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Ultra-high-energy cosmic rays

Ultra-high-energy cosmic rays (UHECRs) are particles of
extraterrestrial origin with energy above 1018 eV.

They are protons and possibly other atomic nuclei, with stringent
upper limits on the fraction of photons and neutrinos.

Their origin is unknown, but most likey extragalactic (at least at
the highest energies).

UHECR energy spectrum
At E ≈ 5 EeV: ankle

At E ≈ 40 EeV: cutoff
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Processes affecting UHECR propagation

During their trip to Earth, extragalactic cosmic rays can:

lose energy adiabatically due to the expansion of the universe
(redshift);

interact with background photons:

Relevant backgrounds (ε = photon energy in lab frame)
ε . 3 meV (MW): cosmic microwave background (CMB)

1 meV . ε . 10 eV (IR to UV): extragalactic background light (EBL)

Main processes (ε′ = photon energy in nucleus rest frame)
ε′ & 1 MeV: pair production, N + γ → N + e+ + e−

ε′ & 8 MeV: disintegration, e.g. ZA + γ → ZA−1 + n

ε′ & 150 MeV: pion production, e.g. p + γ → p + π0

be deflected by intergalactic and galactic magnetic fields.
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Pion production

p + γ → p + π0, n + γ → n + π0, p + γ → n + π+, n + γ → p + π−

Affects nucleons with:
I E & 40 EeV (CMB photons; λ ∼ 10 Mpc→ GZK cutoff);
I E & 4 EeV (EBL photons; λ ∼ a few Gpc→ minor impact on proton

fluxes but potentially lots of secondaries).
Subsequently:

I π0 → γ + γ, each with ∼ 10% of initial nucleon energy
I π+ → µ+ + νµ

µ+ → e+ + ν̄µ + νe, each with ∼ 5% of initial nucleon energy
I n→ p + e− + ν̄e, each with ∼ 0.05% of initial nucleon energy

The neutrinos can reach Earth (with E ∼ a few PeV – a few EeV)
without further interacting, even from z ∼ 10.
The photons will undergo γ + γCBM,URB → e+ + e− within ∼ 1 Mpc,
initiating EM cascades of (eventually) . 1 TeV photons.
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Photodisintegration

AZ + γ → A−1Z + n, AZ + γ → A−1(Z − 1) + p,
AZ + γ → A−4(Z − 2) + 4He, and various combinations thereof

Affects nuclei with:
I E/A & 2 EeV (CMB photons; λ ∼ few Mpc→ “GZK” or “GR” cutoff);
I E/A & 0.2 EeV (EBL photons; λ ∼ 100 Mpc).

Important effects on energy spectrum and mass composition of
UHE nuclei, but few direct multi-messenger implications

(Energy of beta-decay neutrinos . 1 PeV, subdominant w.r.t. those
from EBL pion production)
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Pair production

N + γ → N + e+ + e−

Affects protons and nuclei with:
I E/A & 0.2 EeV (CMB photons; λ ∼ 1 Mpc).

Electrons with E ∼ a few PeV, undergo inverse Compton
scattering/synchrotron ratiation initiating EM cascades of
(eventually) . 1 TeV photons.

The shape of the energy spectrum of cascade photons at Earth
doesn’t depend on the initial photon/electron energy
(e.g. cascades from ten 1 PeV electrons same as from one 10 PeV
electron), only on the redshift of the production point.

A. di Matteo (INFN L’Aquila) Cosmogenic ν and γ and UHECR source evol. NOW 2016 8 / 20



Open questions

Where and how are UHECRs accelerated?
Why the ankle?

I Pair production dip?
I Superposition of two populations?
I Something else?

Why the cutoff?
I Effects of propagation?
I Maximum acceleration rigidity?
I Both?

Mass composition at the highest energies:
I Protons?
I Medium/heavy nuclei?
I Both?
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Why multi-messenger?

No matter how much energy they start with, no protons or nuclei
from z > 1 will reach Earth with E > 1 EeV

All information about sources at z > 1 is lost.
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Why multi-messenger?

Neutrinos can reach Earth no matter how far away they originated.
I Their flux also depends on the emissivity of sources at high z.

Also, charged cosmic rays are deflected by magnetic fields
(possibly by several tens of degrees), whereas neutral particles
arrive to us straight from their production point.

I Cascades broadened by magnetic fields, but still centered around
production point

In principle, neutrinos carry more information than cascade
gamma rays, but they are harder to detect.
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Experimental limits on EeV neutrinos and gamma rays

Figure: Limits on EeV neutrino and gamma-ray fluxes and various model
predictions, from C. Bleve [Auger Collab.], PoS(ICRC2015)1103
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Measurements of PeV neutrinos and TeV gamma rays

Figure: Astrophysical neutrinos
detected by IceCube,
from arXiv:1607.08006

Figure: Gamma-ray background
detected by Fermi-LAT,
from arXiv:1410.3696
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Our Monte Carlo simulation code

SimProp v2r0: only photodisintegration treated stochastically
(25 Oct 2011, arXiv:1204.2970)

SimProp v2r1: pion production on the CMB also treated stochastically
(07 Feb 2013, arXiv:1307.3895)

SimProp v2r2: pion production on the EBL also treated stochastically
(06 May 2015, arXiv:1505.01347)

SimProp v2r3: photodisintegration also ejecting alpha particles
(03 Feb 2016, arXiv:1602.01239)

SimProp v2r4: secondary electrons/positrons from pair production, so
that cascades can be computed with external tools
e.g. ELMAG (coming soon)

Available upon request to:
SimProp-dev@aquila.infn.it
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Cosmogenic neutrinos in “dip-model” scenario
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Figure: Neutrino fluxes simulated with SimProp v2r2 in proton-only scenario,
assuming constant, SFR, AGN source emissivity evolution,
from arXiv:1505.04020
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Cosmogenic neutrinos in “two-component” scenario
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Figure: Neutrino fluxes simulated with SimProp v2r2 in high-metallicity
scenario, assuming constant, SFR, AGN source emissivity evolution,
from arXiv:1505.04020
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Gamma-ray background from cascades

Figure: Gamma-ray cascades simulated with
SimProp v2r4 + ELMAG and data from
Fermi-LAT on diffuse gamma-ray background

Mostly coming from
1–4 EeV CRs, which
everybody agrees are
mostly protons

More stringent limit
than from IceCube
neutrinos
See also

I R.-Y. Liu et al.,
arXiv:1603.03323

I O. Kalashev,
arXiv:1608.07530
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Conclusions

“Top-down” models as the source of most UHECRs below 100 EeV
have been ruled out for quite a long time now.

EeV neutrinos only produced if there are protons among
highest-energy CRs
Cosmogenic neutrino fluxes at all energies strongly dependent on
UHECR source emissivity evolution

I We can already rule out models with source emissivity too strongly
increasing with redshift (decreasing with time).

Same applies to gamma-ray fluxes — the interpretation is more
complicated, but the limits we can put on source emissivity are
more stringent.
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