1.3 The Lebesgue integral

We have just seen that Cla, b] has two quite reasonable metrics on it. In
Section [.5 we will see that it is a complete metric space in the metric

di(f,9)= sup |f(x)—-g(x)]

x€[a,b)

In the other metric we considered, d)(f,g)= lIf —gll, with [&], =
[* | (x)| dx, Cla, b] is not complete. To see this for C[0, 11, let £, be given as
in Figure I.3. It i1s not hard to see that f, is Cauchy in ||-||,, but it does not
converge to any function in Cla, b]; rather, in an intuitive sense, it *“ converges >
to the characteristic function of [3, ] (which is, of course, not in C[0, 1]!).
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FIGURE 1.3 The graph of £, .

We can always complete C[a, b] in||-||, realizing elements of the completion
as equivalence classes of Cauchy sequences of continuous functions; this
realization is not noteworthy for its transparency. The example above
suggests we might also be able to realize elements of the completion as
functions. If we do realize them as functions, we should be able to define the
integral [ | f(x)| dx (merely as d,(f, 0)!) for any f in the completion.

The simplest way to realize elements of the completion as functions is to
turn the above analysis around: one introduces an extended notion of integral
on a bigger space than Cla, b]; call it L' [a, 5]. We will prove L' is complete, so
by general arguments the closure of C in L' is complete (and it turns out
C=1L").

Now, how can one extend the notion of Riemann integral? The usual
definition of the Riemann integral is based on dividing the domain of f into
finer and finer pieces. For *“ nasty ”’ functions, this method does not work and
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s0 a different method is needed—the simplest modification is to divide the
range into finer and finer pieces (Figure 1.4). This method depends more on
the function and so has the possibility of working for more types of functions.
We are thus interested in sets f~'[a, b] and their size. We suppose we have
a size function u on sets which generalizes u([a, b]) = b — a. We will shortly
return to this size function and see that not all sets have a ‘““ size.” We will then
restrict the types of f by demanding that f ~![a, b] have a “size.” Looking at
Figure 1.4, we define for f > 0

ron- 5, 2 [ )
m=0 N n n

Then Y ., (/) = Y, (f) so that lim,_, , ¥ 2. (f) = sup, (X 2. (f)) exists (it may
be co0). This limit is defined to be | f dx. We remark that for technical purposes
(that is, proving theorems!) one makes a different definition which can be
shown to agree with this definition only after a lot of work. The definition
as lim Y ,. (f) is however the best to keep in mind when thinking intuitively.

Thus, we have transferred the problem to one of defining an extended
notion of size. We must first decide what sets are to have a size. Why not all
sets ? There is a classical example (see also Problem 13) which shows that not
all sets in R> can have a size if we want that size to be invariant under rotations
and translations (and not to be trivial, such as assigning zero to all sets):
it is possible to break up a unit ball into a finite number of wild pieces, move
the pieces around by rotation and translation and reassemble the pieces to
get two balls of radius one (Banach-Tarski paradox). Thus, all sets cannot
have a size, and so some family £ of sets will be the * measurable sets.” What
properties do we want & to have? We would like both f~![[0, a)] and
£ 'la, ©)] to be measurable (f > 0) so we would like & to have the property:
A e & implies R\A € #. Also, when f is continuous, we want £~ *[(a, b)] to
be in &, so # should contain the open sets. Finally, we want to have

”(,,Q,A") =§1u(A,,)

if the A4, are mutually disjoint (to meet our intuitive notion of size) so we
would like | }2., A, € # if each 4, isin 4.

Definition The Borel sets of R is the smallest family of subsets of R with
the following properties:

(i) The family is closed under complements.
(i The family 1s closed under countable unions.
(iii) The family contains each open interval.
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To see that such a smallest family exists we note that if {2,},. 4 1S a collec-
tion of families obeying (i), (i), and (jii), then so does (), .. Thus the
intersection of all families obeying (i)—(iii) is the smallest such family.

