Cosmogenic neutrinos and gamma-rays and the redshift evolution of UHECR sources

R. Aloisio^{*ab*} D. Boncioli^{c1} A. di Matteo^{d2} C. Evoli^{*a*} A.F. Grillo^{*c*} S. Petrera^{*ad*}

E-mail: armando.dimatteo@aquila.infn.it

^aGran Sasso Science Institute (INFN), L'Aquila, Italy
^bINAF/Osservatorio Astrofisico di Arcetri, Firenze, Italy
^cINFN/Laboratori Nazionali Gran Sasso, Assergi, Italy
^dINFN and Department of Physical and Chemical Sciences, Univ. of L'Aquila, L'Aquila, Italy

Neutrino Oscillation Workshop, 4–11 September 2016, Otranto, Lecce, Italy

¹Now at DESY, Zeuthen, Germany ²Now at ULB, Brussels, Belgium

A. di Matteo (INFN L'Aquila)

Cosmogenic ν and γ and UHECR source evol.

NOW 2016 1 / 20

Ultra-high-energy cosmic rays

- Propagation through intergalactic space
- The secondary particles produced
- Open questions

Multi-messenger studies

- Experimental limits on EeV fluxes and measured GeV–PeV fluxes
- Simulated expected neutrino and γ -ray fluxes in various scenarios

3 Conclusions

Ultra-high-energy cosmic rays

- Propagation through intergalactic space
- The secondary particles produced
- Open questions

Multi-messenger studies

- Experimental limits on EeV fluxes and measured GeV–PeV fluxes
- Simulated expected neutrino and γ -ray fluxes in various scenarios

3 Conclusions

• • • • • • • • • • • •

Ultra-high-energy cosmic rays

- Ultra-high-energy cosmic rays (UHECRs) are particles of extraterrestrial origin with energy above 10¹⁸ eV.
- They are protons and possibly other atomic nuclei, with stringent upper limits on the fraction of photons and neutrinos.
- Their origin is unknown, but most likey extragalactic (at least at the highest energies).

Processes affecting UHECR propagation

During their trip to Earth, extragalactic cosmic rays can:

- lose energy adiabatically due to the expansion of the universe (redshift);
- interact with background photons:

Relevant backgrounds(ϵ = photon energy in lab frame) $\epsilon \lesssim 3 \text{ meV}$ (MW): cosmic microwave background (CMB) $1 \text{ meV} \lesssim \epsilon \lesssim 10 \text{ eV}$ (IR to UV): extragalactic background light (EBL)

Main processes $(\epsilon' = \text{photon energy in nucleus rest frame})$

- $\epsilon'\gtrsim 1$ MeV: pair production, $N+\gamma \rightarrow N+{\rm e}^++{\rm e}^-$
- $\epsilon'\gtrsim 8$ MeV: disintegration, e.g. $Z^{A}+\gamma\rightarrow Z^{A-1}+n$

 $\epsilon'\gtrsim 150$ MeV: pion production, e.g. $\mathrm{p}+\gamma\rightarrow\mathrm{p}+\pi^0$

• be deflected by intergalactic and galactic magnetic fields.

$$p + \gamma \rightarrow p + \pi^0, \quad n + \gamma \rightarrow n + \pi^0, \quad p + \gamma \rightarrow n + \pi^+, \quad n + \gamma \rightarrow p + \pi^-$$

• Affects nucleons with:

- $E \gtrsim$ 40 EeV (CMB photons; $\lambda \sim$ 10 Mpc \rightarrow GZK cutoff);
- *E* ≥ 4 EeV (EBL photons; λ ~ a few Gpc → minor impact on proton fluxes but potentially lots of secondaries).

• Subsequently:

- ▶ $\pi^0 \rightarrow \gamma + \gamma$, each with ~ 10% of initial nucleon energy
- $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_e$, each with ~ 5% of initial nucleon energy
- ▶ $n \rightarrow p + e^- + \bar{\nu}_e$, each with ~ 0.05% of initial nucleon energy
- The neutrinos can reach Earth (with $E \sim a$ few PeV a few EeV) without further interacting, even from $z \sim 10$.
- The photons will undergo $\gamma + \gamma_{\text{CBM},\text{URB}} \rightarrow e^+ + e^-$ within $\sim 1 \text{ Mpc}$, initiating EM cascades of (eventually) $\lesssim 1 \text{ TeV photons}$.

$$\begin{split} ^{A}Z + \gamma &\to {}^{A-1}Z + n, \\ ^{A}Z + \gamma &\to {}^{A-4}(Z-2) + {}^{4}\text{He}, \end{split} \begin{array}{c} ^{A}Z + \gamma &\to {}^{A-1}(Z-1) + p, \\ \text{ and various combinations thereof} \end{split}$$

• Affects nuclei with:

- $E/A \gtrsim$ 2 EeV (CMB photons; $\lambda \sim$ few Mpc \rightarrow "GZK" or "GR" cutoff);
- $E/A \gtrsim 0.2$ EeV (EBL photons; $\lambda \sim 100$ Mpc).
- Important effects on energy spectrum and mass composition of UHE nuclei, but few direct multi-messenger implications
- $\bullet\,$ (Energy of beta-decay neutrinos $\lesssim 1$ PeV, subdominant w.r.t. those from EBL pion production)

$$N + \gamma \rightarrow N + e^+ + e^-$$

- Affects protons and nuclei with:
 - $E/A \gtrsim 0.2$ EeV (CMB photons; $\lambda \sim 1$ Mpc).
- Electrons with $E \sim$ a few PeV, undergo inverse Compton scattering/synchrotron ratiation initiating EM cascades of (eventually) $\lesssim 1$ TeV photons.
- The shape of the energy spectrum of cascade photons at Earth doesn't depend on the initial photon/electron energy (e.g. cascades from ten 1 PeV electrons same as from one 10 PeV electron), only on the redshift of the production point.

