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Abstract

A model of non-local dilaton interactions, motivated by string duality symmetries, is applied to

a scenario of “coupled quintessence” in which the dilaton dark energy is non-locally coupled to the

dark-matter sources. It is shown that the non-local effects tend to generate a backreaction which

– for strong enough coupling – can automatically compensate the acceleration due to the negative

pressure of the dilaton potential, thus asymptotically restoring the standard (dust-dominated)

decelerated regime. This result is illustrated by analytical computations and numerical examples.
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I. INTRODUCTION

It is well known that the “cosmological” duality symmetries of the low-energy string

effective action – for instance, scale-factor duality [1, 2] – require non-linear transformations

mixing the metric and the dilaton field ϕ: as a consequence, those symmetries are generally

lost in the presence of a non-trivial dilaton potential V = V (ϕ) and/or non-trivial couplings

of the dilaton to the matter sources. It is also known, however, that the duality properties

of the string-cosmology equations are preserved in the presence of the potential provided V

depends on ϕ through an appropriate “shifted” variable φ, defined by φ = ϕ−ln
√−g, where

g is the determinant of the metric tensor. In that case the equations are duality-invariant

even in the generalized case of global O(d, d) transformations, both without [3, 4] and with

[5] matter sources.

The above variable φ is not a scalar under general coordinate transformations, and cannot

be directly inserted into the potential in order to construct a generally covariant action. It

has been shown, however, that a covariant formulation of the potential, of the action, and

of the equations of motion can be made compatible with the duality properties of (d + 1)-

dimensional, homogeneous, string-frame backgrounds if V depends on the dilaton through

the following non-local scalar function of ϕ [6, 7]:

ξ(x) ≡ ξ[ϕ(x)] = − ln

∫

dd+1y

λd
s

√

−g(y) e−ϕ(y)
√

|∂µϕ(y)∂µϕ(y)| δ [ϕ(x) − ϕ(y)] . (1.1)

The string-length factor, λd
s , is introduced here to make ξ dimensionless. The variable

ξ, unlike φ, transforms as a scalar under general coordinate transformations, and exactly

reduces to φ in the case of homogeneous and spatially flat metric backgrounds with spatial

sections of finite comoving volume (
∫

ddy = Vd = const < ∞). It has been shown, in

particular, that an effective potential V = V (ξ) can be induced by dilatonic loop corrections

in (higher-dimensional) manifolds with compact spatial sections [7]. The same non-local

variable ξ preserves the duality symmetry of the cosmological equations even if the dilaton

is directly and non-minimally coupled to the matter sources, as recently pointed out in [8].

In this paper we will assume that the dilaton is non-locally coupled to the gravitational

sources appearing in the matter Lagrangian (or, at least, to a significant fraction of these

sources), and that such a non-local interaction can be parametrized by the same variable

ξ used to construct a generally covariant and duality-invariant potential. We will use this
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approach – motivated by the fundamental string theory symmetries – to study the possible

effects of non-locality in a simple model of “coupled quintessence” based on the interaction

of the dilaton with the cosmic dark-matter fluid [9]. The resulting effective model of “non-

local dark energy” is – to the best of our knowledge – qualitatively different from all models

of coupled dark energy proposed so far in the literature [10–14], and suggests new (and

potentially interesting) scenarios for the discussion of the “coincidence problem” [15] and

the future evolution of the currently accelerated cosmic regime.

The paper is organized as follows. In Sect. II we derive the full set of integro-differential,

general-covariant equations of motion, in the Einstein frame, for a canonically normalized

scalar field non-minimally and non-locally coupled to the matter sources through the duality-

motivated variable ξ of Eq. (1.1). The homogeneous limit of such equations, with perfect

fluid sources, is applied in Sect. III to a model of coupled dark energy based on the dilaton,

and characterized by an asymptotic regime with frozen ratio of the dark-energy to the dark-

matter density [9, 16]. It is shown, in particular, that because of non-local effects the dark-

matter fluid may develop an effective pressure which tends to compensate, asymptotically,

the accelerating action of the dilaton potential, eventually driving the Universe back to the

standard (dust-dominated) decelerated regime. This effect is also graphically illustrated in

Sect. IV using a simple numerical example. The main differences between uncoupled, locally

coupled, and non-locally coupled models of dark energy are briefly summarized in Sect. V.

