
about the possibilities of firing other than cylindrical shapes at lower velocities.
Also we shall need to know the mechanical effects of the blast wave proceeding
the projectile in the gun barrel. Also whether the projectile can be made
to seat itself properly and whether a piston of inactive material may be used
to drive the active material into place, this being desirable because thus
the active material might be kept out of the gun barrel which to some extent
acts as a tamper.

Various other sheeting arrangements have been suggested as yet not carefully
analyzed.

For example it has been suggested that the pieces might be mounted to on
a ring as in the sketch. If explosive material were distributed around the
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ring and fired the pieces would be blown inward to form a sphere.
Another more likely possibility is to have the sphere assembled but with

a wedge of neutron-absorbing material built into it, which on firing would
be blown out by an explosive charge causing ν ′ to go from less than unity to
more than unity. Here the difficulty lies in the fact that no material is
known whose absorption coefficient for fast neutrons is much larger than the
emission coefficient of the bomb material. Hence the absorbing plug will
need to have a volume comparable to that of the absorber and when removed
will leave the active material in an unfavorable configuration, equivalent
to a low mean density.

21. Autocatalytic Methods

The term "autocatalytic method" is being used to describe any arrangement
in which the motions of material produced by the reaction will act, at least
for a time, to increase ν ′ rather than to decrease it. Evidently if arrangements
having this property can be developed they would be very valuable, especially
if the tendency toward increasing ν ′ was possessed to any marked degree.

Suppose we had an arrangement in which for example ν ′ would increase of
its own accord from a low value like 0.01 up to a value 10 to 50 times greater.
The firing problem would be simplified by the low initial value of ν ′ and the
efficiency would be maintained by the tendency to develop a high value of
ν ′ as the reaction proceeds. It may be that a method of this kind will be
absolutely essential for utilization of 49 owing to the difficulties of high
neutron background from (α, n) reactions with the impurities as already discussed.

Figure 5:

The simplest scheme which might be autocatalytic
is indicated in the sketch where the active
material is disposed in a hollow shell. Suppose
that when the firing plug is in place one
has just the critical mass for this configuration.
If as the reaction proceeds the expansion
were to proceed only inward it is easy to
see from diffusion theory that ν ′ would increase.
Of course in actual fact it will proceed outward
(tending to decrease ν ′) as well as inward

and the outward expansion would in reality give the dominant effect. However,
even if the outward expansion were very small compared to the inward expansion
it has been calculated that this method gives very low efficiency: with 12Mc

an efficiency of only about 10−9 was calculated.
A better arrangement is the "boron bubble" scheme. B10 has the largest

known absorption cross-section for fast neutrons, 1152·10−24 cm2. Suppose
we take a large mass of active material and put in enough boron to make the
mass just critical. The device is then fired by adding some mare active material
or tamper. As the reaction proceeds the boron is compressed and is less effective

Figure 6:

at absorbing neutrons than when not compressed.
This can be seen most readily if one considers
the case in which the bubbles are large compared
to the mean depth in which a neutron goes
in boron before being absorbed. Then their
effectiveness in removing neutrons will be
proportional to their total area and so will
drop on compression. Hence ν ′ will increase
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as the bubbles are compressed. If the bomb is sufficiently large this tendency
is bound to overweigh the opposing one due to the general expansion of the
bomb material, since the edge of the bomb must move to produce a given decrease
in ν ′ increases with the radius of the bomb, whereas for a larger bomb the
distance the edge of a bubble must move is unchanged, since it is not necessary
to increase the radius of the bubbles but only to use more of them.

The density of particles (electrons plus nuclei) in boron is 8.3×1023 particle/cm3

while in uranium it is more than 5 times greater. Therefore as soon as the
reaction has proceeded to the point where there is a high degree of ionization
and the material behaves as a gas there will be a great action to compress
the boron. An opposing tendency to the one desired will be the stirring or
turbulence acting to mix the boron uniformly with the uniform, but the time
scale is too short for this to be effective.

It can be shown that if initially ν ′ = 0, allowing for the boron absorption,
and if no expansion of the outer edge occurs then ν ′ will rise to ν ′ ∼ 1

C (ν−
1) by compression of the boron. This scheme requires at least five times the
critical mass for no boron, and the efficiency is low unless considerably
more is used.

If one uses just that amount of boron which makes twice the no-boron critical
mass be just critical, then the efficiency is lower by a factor at least 30.

All autocatalytic schemes that have been thought of so far require large
amounts of active material, are low in efficiency unless very large amounts
are used, and are dangerous to handle. Some bright ideas are needed.

22. Conclusion

From the preceding outline we see that the immediate experimental program
is largely concerned with measuring the neutron properties of various materials,
and with the ordnance problem. It is also necessary to start now studies
on techniques for direct experimental determination of critical size and time
scale, working with large but sub-critical amounts of active material.




