Supernova Neutrinos in Future LS Detectors

Yu-Feng LI Institute of High Energy Physics, Beijing

Neutrino Oscillation Wokshop (NOW2016) 2016-9-6@Otranto (Lecce, Italy)

Supernova Neutrinos: SN 1987A

Kamiokande-II (Japan): Water Cherenkov (2,140 ton)

Clock Uncertainty ± 1 min

Irvine-Michigan-Brookhaven (US):
 Water Cherenkov (6,800 ton)
 Clock Uncertainty ±50 ms

Baksan LST (Soviet Union):
Liquid Scintillator (200 ton)
Clock Uncertainty +2/-54 s

Mont Blanc: 5 events, 5 h earlier

Supernova Neutrinos: SN 1987A

Neutrino-driven supernova explosion

SN neutrino bursts from simulation

Shock breakout

 $e^- + p \to n + \nu_e$

Shock stalls ~150 km Neutrinos powered by infalling matter

Cooling on the neutrino diffusion time scale

Future Supernova Neutrino Detectors

- (1) Water Cherenkov Detector
- Hyper Kamiokande (also SuperKor SuperK-Gd):
- 1 Mt, mostly nu_e_bar, largest statistics
- (2) Liquid Scintillator Detector
- JUNO (also RENO50 or LENA):
- 20 kt, nu_e_bar dominates, different flavors, best energy resolution
- (3) Liquid Argon Detector
- DUNE: 10-40 kt, nu_edominates
- (4) Ice Cherenkov Detector
- Icecube: No event-by event observation, time profile

Multi-channels of neutrino detection in LS

For 20 kt LS@JUNO

Channel	Type	Events for different $\langle E_{\nu} \rangle$ values			
		$12 { m MeV}$	$14 { m MeV}$	$16 { m MeV}$	
$\overline{\nu}_e + p \to e^+ + n$	$\mathbf{C}\mathbf{C}$	4.3×10^3	5.0×10^3	5.7×10^3	
$\nu + p \rightarrow \nu + p$	NC	$6.0 imes 10^2$	1.2×10^3	$2.0 imes 10^3$	
$\nu + e \rightarrow \nu + e$	\mathbf{ES}	$3.6 imes 10^2$	$3.6 imes 10^2$	$3.6 imes 10^2$	
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	$1.7 imes 10^2$	3.2×10^2	5.2×10^2	
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	$4.7 imes 10^1$	$9.4 imes 10^1$	$1.6 imes 10^2$	
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$6.0 imes10^1$	$1.1 imes 10^2$	$1.6 imes 10^2$	

Detect $\overline{\nu}_e, \nu_e, \nu_x$ from a galactic SN @ 10 kpc

JUNO Collaboration, JPG 2016

- real-time measurement of three-phase v signals
- distinguish between different ν flavors
- reconstruct v energies and luminosities
- almost background free due to time information

(A): Probes of all three neutrino flavors

Lu, YFL, Zhou, PR	D 2016		Number of SN Neutrino Events at JUNO			
Channel	Type		No Oscillations	Normal Ordering	Inverted Ordering	
$\overline{\nu}_e + p \to e^+ + n$	$\mathbf{C}\mathbf{C}$		4573	4775	5185	
$\nu + p \rightarrow \nu + p$	ES		1578	1578	1578	
		ν_e	107	354	278	
		$\overline{\nu}_e$	179	214	292	
		ν_x	1292	1010	1008	
$\nu_e + e \rightarrow \nu_e + e$	ES		314	316	316	
		ν_e	157	159	158	
		$\overline{\nu}_e$	61	61	62	
		ν_x	96	96	96	
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$		43	134	106	
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$		86	98	126	
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC		352	352	352	
		ν_e	27	76	61	
		$\overline{\nu}_e$	43	50	65	
		ν_x	282	226	226	

(B): Time distribution (IBD & ES events)

w/o oscillation or with largest transition between $v_e(\bar{v}_e)$ and v_x

(C): Neutrino energy distribution

Lu, YFL, Zhou, PRD 2016

See also Lujan-Peschard, Pagliaroli, Vissani, 2014

IBD events dominate at the high energy range
 nu-p ES channel dominates at low energies
 coincidence events vs. singles events
 e. vs. p discrimination: Pulse shape discrimination