Finally, our conventions will be as follows: diag gµν = (+,−,−,−, · · · ), Rµνα
β =

∂µΓνα
β + Γµρ

βΓνα
ρ − (µ ↔ ν), and Rνα = Rµνα

µ.

II. NON-LOCAL MATTER-DILATON INTERACTIONS

Since in this paper we are not concerned with the duality properties of the string effective

action, we will phenomenologically introduce the non-local coupling working directly in the

Einstein frame. Also, we will use here a very simple model of matter-dilaton interactions

in which the non-local terms only appear in the matter Lagrangian Lm: no additional

contribution due to non-locality is present, neither in the potential nor in the possible

dilaton-loop corrections to the kinetic part of the action (see [8] for the discussion of more

general coupling schemes).

We shall thus consider the (Einstein-frame) action for a canonically normalized scalar field
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φ (conventionally called “dilaton”), minimally coupled to gravity and non-locally interacting

with the matter sources as follows,

S =

∫

dd+1
√
−g

[

− R

2λd−1
P

+
1

2
∇µφ∇µφ − V (φ)

]

+

∫

dd+1x
√
−g Lm(e−ξ), (2.1)

where ξ is a scalar, dimensionless, non-local function of φ defined by:

e−ξ(x) = λ−d
P

∫

dd+1y
(√−g e−φ/µ

√

ǫ(∇φ)2
)

y
δ(φx − φy). (2.2)

Here λP = (8πG)1/(d−1) is the Planck length, and µ is a dimensional factor with the same

canonical dimensions as the scalar field φ. If, in particular, µ = [(d − 1)λd−1
P ]−1/2, then the

dimensionless ratio φ/µ exactly corresponds to the string-theory dilaton ϕ, rescaled from

the string to the Einstein frame (see e.g. [7]). In this paper we will adopt however a phe-

nomenological approach, leaving open the value of µ as a free, model-dependent parameter,

and discussing how the final results may depend on the specific value assigned to µ. Note

that in Eq.(2.2) we have also explicitly inserted the factor

ǫ = sign{(∇φ)2}, (∇φ)2 ≡ ∇µφ∇µφ, (2.3)

which is required in order to include into our formalism both time-like, (∇φ)2 > 0, and

space-like, (∇φ)2 < 0, dilaton gradients. Finally, we are using the convenient notation in

which an index appended to round brackets, (. . . )x, means that all quantities inside the

brackets are functions of the appended variable (similarly, φx ≡ φ(x)).

The general-covariant equations of motion for this non-local model of scalar-tensor gravity

can now be deduced by computing the functional derivatives of the action with respect to

gµν and φ. For the metric we obtain, separating local and non-local contributions,

δS

δgµν(x)
=

√
−g

[

− 1

2λd−1
P

Gµν +
1

2
Tµν +

1

2

(

∇µφ∇νφ − 1

2
gµν∇φ2

)

+
1

2
gµνV

]

+ Mµν(x).

(2.4)

Here Gµν is the Einstein tensor, Tµν represents the (local) stress-tensor contribution of the

matter action, defined as usual by

1

2

√
−g Tµν =

δ(
√−gLm)

δgµν
, (2.5)

and Mµν represents a new, non-local contribution due to the explicit presence of the metric

in the definition of ξ, according to Eq. (2.2). In particular,

Mµν(x) =

∫

dd+1y
(√−gL′

m

)

y

δ

δgµν(x)
e−ξ(y), (2.6)
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where L′

m is the derivative of the matter Lagrangian with respect to its argument exp(−ξ),

L′

m ≡ ∂Lm

∂(e−ξ)
= −eξ ∂Lm

∂ξ
, (2.7)

and (from Eq. (2.2))

δ

δgµν(x)
e−ξ(y) = −1

2
λ−d

P

(

γµν

√
−ge−φ/µ

√

ǫ(∇φ)2
)

x
δ(φy − φx), (2.8)

where

γµν = gµν −
∇µφ∇νφ

(∇φ)2
. (2.9)

Inserting these results into Eq. (2.6), summing up all terms of Eq. (2.4), multiplying by