Now we define the Lebesgue measures of sets in %, the Borel sets in R.

Definition Let J be the family of all countable unions of disjoint open
intervals (which is just the family of open sets) and let

ﬂ(‘ul(an b:‘)) = _Zl(bi - a;)
(which may be infinite). For any B € 4, define

#(B) = inf u(I)
lesS
Bcl

This notion of size has four crucial properties:

Theorem 1.8

(@ wd)=0

(b) If {4}, =« # and the A, are mutually disjoint (4, ~ 4, = &, all
m #n), then p({ 72, 4,) = L2, m(4,).

(¢) w(B)=inf{u(l)|B < I, I is open}

(d) w(B)=sup{u(C)|C <« B, C is compact}

The infinite sum in (b) contains only positive terms, so it either converges
to a finite number or diverges to infinity, in which case we set it equal to co.
(c) and (d) say that any Borel set can be approximated *from the outside”
by open sets and from the inside by compact sets. We remind the reader that
on the real line a set is compact if and only if it is closed and bounded.

We have thus extended the usual notion of size of intervals and we define
the family of functions we will consider in the obvious way:

Definition A function f is called a Borel function if and only if £~ *{(a, b)]
is a Borel set for all a, b.

It is often convenient to allow our functions to take the values + 00 on
small sets in which case we require f ~'[{ + c0}] to be Borel.

Proposition  fis a Borel if and only if, for all Be %, f '[Blc #
(see Problem 14).
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This last proposition implies that the composition of two Borel functions
is Borel. Many books deal with a slightly larger class of functions than the
Borel class. They first define a set M to be measurable if one can write
My A, = Bu A, where B is Borel and A4; c B; with B; Borel and u(B) =10
(thus they add and subtract *‘ unimportant > sets from Borel sets). A measur-
able function is then defined as a function, f, for which £~ '[(a, b)] is always
measurable. It is no longer true that f ¢ g is measurable if fand g are, and
many technical problems arise, In any event, we deal only with Borel sets and
functions and use the words Borel and measurable interchangeably.

Borel functions are closed under many operations:

Proposition (a) If f, g are Borel, then so are f+ g, fg, max{f, g} and
min{ f, g}. If fis Borel and 4 € R, Af is Borel.

(b) If each f, is Borel, n=1,2,..., and f,(p) —»f(p) for all p, then [
is Borel.

Since | f| = max{f, —f}, | f| is measurable if f is.

As we sketched above, given > 0, one can define { fdx (which may be o).
If { | f] dx < oo, we write fe & and define { fdx = [ f, dx — | f_ dx where
£+ =max{f, 0}; f- = max{—f,0}. £'(a, b) is the set of functions on (a, b)
which are in £! if we extend them to the whole real line by defining them to

be zero outside of (a, b). If fe L'(a, b), we write | fdx =[5 fdx. We then
have:

Theorem 1.9 Let fand g be measurable functions. Then

(@) Iff,ge %' (a,b),soare f+ g and 1f, for all Ae R.

(b) Iflg| <fand fe £, thenge L.

© [(f+gdx=[fdx+|gdxiffandgarein £

(@ [ffdx| <§|f| dxif fisin L.

() Iff<g,then [fdx<[gdx,iffandg arein £

(f) If fis bounded and measurable on — o0 < a < b < o0, then fe &£ and

jbfdx

< 16 —al( sup o)

a<x<b

This theorem shows that | has all the nice properties of the Riemann
integral even though it is defined for a larger class of functions.

The properties that make the space L' (which we will shortly define)
complete are the following absolutely essential convergence theorems:
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Theorem 1.10 (monotone convergence theorem) Let f, > 0 be measur-
able. Suppose f,(p) = f(p) for each p and that f, . (p) = f,(p) all p and n (in
which case we write f, #f). If | f(p) dp < C for all n, then fe ¥' and

J1f(p)— fu(p)ldp >0 as n— .