(D): Detection of SN $\bar{\nu}_e$

Mostly Inverse beta decay (IBD) $\overline{\nu}_e + p \rightarrow n + e^+$

Spectra
$$F^0_{\alpha}(E) = \frac{1}{4\pi D^2} \frac{E^{\text{tot}}_{\alpha}}{\langle E_{\alpha} \rangle} \frac{(1+\gamma_{\alpha})^{1+\gamma_{\alpha}}}{\Gamma(1+\gamma_{\alpha})} \left(\frac{E}{\langle E_{\alpha} \rangle}\right)^{\gamma_{\alpha}} \exp\left[-(1+\gamma_{\alpha})\frac{E}{\langle E_{\alpha} \rangle}\right]$$

(1) ~5000 IBD events, golden channel for SN neutrino observations

(2) Coincidence of prompt and delayed signals: least background

(3) good reconstruction of the neutrino energy

Lu, YFL, Zhou, PRD 2016

(E): Detection of SN v_x

- (1) nu-p scattering (pES) events: quenched proton
 (2) nu-¹²C NC events: 15.11 MeV γ
- (3) nu-electron scattering (eES) events: recoiled electron
- ~2000 pES events
- Low threshold (0.2 MeV)
- reconstruction of neutrino energy spectrum: highenergy tail

Lu, YFL, Zhou, PRD 2016

(F): Detection of SN v_e at JUNO

- (1) nu-electron scattering events: recoiled electrons
 (2) nu-¹²C CC events: coincidence with decayed ¹²N
- ~300 eES events
- ~300 ¹²C CC events
- Background events: from IBD in-efficiency
- electron v.s. proton: pulse shape discrimination (PSD)

Lu, YFL, Zhou, PRD 2016

(G): Test of the energy equipartition

A fundamental assumption in SN physics Not guaranteed in simulation

Lu, YFL, Zhou, PRD 2016

(1) Assuming standard MSW effects(2) marginalization of three average energies and E_tot.

Neutrino mass scale with SN neutrinos

SN1987A limits of neutrino mass scale: 5.8 eV@ 95 C.L.

Beta decay experiments: Current: 2.1 eV@ 95 C.L., KATRIN: 0.2 @ 95 C.L.

Cosmology probes:

Total mass smaller than 0.23 @ 95C.L.

Double beta decay:

Depending on matrix elements and Majorana phases

It is desirable to have a sub-eV test with future SN neutrinos

Principle: time of flight measurements

Figure: Example of time delay of SN neutrinos for a 10 kpc away SN. Left: $m_{\nu} = 0$. Right: $m_{\nu} = 2$ eV.

Method:

$$\mathcal{L} = e^{-\int_0^T R(t) \mathrm{d}t} \prod_{i=1}^N \int_{E_{\mathrm{th}}}^\infty R(t'_i, E_e) G(E_e + m_e, E_i; \delta E_i) \mathrm{d}E_e$$

Statistical and Systematic uncertainties

Using a parametrized model from SN1987A observation. (parametrized model from 0810.0466) (1) In one trial, to study the model parameter effects.

(2) With 3000 simulations, to show the fluctuation.

SN neutrino flux model effects

The numerical models are all from http://asphwww.ph.noda.tus.ac.jp/snn/

SN v Detection: present and future experiments

(a) Neutrinos from next nearby supernova cannot be missed (a once-in-a-lifetime opportunity!)

(b) LS, WC, LAr detectors are complementary in neutrino flavors, time distributions, energy spectra, etc.

(c)10⁴ neutrino events @ future LS detectors (JUNO) for a typical galactic SN; to reconstruct neutrino spectra, improve neutrino mass bound, probe neutrino mass ordering, directionality etc.

Thanks for your attention!

Key Problem: where and when?

(1) Estimate from SN statistics in other galaxies; (2) Only massive stars produce 26 Al (with a half-life 7.2 × 10⁵ years); (3) Historical SNe in the Milky Way; (4) No neutrino bursts observed by Baksan since June 1980

SN Candidate: The Red Supergiant Betelgeuse (Alpha Orionis)

Diffuse SN Background (DSNB)

- Observation window: 11 MeV < E_{v} < 30 MeV
- PSD techniques for NC atmospheric v
- Fast neutrons: r < 16.8 m (equiv. 17 kt mass)

Syst. uncertainty BG	C.A.	5%	20%		
$\langle \mathrm{E}_{ar{ u}_{\mathrm{e}}} angle$	rate only	spectral fit	rate only	spectral fit	
$12{ m MeV}$	1.7σ	1.9σ	1.5σ	1.7σ	
$15{ m MeV}$	3.3σ	3.5σ	3.0σ	3.2σ	
$18{ m MeV}$	5.1σ	5.4σ	4.6σ	4.7σ	
$21{ m MeV}$	6.9σ	7.3σ	6.2σ	6.4σ	

Strategy of including oscillations