2λd−1
P /

√−g, and imposing the condition of stationary action, δS/δgµν = 0, we are led to

the generalized (integro-differential) gravitational equations:

Gµν = λd−1
P

[

Tµν + ∇µφ∇νφ − 1

2
gµν(∇φ)2 + gµνV − γµνe

−φ/µ
√

ǫ(∇φ)2Im

]

, (2.10)

where

Im = λ−d
P

∫

dd+1y
(√

−gL′

m

)

y
δ(φy − φx). (2.11)

Similarly, the functional derivative of the action (2.1) with respect to the dilaton φ con-

tains both local and non-local contributions,

δS

δφ(x)
= −√−g

(

∂V

∂φ
+ ∇2φ

)

x

+ B(x), (2.12)

where ∇2φ = ∇µ∇µφ, and where the non-local contribution B(x) is due to the explicit

dependence of the variable ξ on the dilaton:

B(x) =

∫

dd+1y
(√−gL′

m

)

y

δ

δφ(x)
e−ξ(y). (2.13)

A direct computation of B(x) (see Appendix A), inserted into the condition δS/δφ = 0,

finally leads to the generalized (integro-differential) scalar-field equation of motion,

∇2φ +
∂V

∂φ
+ ǫ

e−φ/µ

√

ǫ(∇φ)2
γµν∇µ∇νφ Im + L′

m

(

e−ξ

µ
− e−φ/µJ

)

= 0, (2.14)

where

J(x) = λ−d
P

∫

dd+1y
(√

−g
√

ǫ(∇φ)2
)

y
δ′(φx − φy), (2.15)

and where δ′ denotes the derivative of the delta function with respect to its argument.
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For the cosmological applications of this paper we need to specify the generally covari-

ant, non-local set of coupled equations (2.10), (2.14) to the simple case of a homogeneous,

isotropic, spatially flat, d = 3 background, sourced by a perfect-fluid stress tensor. In the

cosmic time gauge:

gµν = diag(1,−a2δij), a = a(t), φ = φ(t),

Tµ
ν = diag(ρ,−pδj

i ), ρ = ρ(t), p = p(t). (2.16)

In this simple case ǫ = 1, γ00 = 0, γj
i = δj

i , and we find, as a first result, that the (00)

component of Eq. (2.10) reduces to the standard Friedman equation,

6H2 = 2λ2
P

(

ρ +
φ̇

2
+ V

)

. (2.17)

Concerning the spatial components we note, first of all, that in the homogeneous limit

the non-local variable (2.2) reduces to

e−ξ → Ω3 a3e−φ/µ ≡ eφ, (2.18)

where Ω3 = λ−3
P

∫

d3x is the constant volume factor (in Planck units) of the compact spatial

sections of the manifold (2.16). The non-local term of Eq. (2.10) becomes, in the same limit,

e−φ/µ
√

ǫ(∇φ)2 Im → e−φL′

m = −∂Lm

∂φ
. (2.19)

Thus, from the (ij) components of Eq. (2.10) we obtain the spatial equation

4Ḣ + 6H2 = 2λ2
P

[

−p −
(

φ̇2

2
− V

)

+
∂Lm

∂φ

]

, (2.20)

where the last term on the right-hand side represents the only correction induced by non-

locality with respect to the standard Einstein equation.

We shall now consider the dilaton equation (2.14). In the homogeneous background (2.16)

there is a big simplification, due to the fact that

ǫ
e−φ/µ

√

ǫ(∇φ)2
γµν∇µ∇νφ Im → − 3H

φ̇

∂Lm

∂φ
,

−L′

me−φ/µJ → 3H

φ̇

∂Lm

∂φ
. (2.21)
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These two non-local terms thus exactly cancel each other in the homogeneous limit of Eq.

(2.14), and we are left with the dilaton equation

φ̈ + 3Hφ̇ +
∂V

∂φ
− 1

µ

∂Lm

∂φ
= 0, (2.22)

where the last term represents the correction induced by the explicit dependence of Lm on

φ.