Theorem 1.11 (dominated convergence theorem)  Let f,(p) - f(p) for
each p and suppose | £u(p)! < G(p) for all n and some G e £*. Then fe £*

and { | f(p) - f(p)| dp— 0 as n — co.

In the latter case, we say G dominates the pointwise convergence. That a
dominating function exists is crucial. For example, let f,(x) = (1/m)y( - a, mfX)-
Then f,(x) — 0 for each x, but | | f,] dx =2 so || f,(x)| dx does not go to
zero. In this case, it is not hard to see that sup, | f,(x)] = G(x) is not in £".

We are almost ready to define &' as a metric space by letting p(f, g) =
{|f—g! dx. We cannot quite do this because | | f— g| dx =0 does not
imply f= g (for example, f and g might differ at a single point). Thus, we
first define the notion of almost everywhere {(a.e.):

Definition We say a condition C(x) holds almost everywhere (a.e.) if
{x| C(x) is false} is a subset of a set of measure zero.

Definition = We say two functions f, g € &' are equivalent if f(x) = g(x)
a.e. (this is the same as saying | | f— g| dx = 0).

Definition  The set of equivalence classes in ! is denoted by as L',
[! with the norm ||f|l; = [ | f| dx is a normed linear space.

Thus an element of I! is an equivalence class of functions equal a.e. In
particular when fe LI, the symbol f{x) for a particular x does not make sense.
Nevertheless we continue to write *“ f(x)™ but only in situations where state-
ments are independent of a choice from the equivalence class. Thus, for
example, f,(x) — f(x) for almost all x is independent of the representatives
chosen for fand £, . By this replacement of pointwise convergence with point-
wise convergence almost everywhere, the two convergence theorems carry
over from £' to L.

Having cautioned the reader that f(x) is “technically meaningless” for
fe I}, we remark that in certain special cases it is meaningful. Suppose fe '
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has a representative [ (that is, f is a function; f an equivalence class of func-
tions) which is continuous. Then no other representative of f is continuous,
so it is natural to write f(x) for f(x).

The critical fact about L' is:
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2.7 THEOREM (Completeness of LP-spaces)

Let 1 < p < oo and let ft, fori =1,2,3,..., be a Cauchy sequence in
LP(Q), i.e., || f* — f/|lp — O as 4,5 — oo. (This means that for each e > 0
there is an N such that || f* — f?||, < € when i > N and j > N.) Then there
exists a unique function f € LP(Q) such that ||f* — fll, — 0 asi — co. We
denote this latter fact by

fi—f as i— oo,

and we say that f' converges strongly to f in LP(Q).

Moreover, there exists a subsequence f*, f*2, ... (withi; < iy <---, of
course) and a nonnegative function F in LP(SY) such that

(i) Domination : |f*(z)| < F(z) for all k and p-almost every xz. (1)

(ii) Pointwise convergence: klim f*(x) = f(x) for p-almost every z. (2)
— 00

REMARK. ‘Convergence’ and ‘strong convergence’ are used interchange-
ably. The phrase norm convergence is also used.

PROOF. The first, and most important remark, concerns a strategy that
is frequently very useful. Namely, it suffices to show the strong convergence
for some subsequence. To prove this sufficiency, let f* be a subsequence
that converges strongly to f in LP(Q) as k — oo. Since, by the triangle
inequality,

1F* = fllp < S = £l + 1% = £llp,

we see that for any £ > 0 we can make the last term on the right side less
than €/2 by choosing k large. The first term on the right can be made smaller
than £/2 by choosing i and k large enough, since f* is a Cauchy sequence.
Thus, ||f* — f|l, < € for i large enough and we can conclude convergence
for the whole sequence, i.e., f* — f. This also proves, incidentally, that the
limit—if it exists—is unique.

