STATUS OF THE COBRA DOUBLE BETA DECAY EXPERIMENT

Benjamin Janutta

NOW 2010, 2010/9/5
What is COBRA?
Cadmium–Zinc–Telluride 0-neutrino double-β Research Apparatus

- examine usability of CdZnTe–semiconductor detectors to measure the $0\nu2\beta$ decay
- two competing detector concepts:
 - coplanar grid detectors
 - pixelated detectors
- goal: experiment with 400 kg source material (e.g. 64000 CPG–detectors)
What is COBRA?
Cadmium–Zinc–Telluride O-neutrino double-Beta Research Apparatus

- examine usability of CdZnTe–semiconductor detectors to measure the $0\nu 2\beta$ decay
- two competing detector concepts:
 - coplanar grid detectors
 - pixelated detectors
- goal: experiment with 400 kg source material (e.g. 64000 CPG–detectors)
What is COBRA?

Cadmium–Zinc–Telluride O-neutrino double-Beta Research Apparatus

- examine usability of CdZnTe–semiconductor detectors to measure the $0\nu2\beta$ decay
- two competing detector concepts:
 - coplanar grid detectors
 - pixelated detectors
- goal: experiment with 400 kg source material (e.g. 64000 CPG–detectors)
What is COBRA?

Cadmium–Zinc–Telluride O-neutrino double-Beta Research Apparatus

- examine usability of CdZnTe–semiconductor detectors to measure the $0\nu 2\beta$ decay
- two competing detector concepts:
 - coplanar grid detectors
 - pixelated detectors
- goal: experiment with 400 kg source material (e.g. 64000 CPG–detectors)
Advantages of CdZnTe–Detectors

- source = detector
- semiconductor (good energy resolution, clean)
- CdZnTe works at room temperature
- coincidence studies possible due to modular design
- industrial production rising in recent years
- tracking possible ("solid state TPC")
- several nuclids can be measured
- highly favorable nuclide: ^{116}Cd with Q–value at 2.8 MeV well above natural γ–background
- enrichment of ^{116}Cd feasible in industrial measures
Coplanar Grid CdZnTe–detectors

- energy resolution better than 2% at 2.8 MeV
- low costs/channel
- large amounts available at short
- position resolution rather bad (given by dimensions of the detector)
- background reduction via coincidences
Pixel Detectors

- track reconstruction (depending on pixel size)
- particle identification ($\alpha, \beta, \gamma, \mu$)
- single and double β–decays distinguishable
- expected reduction of background rates by 3 orders of magnitude for γ and α

different pixel systems available:

- Timepix System (minimal pixel size $55 \times 55 \mu m^2$)
- Large Volume Polaris System
- working on optimization for different systems (variable pixel size)
COBRA–Collaboration

TU Dortmund, TU Dresden, FMF Freiburg, Universität Hamburg, Technical University Prague,
Universität Erlangen–Nürnberg, Washington University St. Louis, JINR Dubna,
University of Bratislava, LNGS, University of Jyvaskyla, University of La Plata,
(Jagiellonian University, Poland)
TU Dortmund, TU Dresden, FMF Freiburg, Universität Hamburg, Technical University Prague,
Universität Erlangen–Nürnberg, Washington University St. Louis, JINR Dubna,
University of Bratislava, LNGS, University of Jyvaskyla, University of La Plata,
(Jagiellonian University, Poland)
COBRA–Setup at LNGS

- 3700 m.w.e shielding with Gran Sasso rock
- can hold up to 64 CPG–detectors
- passive shielding with borated polyethylen, lead, copper
- long time measurement with 16er layer at LNGS finished
- at the moment 8 colourless CPG–detectors installed and running
- major upgrade planned for end 2010/ beginning 2011
COBRA–Setup at LNGS

- 3700 m.w.e shielding with Gran Sasso rock
- can hold up to 64 CPG–detectors
- passive shielding with borated polyethylene, lead, copper
- long time measurement with 16er layer at LNGS finished
- at the moment 8 colourless CPG–detectors installed and running
- major upgrade planned for end 2010/ beginning 2011
COBRA–Setup at LNGS

- 3700 m.w.e shielding with Gran Sasso rock
- can hold up to 64 CPG–detectors
- passive shielding with borated polyethylen, lead, copper
- long time measurement with 16er layer at LNGS finished
- at the moment 8 colourless CPG–detectors installed and running
- major upgrade planned for end 2010/ beginning 2011