In view of our subsequent discussion it is finally convenient to rewrite the full set of

cosmological equation using an effective fluido-dynamical representation of the scalar field

source. Let us introduce, to this purpose, the effective energy density and pressure ρφ, pφ,

and the effective “scalar charge” density of the matter sources, σ, defined by

ρφ =
φ̇2

2
+ V, pφ =

φ̇2

2
− V,

σ

2
= −∂Lm

∂φ
. (2.23)

Our cosmological equations (2.17), (2.20), (2.22) can then be rewritten respectively as:

6H2 = 2λ2
P (ρ + ρφ) , (2.24)

4Ḣ + 6H2 = −2λ2
P

(

p + pφ +
σ

2

)

, (2.25)

ρ̇φ + 3H (ρφ + pφ) = − σ

2µ
φ̇, (2.26)

and their combination gives the covariant conservation equation of the matter energy density:

ρ̇ + 3H
(

ρ + p +
σ

2

)

=
σ

2µ
φ̇. (2.27)

It should be stressed, before concluding this section, that the genuinely new effect of the

non-local interactions is the appearance of the contribution proportional to σ on the right-

hand side of the spatial equation (2.25): this contribution acts as an “additional” pressure of

the matter fluid, being equivalent to the term one could obtain from the standard Einstein

equations through the shift

p → p +
σ

2
(2.28)

(see also Eq. (2.27)). It is true that the ξ-dependence of the matter Lagrangian also

induces further corrections to the Einstein equations, in particular introduces the direct

(non-minimal) coupling between the dilaton and the matter sources represented by the

terms ±σφ̇/2µ in Eqs. (2.26), (2.27). However, a similar type of coupling (triggered by the

modification of the dilaton equation of motion (2.22)) would also be obtained in the more
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conventional framework in which the dilaton is locally coupled to matter, i.e. Lm = Lm(φ):

hence, those terms do not represent an important qualitative difference from previous models

of coupled quintessence (see e.g. [10–12]). The effective pressure (2.28), on the contrary,

can only be obtained if the matter-dilaton interaction is directly affected by the global

background geometry as in the case of the non-local coupling defined by Eq. (2.2). A

possible phenomenological effect of such a non-locally induced pressure will be discussed in

the following section.

III. ASYMPTOTIC FREEZING AND PRESSURE BACKREACTION

The generalized cosmological equations derived in the previous section will now be ap-

plied to a model of dark energy formulated in a string cosmology context [9], based on the

dilaton and on the principle of asymptotic saturation of the loop corrections in the large

“bare coupling” limit φ → +∞ [17]. In such a context the post-inflationary Universe natu-

rally evolves towards a “late-time” regime where the dark-energy field φ keeps rolling down

along an exponentially suppressed potential, and may become permanently coupled to (a

significant fraction of) the dark-matter sources.

Such a late-time scenario can be appropriately described by the generalized equations

(2.24)–(2.27) by identifying the fluid source with the fraction of coupled dark-matter com-

ponent (i.e. by setting ρ = ρm, p = pm = 0), and assuming for V and σ the following

asymptotic parametrization:

V = V0 e−φ/µ, σ = q0 ρm. (3.1)

The constant values of q0, V0 are typical parameters of the asymptotic saturation regime,

and are in principle calculable at the fundamental string-theory/M-theory level [9, 17] (in

particular, the dimensionless ratio q0 = σ/ρm represents the effective dilaton charge per unit

of gravitational mass of the dark matter particles, see e.g. [18]). For the discussion of this

asymptotic regime it will be convenient to separate the kinetic and potential part of the

dilaton energy density, by setting

ρφ = ρk + ρV , ρk =
φ̇2

2
, ρV = V. (3.2)
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Introducing critical units,

Ωk =
λ2

Pρk

3H2
, ΩV =

λ2
PρV

3H2
, Ωm =

λ2
Pρm

3H2
, (3.3)

and using Eq. (3.1) we can then rewrite the cosmological equations (2.24)–(2.27) respectively

as

1 = Ωm + Ωk + ΩV , (3.4)

1 +
2Ḣ

3H2
= ΩV − Ωk −

q0

2
Ωm, (3.5)

ρ̇φ + 6Hρk = − q0

2µ
ρmφ̇, (3.6)

ρ̇m + 3Hρm

(

1 +
q0

2

)

=
q0

2µ
ρmφ̇. (3.7)