To obtain such a convergent subsequence pick a number ¢; such that
| £ — f|l, < 1/2 for all n > ;. That this is possible is precisely the
definition of a Cauchy sequence. Now choose i3 such that || f*2 — f"||, < 1/4
for all n > iy and so on. Thus we have obtained a subsequence of the
integers, iy, with the property that ||f* — fi+1||, < 27% for k = 1,2,....
Consider the monotone sequence of positive functions

l
Fy(z) = (@) + ) _|f*(z) — f+1 (). (3)
k=1
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By the triangle inequality

[
‘ Tk ,
1Bl < 1% 0p + Y27 < Il p + 1.
k=1
Thus, by the monotone convergence theorem, F; converges pointwise u-
a.e. to a positive function F which is in LP(€2) and hence is finite almost
everywhere. The sequence

frei(a) = f(2) + (F2(2) = f2 (=) + -+ (5 () = (@) (4)

thus converges absolutely for almost every x, and hence it also converges for
the same z’s to some number f(z). Since |f*(z)| < F(z) and F € LP(Q),
we know by dominated convergence that f is in LP(2). Again by dominated
convergence || f** — f||, — 0 as k — oo since | f*(z)— f(z)| < F(z)+|f(z)| €
LP(£2). Thus, the subsequence f% converges strongly in LP(2) to f. [



As a final result which brings us full circle to our original motivation:

Proposition  Cla, ] is dense (in ||*|l,) in [}a, 4], i.e. I! is the com-

pletion of C.
Proof See Problem 18.

We defined I'[a, b] as a space of real-valued functions. It is often con-
venient to deal with complex-valued functions, f, whose real and imaginary
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parts are in I'[a, b]. When no confusion arises, we will denote this space, with
the norm

If lly = f 11 dx

also by I}{a, b]. The integral of a complex-valued function is defined by

ffdx:fRe(f) dx + ijlm(f) dx

1.4 Abstract measure theory

One of the most important tools which one combines with abstract func-
tional analysis in the study of various concrete models is “ general ”” measure
theory, that is, the theory of the last section extended to a more abstract
setting.

The simplest way to generalize the Lebesgue integral is to work with
functions on the real line and with Borel sets but to generalize the underlying
measure; we consider this special case of abstract measure theory first. Recall
that the Lebesgue integral was constructed as follows. We started with a
notion of size for intervals, u({a, b]) = b — a, and extended this in a unique
way to a notion of size for arbitrary Borel sets. Armed with this notion of
size for Borel sets, the integral of Borel functions was obtained by measuring
sets of the form £~ *({a, b)). We found the vector space I'([0, 1], dx) con-
structed in the last section is just the completion of C[0, 1] with the metric
dy(f, 9) = {5 | f(x) — g(x)| dx, where we needed only the Riemann integral
to define d, .

Now suppose an arbitrary monotone function a(x) is given (that is, x > y
implies a(x) = a(y)). It is not hard to see that the limit from the right,
lim,_ o a(x + |&|) and the limit from the left, lim,.,, a(x — |¢]) exist; we write
them as a(x + 0) and a(x — 0) respectively. Since (a, b) does not include the
points a and b, it is natural to define p((a, b)) = a(b ~ 0) — a(a + 0). From
this notion of size for intervals, one can construct a measure u, on Borel sets
of R, thatis,amap p,: 2 — [0, co}withy, (| JB)) = X2, ua(B)if B, n B; =
and u,(¢) = 0. By construction, this measure has the regularity property

1(B) = sup{u(C)|C = B, C compact}
= inf{u(0)}|B < O, O open}
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Also, u(C) < o for any compact set C. A measure with these two regularity
properties is called a Borel measure. In particular, u([a, b)) = «(b + 0) —
a(a — 0). One can then construct an integral /- | fdu, (we will also write
| f do) which has properties (a)—(e) of Theorem 1.9; it is called a Lebesgue-
Stieltjes integral. I’([a, b}, dx) and L}(R, dz) can be formed as before. These
spaces of equivalence classes of functions are complete in the metric p(f, g) =
[1f—g| dz, and analogues of the monotone and dominated convergence
theorems hold. The continuous functions Cla, b} form a dense subspace of
L ({a, b}, dv); put differently, L'([a, b, dz) is the completion of Cla, b] with
the metric p,(f,g) = {% | f— g| dx where we need only use the Riemann-
Stieltjes integral to define p, (see Problem 11).