NOW 2010, 2010/9/5
COBRA–Setup at LNGS

- 3700 m.w.e shielding with Gran Sasso rock
- can hold up to 64 CPG–detectors
- passive shielding with borated polyethylene, lead, copper
- long time measurement with 16er layer at LNGS finished
- at the moment 8 colourless CPG–detectors installed and running
- major upgrade planned for end 2010/ beginning 2011

Sum spectrum of colourless detectors, 5.54 kg days.
COBRA–Setup at LNGS

- 3700 m.w.e shielding with Gran Sasso rock
- can hold up to 64 CPG–detectors
- passive shielding with borated polyethylen, lead, copper
- long time measurement with 16er layer at LNGS finished
- at the moment 8 colourless CPG–detectors installed and running
- major upgrade planned for end 2010/ beginning 2011
Physics at LNGS

Data taking with 16 red crystals finished, about 18 kg·d
Major background identified: red paint on crystal surface + Radon
Installation of first colourless detectors + nitrogen flushing show promising results:

Background around 2.8 MeV: 5 counts/keV/kg/yr!! VERY PROMISING!!

$^{113}\text{Cd} \beta$ decay

$^{116}\text{Cd} 0\nu 2\beta$ decay Q–value at 2.8 MeV
Physics at LNGS
Why coincidence analysis??

highly segmented detector give

- possibility to distinguish single-/multisite events
- higher sensitivity to β^+ modes
- higher sensitivity to transitions into excited states
Physics at LNGS
Why coincidence analysis??

- highly segmented detector give
 - possibility to distinguish single-/multisite events
 - higher sensitivity to β^+ modes
 - higher sensitivity to transitions into excited states
Physics at LNGS
Why coincidence analysis??

highly segmented detector give
- possibility to distinguish single-/multisite events
- higher sensitivity to β^+ modes
- higher sensitivity to transitions into excited states
Physics at LNGS
Why coincidence analysis??

highly segmented detector give
- possibility to distinguish single-/multisite events
- higher sensitivity to β^+ modes
- higher sensitivity to transitions into excited states
Physics at LNGS
Why coincidence analysis??

highly segmented detector give

- possibility to distinguish single-/multisite events
- higher sensitivity to β^+ modes
- higher sensitivity to transitions into excited states
Coincidence analysis

Massive background reduction, but low efficiency.
Limits not yet competitive with single detector results. Planned upgrade should improve this.
Pixel Detectors

Idea: Massive background reduction

Simulation of 200 μm pixel, J. Wilson
Polaris Installation at LNGS
First low background data taking with a pixelated detector

Prototype provided by Zhong He group, University of Michigan

- biggest CdZnTe detector in the world (2 × 2 × 1.5 cm³, 36 g)
- 11 × 11 Pixel + interaction depth sensing via drift time
- energy resolution FWHM better than 2% at 662 keV
- NO low-background optimization
- lead shielding and nitrogen flushing provided at COBRA setup

NOW 2010, 2010/9/5
Polaris Installation at LNGS
First low background data taking with a pixelated detector

Prototype provided by Zhong He group, University of Michigan

- biggest CdZnTe detector in the world ($2 \times 2 \times 1.5 \text{ cm}^3$, 36 g)
- 11×11 Pixel + interaction depth sensing via drift time
- energy resolution FWHM better than 2% at 662 keV
- NO low-background optimization
- lead shielding and nitrogen flushing provided at COBRA setup

NOW 2010, 2010/9/5
Polaris Installation at LNGS
First low background data taking with a pixelated detector

Prototype provided by Zhong He group, University of Michigan

- biggest CdZnTe detector in the world ($2 \times 2 \times 1.5 \text{ cm}^3$, 36 g)
- 11×11 Pixel + interaction depth sensing via drift time
- energy resolution FWHM better than 2% at 662 keV
- NO low-background optimization
- lead shielding and nitrogen flushing provided at COBRA setup
Polaris Installation at LNGS
First low background data taking with a pixelated detector