In the case of local dilaton coupling – i.e. in the absence of the “induced pressure” σ/2

generating the last term on the right-hand side of Eq. (3.5) and the last term on the left-

hand side of Eq. (3.7) – it is well known that the above set of asymptotic equations can

be satisfied by a “freezing” configuration in which ρm, ρk, ρv, H2 scale in time in the same

way, so that the ratio ρm/ρφ turns out to be fixed [9–12]. In that limit the critical fractions

Ωm, Ωk, ΩV are also separately fixed at constant values (determined by µ and q0 only), and

a simple analysis gives

Ωloc
k =

6λ2
Pµ2

(2 + q0)2
, Ωloc

V =
6λ2

Pµ2 + q0(2 + q0)

(2 + q0)2
,

Ωloc
m = 1 − Ωloc

k − Ωloc
V (3.8)

(the superscript “loc” is to remind that we are solving a model of locally-coupled dark

energy). According to this solution the Universe thus becomes dominated by a mixture of

dark-matter and dilaton (kinetic plus potential) energy density. The rate of expansion of

this asymptotic regime is controlled by the kinematic parameter

(

ä

aH2

)

loc

= 1 +

(

Ḣ

H2

)

loc

= −1

2
+

3

2

(

Ωloc
V − Ωloc

k

)

=
q0 − 1

q0 + 2
, (3.9)

and the corresponding effective equation of state (defined as weff ≡ −1 − 2Ḣ/3H2) is given

by weff = −q0/(2 + q0). The evolution is therefore accelerated for q0 > 1 (the possibility

q0 < −2 is to be excluded, see e.g. [8]).

It can be shown, in particular, that for strong enough coupling (i.e. small enough values

of µ) the above configuration represents a stable attractor of the cosmological dynamics
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[10]. Hence, for appropriate values of µ and of the scalar charge q0, the dilaton can play

the role of the dark energy field forcing the Universe to an asymptotic regime of cosmic

accelerated evolution and frozen dark-matter over dark-energy density ratio [9, 16]. If, on

the contrary, the coupling is small (namely, the value of µ is large enough) then the Universe

is attracted towards a “more standard” dark-energy dominated, uncoupled regime where Ωm

can be neglected [10, 11], and the cosmic expansion is fully driven by ρφ, with an effective

equation of state weff = −1 + (3λ2
Pµ2)−1. This different type of asymptotic configuration is

thus accelerated for λP|µ| > 1/
√

2.

In order to discuss the effects of the non-local coupling we will now concentrate on

the asymptotic freezing configuration described by the system (3.4)–(3.7) with all terms

(including Ωm and the induced pressure σ/2) taken into account. Let us look for freezing

solutions by requiring for ρm, ρk, ρv the same scaling behavior and thus imposing, as a first

condition, that
ρ̇m

ρm
=

ρ̇φ

ρφ
. (3.10)

Using Eqs. (3.4), (3.6), (3.7) we obtain:

φ̇

H
=

6µ

q0

[

ΩV

(

1 +
q0

2

)

− Ωk

(

1 − q0

2

)]

. (3.11)

We also impose, as a second condition, that

ρ̇m

ρm
=

ρ̇V

ρV
. (3.12)

Using Eqs. (3.1), (3.2), (3.7) we obtain:

φ̇

H
= 3µ. (3.13)

The combination of Eqs. (3.11), (3.13), and the use of the definition Ωk = λ2
Pφ̇2/6H2, finally

gives the result

Ωk =
3

2
λ2

Pµ2, ΩV =
2q0 + 3(2 − q0)λ

2
Pµ2

2(2 + q0)
,

Ωm = 1 − Ωk − ΩV . (3.14)

Thus, even in case of non-local coupling our equations admit solutions describing a freezing

configuration, dominated by a mixture of dark-matter, dilaton-kinetic, and dilaton-potential

energy density, and characterized by ρm/ρφ = const (just as in the case of local coupling).
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There is, however, a surprising result if we compute the acceleration parameter of this

asymptotic regime. Using Eq. (3.5), and the results (3.14) for the critical fractions of energy

density, we obtain

ä

aH2
= 1 +

Ḣ

H2
= −1

2
+

3

2

(

ΩV − Ωk −
q0

2
Ωm

)

≡ −1

2
, (3.15)

i.e. a constant negative result quite independent of the values of q0 and µ ! (compare with

Eq. (3.9)). The integration of the above equation for Ḣ gives, in particular,

a ∼ t2/3, H2 ∼ ρm ∼ ρφ ∼ a−3. (3.16)

This asymptotic freeezing phase has thus the same decelerated behavior as the standard

cosmological phase describing dust-matter dominated evolution.