Let us consider three examples which illustrate the variety of Lebesgue-
Stieltjes measures.

Example 1 Suppose « is continuously differentiable. Then u(a, b) =
{2 (do/dx) dx where dx is Lebesgue measure, so it is to be expected (and is

indeed true!) that
do.
ffda = Jf(:i;) dx

Thus, these measures can essentially be described in terms of Lebesgue
measure.

Example 2 Suppose that a(x) is the characteristic function of [0, o).
Then p(a,b) =1 if 0e(a, b) and is 0 if O ¢ (a, b). The measure one gets
out is very easy to describe: u,(B) =1 if 0 e B, and u,(B) =0 if O ¢ B. The
reader is invited to construct explicitly the integral and convince himself that

[rae=r0

This measure do is known as the Dirac measure (since it is just like a
§ function). Let us consider I} (R, de) in this case. In #! we have p(f, ¢) =
| £(0) — g(0)| so p(f, g) = 0 if and only if f(0) = g(0). As a result, we see that
the equivalence classes in L' are completely described by the value £(0) so that
LXR, do) is just a one-dimensional vector space! Notice how different this is
from the case of L'(R, dx) where the value of a “function™ at a single point
is not defined (since elements of I! are equivalence classes).

Example 3 Our last example makes use of a fairly pathological function,
a(x), which we first construct. Let S be the subset of [0, 1]

=4LHvEHvEdHuE, AU
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that is, remove the middle third of what is not in S at each stage and add it
to S, see Figure 1.5. The Lebesgue measure of Sis 1 + 2(3) + 4(%) + -+ =1,
Let C = [0, 1]\S. It has Lebesgue measure 0. C, which is known as the Cantor
set, is easy to describe if we write each x € [0, 1] in its base three decimal
expansion. Then x € C if and only if this base 3 expansion has no 1’s. Thus C
is an uncountable set of measure 0. To see this, map C in a one-one way onto
{0, 1] by changing 2’s into 1’s and viewing the end result as a base 2 number.
Now construct a(x) as follows: set a(x) =% on (4, 4); a(x) =1 on (4, $);
a(x) =2 on ({, §), etc.; see Figure 1.6, Extend o to [0, 1] by making it con-

bl

by
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2

Ficure 1.6 The Cantor function.

tinuous. Then « is a nonconstant continuous function with the strange
property that o'(x) exists a.e. (with respect to Lebesgue measure) and is zero
a.e. Now, we can form the measure y,. Since « is continuous, u({p}) =0
for any set {p} with only one point. Nevertheless, p, is concentrated on the set
C in the sense that u,([0, I\C) = u.(S) = 0. On the other hand, the Lebesgue
measure of C is zero. Thus g, and Lebesgue measure “live” on completely
different sets.

In a sense we now make precise, these three examples are models of the
most general Lebesgue—Stieltjes measures. Suppose u is a Borel measure on R.
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First, let P = {x| u({x}) # 0}, that is, P is the set of pure points of y. Since p is
Borel [u(C) < o for any compact set], P is a countable set. Define

Pop(X) = 3 p({xP) = p(P N X)

xePnX

Then p,, is a measure and pgo, = p — Uy, iS positive. pq,, has the property
Heont({P}) = O for all p, that is, it has no pure points and pu,, has only pure
points in the sense that u (X) =), . x p,,({x}).