Prototype provided by Zhong He group, University of Michigan

- biggest CdZnTe detector in the world (2 x 2 x 1.5 cm3, 36 g)
- 11 x 11 Pixel + interaction depth sensing via drift time
- energy resolution FWHM better than 2% at 662 keV
- NO low-background optimization
- lead shielding and nitrogen flushing provided at COBRA setup
Polaris results

No survivor after 125 days of data taking
0.9 counts/keV/kg/yr between 2.7 and 3.0 MeV
Measurements with Si–Timepix detector at Niederniveau Messlabor Felsenkeller

- Pixeldetector provided by the Medipix 2 Collaboration
- installation in september 2009
- laboratory with about 120 m.w.e. in Dresden
- 300 μm Si detector with 65536 pixels ($55 \times 55 \mu m^2$)
- Goal: development of algorithms to identify α, β, γ, und μ
- analysis ongoing
Measurements with Si–Timepix detector at Niederniveau Messlabor Felsenkeller

- Pixel detector provided by the Medipix 2 Collaboration
- Installation in September 2009
- Laboratory with about 120 m.w.e. in Dresden
- 300 μm Si detector with 65536 pixels (55 × 55 μm²)
- Goal: development of algorithms to identify α, β, γ und μ
- Analysis ongoing
Measurements with Si–Timepix detector at Niederniveau Messlabor Felsenkeller

- Pixeldetector provided by the Medipix 2 Collaboration
- Installation in September 2009
- Laboratory with about 120 m.w.e. in Dresden
- 300 μm Si detector with 65536 pixels (55 × 55 μm²)
- Goal: development of algorithms to identify α, β, γ und μ
- Analysis ongoing
Measurements with Si–Timepix detector at Niederniveau Messlabor Felsenkeller

- Pixel detector provided by the Medipix 2 Collaboration
- Installation in September 2009
- Laboratory with about 120 m.w.e. in Dresden
- 300 µm Si detector with 65536 pixels (55 × 55 µm²)
- Goal: development of algorithms to identify α, β, γ und μ
- Analysis ongoing
Outlook

LNGS Upgrade

- Upgrade to 64 colorless CZT 1 cm3 detectors, about 0.42 kg (all detectors at hand)
- Single grid readout, i.e. pulse shaping
- Improved shielding, readout (new DAQ), material selection
- New HV power supply, new amplifier electronics

Aim: Background < 1 count/keV/kg/yr

colorless CPG detector
Outlook
LNGS Upgrade

- Upgrade to 64 colorless CZT 1 cm3 detectors, about 0.42 kg (all detectors at hand)
- Single grid readout, i.e. pulse shaping
- Improved shielding, readout (new DAQ), material selection
- New HV power supply, new amplifier electronics

Aim: Background < 1 count/keV/kg/yr

J. McGrath et al., NIM A 615, 57 (2010)
Outlook
LNGS Upgrade

- Upgrade to 64 colorless CZT 1 cm3 detectors, about 0.42 kg (all detectors at hand)
- Single grid readout, i.e. pulse shaping
- Improved shielding, readout (new DAQ), material selection
- New HV power supply, new amplifier electronics

Aim: Background < 1 count/keV/kg/yr
Outlook

LNGS Upgrade

- Upgrade to 64 colorless CZT 1 cm3 detectors, about 0.42 kg (all detectors at hand)
- Single grid readout, i.e. pulse shaping
- Improved shielding, readout (new DAQ), material selection
- New HV power supply, new amplifier electronics

Aim: Background < 1 count/keV/kg/yr
Summary

- COBRA investigates the applicability of CdZnTe–detectors for searches of rare weak decay processes
- successful operation of different setups in low–background environment
- first time ever operation of pixelated detectors in low–background environment
- despite low detector mass world best limit published
- major upgrade planned for end of 2010, begining 2011
- Goal: have a proposal for a large scale experiment (400 kg) by end of 2012
CdZnTe detectors in liquid scintillator
Liquid scintillator as active veto

- setup running
- Monte Carlo simulation available
- detailed studies of longtime stability, pulse shape and chemical stability
Sum spectrum of colourless detectors, 2.28 kg days.
$2\nu\beta\nu$ decay of 116Cd

- Summed Data of all Detectors
- Literature: $T_{1/2} = 2.9 \cdot 10^{19}$ y
- COBRA Sensitivity $T_{1/2} > 3.8 \cdot 10^{18}$ y