This result can be understood by noting that Eqs. (3.15) and (3.5) imply

−weff ≡ ΩV − Ωk −
q0

2
Ωm = − λ2

P

3H2

(

pφ +
σ

2

)

≡ 0, (3.17)

namely a zero total pressure for the dilaton-dark matter system. This means, in other words,

that the effective dark-matter pressure σ/2 (induced by the non-local coupling) generates

asymptotically a backreaction which exactly compensates – at least in this context – the dila-

ton pressure pφ, leading the system to restore the standard dust-matter configuration. This

effect will be further illustrated in the next section through a simple numerical integration

of the coupled cosmological equations.

It should be noted, finally, that the above asymptotic configuration must satisfy various

conditions in order to be realistic (for instance, 0 ≤ Ωk ≤ 1, 0 ≤ ΩV ≤ 1), and to represent

a stable attractor of the cosmological dynamics. In our case, it can be shown [19] that all

those conditions imply λP|µ| < 1/
√

3. With larger values of µ (i.e. smaller values of the

dilaton-dark matter coupling) the Universe is attracted towards the same final configuration

one would obtain in the case of local coupling: the effective equation of state becomes weff =

1 + (3λ2
Pµ)−1 and, as before, this final regime may be accelerated provided λP|µ| > 1/

√
2.

In that case, indeed, the dark-matter contribution to the cosmological dynamics becomes

sub-leading, so that also the backreaction of the non-local pressure becomes ineffective.
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IV. A NUMERICAL EXAMPLE

For an explicit illustration of the smooth background evolution towards the final freezing

regimes (3.8) and (3.14) we will adopt here the same model of time-dependent dilaton charge

already used in previous papers [9, 16], parametrized by

σ = q(φ) ρm, q(φ) = q0
eq0φ

c2 + eq0φ
. (4.1)

This form of σ is motivated by the principle of asymptotic saturation of the dilaton loop

corrections (note that q → q0 for φ → ∞), which provides for the dimensionless parameter

c2 a typical value of order 102 – i.e. of the order of the number of gauge bosons contained

into the fundamental GUT group [17]. In addition, we will complete our model by adding

to the cosmic fluid the required fraction of dust baryonic matter ρb, pb = 0, uncoupled

to the dilaton, and thus satisfying the standard energy conservation equation. By setting

ρ = ρm + ρb, p = 0, our basic set of equations (2.24)–(2.27) thus reduces to

6H2 = 2λ2
P (ρm + ρb + ρφ) , (4.2)

4Ḣ + 6H2 = −2λ2
P

(

pφ +
q

2
ρm

)

, (4.3)

ρ̇φ + 3H (ρφ + pφ) = − q

2µ
ρmφ̇, (4.4)

ρ̇m + 3Hρm

(

1 +
q

2

)

=
q

2µ
ρmφ̇, (4.5)

ρ̇b + 3Hρb = 0, (4.6)

where q = q(φ) is given by Eq. (4.1), and the dilaton potential is given by Eq. (3.1). We

will assume, for a realistic scenario, that the critical fraction of baryon energy density is

small, and thus represents a negligible perturbation of the asymptotic configuration (3.14).

The above system of coupled differential equations has been numerically integrated with

appropriate initial conditions, using Planck units 2λ2
P = 1, and using the values q0 = 2,

c2 = 150, µ = 0.55, V0 = 3 × 10−6. Note that the chosen value of µ satisfies the stability

condition of the freezing regime (see the discussion at the end of Sect. III). The results

of the numerical integration are illustrated in Fig. 1, where we have reported the scaling

evolution Ω = Ω(a) of various cosmic components, and the total effective equation of state,

for both the local and the non-local model.