Definition A Borel measure y on R is called continuous if it has np pure
points. yu is called a pure point measure if u(X) =Y, .x u(x) for any Borel
set X.

Thus, we have seen:

Theorem 1.13 Any Borel measure can be decomposed uniquelyinto a
sum @ = p,, + Heon Where g, is Continuous and g, is a pure point measure,

We have thus generalized Example 2 by allowing sums of Dirac measures.
Is there any generalization of Examples ! and 37

Definition We say that u is absolutely coutinuous with respect to (w.r.t.)

Lebesgue measure if there is a function, f, locally I' (that is, {5 | f(x)| dx <
for any finite interval (q, b)) so that

[gdn=[ardsx
for any Borel function g in I}(R, dui). We then write du = f dx.

This definition generalizes Example 1; we will eventually make a different
(but equivalent!) definition of absolute continuity.

Definition We say u is singular relative to Lebesgue measure if and only
if u(S) =0 for some set S where R\S has Lebesque measure 0.

The fundamental result is;

Theorem 1.14 (Lebesgue decomposition theorem) Let u be a Borel
measure. Then g = p,. + ping in @ unique way with g, absolutely continuous
w.r.t. Lebesgue measure and with p,;,,, singular relative to Lebesgue measure.
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Thus Theorems I.13 and 1.14 tell us that any measure p on R has a canonical
decomposition p = p,, + p, + P, Where p, is pure point, p,. absolutely
continuous with respect to Lebesgue measure, and p;,, is continuous and
singular relative to Lebesgue measure. This decomposition will recur in a
quantum-mechanical context where any state will be a sum of bound states,
scattering states, and states with no physical interpretation (one of our
hardest jobs will be to show that this last type of state does not occur; that
is, that certain measures have p,,; = 0; (see Chapter XIII).)

This completes our study of measures on R. The next level of generalization
involves measures on sets with some underlying topological structure; we will
return to study this case of intermediate generality in Section IV.4. The most
general setting lets us deal with an arbitrary set. We first need an abstraction
of Borel sets:

Definition A nonempty family & of subsets of a set M is called a o-ring
if and only if

(@ A;eR,i=1,2,... implies )2, 4, &
(b) If A, Be &, then A\Be #.

If M € &, we say that £ is a o-field.

The definition of measure is obvious(!):

Definition A measure on a set M with o-ring & is a map u: # - [0, 0]
with the properties:

(&) w(@=0 |
(b) ”(:Q1Ai)= iy(A,-), if AinA;= forall i#j.

i=

We shall often speak of the measure space (M, u) without explicitly men-
tioning &, but the o-ring is a crucial element of the definition. Occasionally, we
will write (M, &, u)>. For certain pathologically “ big’’ spaces, one wants to
use the notion of o-ring rather than o-field, but to keep things simpie, we
will consider measures on o-fields and will suppose the whole space isn’t
too big in the sense:

Definition A measure u on a o-field # is called o-finite if and only if
M =), A4, with each p(4)) < c.

We will suppose all our underlying measures are o-finite.
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Definition Let M, N be sets with o-fields Zand #. AmapT- M - N
is called measurable (w.r.t. Z and #)ifandonlyif VAe F, T [4]e #. A

map f* M — R is called measurable if it is measurable w.r.t. # and the Borel
sets of R.

Given a measure p on a measure space M, we can define { fdu for any
positive real-valued measurable function on M and we can form £ (M, du),
the set of integrable functions and L'(M, du), the equivalence classes of func-
tions in &' equal a.e.[u]. As in the case {M, du) = (R, dx), the following
crucial theorems hold:

Theorem 1.15 (monotone convergence theorem) If f, € £ (M, du),
0<fi(x) < fo(x) <+ and f(x) = lim,, f,(x), then fe £ if and only if
lim,. o {/i]l; < oo and in that case lim,_ . || f— f,lli =0 and lim,_ . ||f,]l; =

11k

Theorem .16 (dominated convergence theorem) If f,e(M,dy),

lim, ., f,(x) = f(x) a.e.[u}, and if thereis a G € L' with | f,(x)| < G(x) a.e.[u],
for all n, then fe L' and lim,_, ||/ —f.ll; = 0.