イロト 不得 トイヨト イヨト 二日

- Where and how are UHECRs accelerated?
- Why the ankle?
 - Pair production dip?
 - Superposition of two populations?
 - Something else?
- Why the cutoff?
 - Effects of propagation?
 - Maximum acceleration rigidity?
 - ► Both?
- Mass composition at the highest energies:
 - Protons?
 - Medium/heavy nuclei?
 - Both?

• • = • •

Ultra-high-energy cosmic rays

- Propagation through intergalactic space
- The secondary particles produced
- Open questions

Multi-messenger studies

- Experimental limits on EeV fluxes and measured GeV–PeV fluxes
- Simulated expected neutrino and γ -ray fluxes in various scenarios

3 Conclusions

Why multi-messenger?

• No matter how much energy they start with, no protons or nuclei from z > 1 will reach Earth with E > 1 EeV

• All information about sources at z > 1 is lost.

A. di Matteo (INFN L'Aquila)

Cosmogenic ν and γ and UHECR source evol.

- Neutrinos can reach Earth no matter how far away they originated.
 - Their flux also depends on the emissivity of sources at high *z*.
- Also, charged cosmic rays are deflected by magnetic fields (possibly by several tens of degrees), whereas neutral particles arrive to us straight from their production point.
 - Cascades broadened by magnetic fields, but still centered around production point
- In principle, neutrinos carry more information than cascade gamma rays, but they are harder to detect.

イロト イポト イヨト イヨト

Experimental limits on EeV neutrinos and gamma rays

Figure: Limits on EeV neutrino and gamma-ray fluxes and various model predictions, from C. Bleve [Auger Collab.], PoS(ICRC2015)1103

A. di Matteo (INFN L'Aquila)Cosmogenic ν and γ and UHECR source evol.NOW 201613 / 20

< ロト < 同ト < ヨト < ヨト

Measurements of PeV neutrinos and TeV gamma rays

Figure: Astrophysical neutrinos detected by IceCube, from arXiv:1607.08006

Figure: Gamma-ray background detected by Fermi-LAT, from arXiv:1410.3696

Image: Image:

→ ∃ >

NOW 2016 14 / 20

Our Monte Carlo simulation code

SimProp v2r0: only photodisintegration treated stochastically (25 Oct 2011, arXiv:1204.2970)

- SimProp v2r1: pion production on the CMB also treated stochastically (07 Feb 2013, arXiv:1307.3895)
- SimProp v2r2: pion production on the EBL also treated stochastically (06 May 2015, arXiv:1505.01347)
- SimProp v2r3: photodisintegration also ejecting alpha particles (03 Feb 2016, arXiv:1602.01239)

SimProp v2r4: secondary electrons/positrons from pair production, so that cascades can be computed with external tools e.g. ELMAG (coming soon)

Available upon request to:

SimProp-dev@aquila.infn.it

A. di Matteo (INFN L'Aquila)

Image: Image:

• • = • •

NOW 2016 15 / 20

∃ ⊳

San

Cosmogenic neutrinos in "dip-model" scenario

Figure: Neutrino fluxes simulated with *SimProp* v2r2 in proton-only scenario, assuming **constant**, **SFR**, **AGN** source emissivity evolution, from arXiv:1505.04020

Cosmogenic neutrinos in "two-component" scenario

Figure: Neutrino fluxes simulated with *SimProp* v2r2 in high-metallicity scenario, assuming **constant**, **SFR**, **AGN** source emissivity evolution, from arXiv:1505.04020

A. di Matteo (INFN L'Aquila) Cosmogenic ν and γ and UHECR source evol.

Gamma-ray background from cascades

Figure: Gamma-ray cascades simulated with SimProp v2r4 + ELMAG and data from Fermi-LAT on diffuse gamma-ray background

- Mostly coming from 1–4 EeV CRs, which everybody agrees are mostly protons
- More stringent limit than from IceCube neutrinos
- See also
 - R.-Y. Liu et al., arXiv:1603.03323
 - O. Kalashev, arXiv:1608.07530

A. di Matteo (INFN L'Aquila)

Ultra-high-energy cosmic rays

- Propagation through intergalactic space
- The secondary particles produced
- Open questions

Multi-messenger studies

- Experimental limits on EeV fluxes and measured GeV–PeV fluxes
- Simulated expected neutrino and γ -ray fluxes in various scenarios

3 Conclusions

• • • • • • • • • • • •

- "Top-down" models as the source of most UHECRs below 100 EeV have been ruled out for quite a long time now.
- EeV neutrinos only produced if there are protons among highest-energy CRs
- Cosmogenic neutrino fluxes at all energies strongly dependent on UHECR source emissivity evolution
 - ► We can already rule out models with source emissivity too strongly increasing with redshift (decreasing with time).
- Same applies to gamma-ray fluxes the interpretation is more complicated, but the limits we can put on source emissivity are more stringent.

イロト イポト イヨト イヨト 二日