In the top panel of Fig. 1 the thin solid curve represents the critical fraction of baryon

energy density Ωb = λ2
Pρb/3H2, multiplied by ten for a better graphical illustration, in
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FIG. 1: Top panel: late-time scaling evolution of the critical fraction of baryon energy density

multiplied by ten, and of the critical fraction of dilaton dark-energy, for the case of local dilaton

coupling (dashed curves) and non-local coupling (solid curves). The plots are obtained through a

numerical integration of the set of equations (4.2)–(4.6) with q = q(φ) given by Eq. (4.1) and the

dilaton potential given by Eq. (3.1). Bottom panel: evolution of the total effective equation of

state (4.7) for the case of local coupling (dashed curve) and non-local coupling (solid curve). The

horizontal dotted line corresponds to weff = −1/3, and marks the border of the accelerated regime.

the case of non-local dilaton coupling. The bold solid curve represents the evolution of

Ωφ = Ωk + ΩV for the case of non-local coupling (i.e. including the induced pressure qρm/2

in the cosmological equations). Finally, the dashed curves represent the same quantities

for the case of local coupling (i.e. neglecting the induced pressure). Note that baryons are

uncoupled to the dilaton, and thus obey the standard scaling behavior ρb ∼ a−3; however,
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the behavior of Ωb is different in the cases of local and non-local coupling because of the

different evolution of H2. Note also that the beginning of the asymptotic freezing regime is

triggered by the rise of q(φ) (not shown in the picture) and of the dilaton potential energy,

which starts to become dominant at some epoch determined by the potential amplitude V0.

We recall that, as discussed in Sect. III, the local dilaton-dark matter coupling leads the

Universe to an asymptotic regime where the ratio ρm/ρφ is frozen and, for appropriate values

of q0 (see Eq. (3.9)), the kinematics describes a phase of eternal accelerated expansion. If we

include non-local effects (according to the model considered in this paper) the freezing regime

is still asymptotically established; however, the associated kinematics is exactly the same as

that of the dust-dominated, decelerated regime. A limited period of accelerated expansion

(possibly reproducing the currently observed large-scale evolution) can exist. However, such

acceleration is doomed to disappear with the rise of the non-local pressure, which eventually

compensates the accelerating action of the dilaton potential driving to zero the total effective

cosmic pressure.

For a better illustration of this last point we have also plotted, in the bottom panel of

Fig. 1, the effective equation of state obtained from Eqs. (4.2), (4.3),

weff = −1 − 2Ḣ

3H2
=

pφ + qρm/2

ρm + ρb + ρφ
. (4.7)

As before, the dotted curve corresponds to the local coupling (without the term qρm/2), and

the solid curve corresponds to the non-local coupling (all terms included). In both cases the

cosmological system evolves from the initial condition weff = 0, associated to a dark-matter

dominated state in which the dilaton is still sub-leading.

When the dilaton comes into play the total effective pressure tends to become negative,

leading the Universe towards the accelerated regime where weff < −1/3. In the case of local

coupling the Universe asymptotically reaches an asymptotic freezing regime with weff =

−q0/(2 + q0). In the case of non-local coupling, on the contrary, the Universe crosses the

acceleration boundary for a very short period, and then bounces back to an asymptotic state

of dust-dominated evolution, with weff = 0. The duration and the position of the accelerated

phase depends on the parameters of the coupled dark-energy scenario.
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V. CONCLUSION

It seems appropriate to conclude this paper by comparing the possible impact of different

dark-energy scenarios (in particular, the uncoupled, the locally coupled, and the non-locally

coupled scenario) upon the so-called problem of the cosmic coincidence [15].

In models where the dark-energy field is asymptotically uncoupled to dark matter (see

e.g. [20]) the final regime is accelerated, and dominated by the potential energy ρφ of a

scalar (“quintessence”) field: the dark-matter density ρm is diluted faster than ρφ, and is

doomed to become subdominant. Thus, the current approximate equality ρm ∼ ρφ turns out

to be a coincidence of the present epoch. The acceleration, however, is not a coincidence,

in the sense that it is typical of an epoch of infinite time extension (once started, it last

forever).

In models where dark energy and dark matter are locally (and strongly enough) coupled

(see e.g. [9–12]) the final asymptotic regime is accelerated, and characterized by a frozen

value of ρm/ρφ. Thus, the relation ρm ∼ ρφ and the positive value of the acceleration are

both implemented during an epoch of inifinite time extension and, in this sense, they are

not a coincidence of the present epoch.