Theorem 1.17 (Fatou’s lemma) If f,€.%', each f,(x)=0 and if
lim||f,ll; < o, then f(x) = lim f,(x) is in £* and ||f1}, < lim|if,ll;-

Note In Fatou’s lemma nothing is said about lim,_ . | f— £,Il;.

Theorem 1.18 (Riesz—Fisher theorem) LM, du) is complete.

One also has the idea of mutually singular:

Definition Let u, v be two measures on a space M with o-field #. We
say that y and v are mutually singular if there is a set 4 € # with u(4) = 0,
v(M\A) = 0.

It is useful to take a Weaker looking definition of absolute continuity which
is essentially the opposite of singular:

Definition We say v is absolutely continuous w.r.t. p if and only if
u(A4) = 0 implies v(4) = 0.

That this definition is the same as the previous one is a consequence of:
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Theorem 1.19 (Radon-Nikodym theorem) v is absolutely continuous
w.r.t. u if and only if there is a measurable function f so that

W(A) = [ (%) A3
for any measurable set 4. f is uniquely determined a.e. (w.r.t. p).

Finally the Lebesgue decomposition theorem has an abstract form:

Theorem 1.20 (Lebesgue decomposition theorem) Let u,v be two
measures on a measure space {M, #). Then v can be written uniquely as
V= V,o + V4o Where p and v, are mutually singular and v, is absolutely
continuous w.r.t. u.

There is one final subject in measure theory which we must consider and
that involves changing the order of integration in a multiple integral. We first
must consider what functions can be multiply integrated:

Definition Let <M, #), (N, F) be two sets with associated o-fields.
Then the o-field, Z ® & of subsets of M x N is defined to be the smallest
o-field containing {R x F|Re R, Fe #). '

Notice that if fi M x N— R is measurable (w.r.t. # ® &), then for any
m € M, the function n— f(m, n) is measurable (w.r.t. #). If v is a measure
on N such that {f(m,n)dv(n) exists for all m, then one can show that
m > | f(m, n) dv(n) is measurable (w.r.t. &). There is a direct analogue of the
fact that absolute convergent sums can be rearranged at will:

Theorem 1.21 (Fubini’s theorem) Let / be a measurable function on
M x N. Let i be a measure on M, v a measure on N. Then

fM(fN | f(m, n)] d"(")) dp(m) < oo
if and only if

fN(jM |/ (m, m)| d,u(m)) dv(n) <

and if one (and thus both) of these integrals is finite, then

fN(fo(!n, n) dﬂ(m)) dv(n) = fM(fN f(m, n) dv(n)) dy(im)
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In Problem 25, the reader will see that the finiteness of the integral of the
absolute value is critical.

Fubini’s theorem can be put into perspective by the notion of product
measure:

Theorem 1.22 Let 1 be a o-finite measure on (M, ) and v a o-finite
measure on {N, #». Then, there is a unique measure y @ v on (M x N,
Z QR F ) obeying

(1 ® VYR x F) = u(R)v(F)

(where 0 - 00 = 0). If fis a measurable function on M x N, then

fm(-[w |/ (m, m)} dv(”)) du(m) < oo
if and only if

[ ifldwen<w
MxN

and in that case

pawen=[ ([ sav) da

MxN

One can describe the measure u ® v quite explicitly. If M e £ x ¥ and

Mc U;".’;l R; x F, we have (u ®@ v}(M) < Z,f";l p(RW(F). In fact, for any
MeZ x &,

(@) = inf{ 5 wCRIUFY

Mc:ORix Fi}
i=1

In particular, we can approximate M with a countable union of rectangles
making an arbitrarily small error.