In models where dark energy and dark matter are non-locally (and strongly enough)

coupled, as in the example of this paper, the final asymptotic regime is characterized by a

frozen value of ρm/ρφ, but it is decelerated. Thus, the relation ρm ∼ ρφ is not a coincidence

of the present epoch; the acceleration, however, is localized within an epoch of small finite

time extension, so that the cosmic coincidence persists (possibly in relaxed form, as the

accelerated epoch is not a point in phase space). It may be noted that such a situation is

exactly complementary to the one of the uncoupled scenario.

It should be stressed, finally, that the three above scenarios are characterized by a dif-

ferent cosmological dynamics not only during the final asymptotic regime, but also during

the epoch preceding the beginning of the accelerated regime. We may hope, therefore, that

direct/indirect astrophysical observations, providing us with more and more accurate infor-

mation about the past cosmological history, will also tell us which of the above scenarios

can eventually provide a better description of our Universe.
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APPENDIX A

In this Appendix we present an explicit computation of the functional derivative of the

(non-local) matter action with respect to the dilaton, and in particular of the scalar func-

tional B(x) defined by Eq. (2.13). Using the definition (2.2) of ξ(x) we obtain

δ

δφ(x)
e−ξ(x′) = λ−d

P

∫

dd+1y

{

− 1

µ

(√−ge−φ/µ
√

ǫ(∇φ)2
)

y
δ(φx′ − φy)δ

d+1(x − y)

+
(√

−ge−φ/µ
√

ǫ(∇φ)2
)

y
δ′(φx′ − φy)

[

δd+1(x − x′) − δd+1(x − y)
]

− ∂µ

[√−ge−φ/µǫ ∂µφ
√

ǫ(∇φ)2
δ(φx′ − φy)

]

y

δd+1(x − y)

}

, (A.1)

where ∂µ = ∂/∂yµ, and δ′ denotes the derivative of the delta function with respect to its

argument. The first term of this integral exactly cancels the term containing ∂µ[exp(−φ/µ)]

in the last part of the integral; also, the third term exactly cancels with the term containing

∂µ[δ(φx′ − φy)] in the last part of the integral. Thus, we are left with:

δ

δφ(x)
e−ξ(x′) = λ−d

P δd+1(x − x′)

∫

dd+1y
(√

−ge−φ/µ
√

ǫ(∇φ)2
)

y
δ′(φx′ − φy)

− ǫλ−d
P e−φ/µδ(φx′ − φx)∂µ

(√−g∂µφ
√

ǫ(∇φ)2

)

x

. (A.2)

The second term on the right-hand side of the above equation can now be conveniently

rewritten as

−ǫλ−d
P e−φ/µδ(φx′ − φx)

√
−g ∇µ

(

∂µφ
√

ǫ(∇φ)2

)

x

=

= −ǫλ−d
P e−φ/µδ(φx′ − φx)

√−g
√

ǫ(∇φ)2
γµν∇µ∇νφ, (A.3)

where γµν is defined in Eq. (2.9). The first term on the right-hand of Eq. (A.2), containg δ′,

can be rewritten using the properties of the delta distribution, and exploiting the identities:

dy0 =
dφy

φ̇y

,
d

dφy
=

1

φ̇y

d

dy0
. (A.4)

We obtain:

λ−d
P δd+1(x − x′)

∫

dd+1y
(√−ge−φ/µ

√

ǫ(∇φ)2
)

y
δ′(φx′ − φy) =

= δd+1(x − x′)

[

−e−ξ(x)

µ
+ e−φ(x)/µJ(x)

]

, (A.5)
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where J is the integral defined in Eq. (2.15). Summing the two terms of Eq. (A.2), inserting

the result into Eq. (2.13) (with x′ = y), and integrating over y, we obtain:

B(x) = −
(√

−gL′

m

)

x

(

e−ξ

µ
− e−φ/µJ

)

x

− ǫ

(

e−φ/µ√−g
√

ǫ(∇φ)2
γµν∇µ∇νφ Im

)

x

. (A.6)

Summing this contribution to the local terms of Eq. (2.12) we are finally led to the gener-

alized dilaton equation (2.14).
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