

Stefano Gariazzo

University and INFN, Torino

gariazzo@to.infn.it
http://personalpages.to.infn.it/~gariazzo/

Light sterile neutrinos with pseudoscalar interactions in cosmology

Based on [JCAP 08 (2016) 067]

5 September 2016 - NOW 2016 - Otranto (IT)

Neutrino Oscillations

Analogous to CKM mixing for quarks: [Pontecorvo, 1958] [Maki, Nakagawa, Sakata, 1962]

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

Current knowledge of the 3 active ν mixing: [PDG - Olive et al. (2015)]

$$\Delta m_{ji}^2 = m_j^2 - m_i^2$$
, θ_{ij} mixing angles NO: Normal Ordering, $m_1 < m_2 < m_3$ IO: Inverted Ordering, $m_3 < m_1 < m_2$

$$\begin{array}{lll} \Delta m_{SOL}^2 &= (7.53 \pm 0.18) \cdot 10^{-5} \; \mathrm{eV}^2 &= \Delta m_{21}^2 \\ \Delta m_{ATM}^2 &= (2.44 \pm 0.06) \cdot 10^{-3} \; \mathrm{eV}^2 (\mathrm{NO}) &= |\Delta m_{32}^2| \simeq |\Delta m_{31}^2| \\ &= (2.49 \pm 0.06) \cdot 10^{-3} \; \mathrm{eV}^2 (\mathrm{IO}) \end{array}$$

$$\sin^2(2\theta_{12}) = 0.846 \pm 0.021$$

 $\sin^2(2\theta_{23}) = 0.999^{+0.001}_{-0.018}(NO) - 1.000^{+0.000}_{-0.017}(IO)$
 $\sin^2(2\theta_{13}) = 0.085 \pm 0.005$

See various talks in next days

CP violating phase $\delta_{\rm CP}$ still unknown. Hint: $\delta_{\rm CP} = -\pi/2$? [T2K Collaboration, 2015]

Short Baseline (SBL) anomaly

Problem: anomalies in SBL experiments $\Rightarrow \left\{ \begin{array}{l} \text{errors in flux calculations?} \\ \text{deviations from 3-}\nu \text{ description?} \end{array} \right.$

A short review:

- LSND search for $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$, with $L/E=0.4\div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- Reactor re-evaluation of the expected anti-neutrino flux \Rightarrow disappearance of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- Gallium calibration of GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]
- MiniBooNE (inconclusive) search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E=0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]

Possible explanation:

Additional squared mass difference $\Delta m^2_{
m SRI} \simeq 1~{
m eV}^2$

See various talks in next days

3+1 Neutrino Model

SBL anomalies
$$\Rightarrow \Delta m^2_{\mathsf{SBL}} \simeq 1 \ \mathsf{eV}^2$$
 \Downarrow

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow light, sterile neutrino (LS ν)

$$\Downarrow$$

3 active $(m_i \ll 1 \text{ eV}) + 1 \text{ sterile } (m_s \simeq 1 \text{ eV}) \nu \text{ scenario}$

We must update our mixing paradigm:

$$u_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau, s)$$

 ν_s is mainly ν_4 :

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{41}^2} \simeq \sqrt{\Delta m_{\mathsf{SBI}}^2}$$

Active ν : $\sum m_{\nu, \text{active}} \simeq 0$

Sterile
$$\nu$$
:

$$0.82 \le m_s^2 / \text{eV}^2 \le 2.19 \ (3\sigma)$$

[SG et al., 2016]

(Relativistic) LS ν in cosmology: $\Delta N_{\rm eff}$

Radiation energy density ρ_r in the early Universe:

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \textit{N}_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 \textit{N}_{\text{eff}}\right] \rho_\gamma$$

 ho_{γ} photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- lacksquare $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- ${\color{blue} \blacksquare}\ N_{\rm eff} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: $N_{\text{eff}} = 3.046$ [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos
- $lue{}$ + Non Standard Interactions: 3.040 $< N_{
 m eff} <$ 3.059 [de Salas et al., 2016]
- additional LS ν contributes with $\Delta N_{\rm eff} = N_{\rm eff} 3.046$:

$$\Delta N_{\rm eff} = \frac{\rho_s^{\rm rel}}{\rho_\nu} = \left[\frac{7}{8} \frac{\pi^2}{15} T_\nu^4 \right]^{-1} \frac{1}{\pi^2} \int dp \, p^3 f_s(p) \quad [\text{Acero et al., 2009}]$$

 $\rho_{
u}$ energy density for one active neutrino species, $\rho_{\rm s}^{\rm rel}$ energy density of LSu when relativistic, p neutrino momentum, $f_{\rm s}(p)$ momentum distribution, $T_{
u}=(4/11)^{1/3}\,T_{\gamma}$

(Relativistic) LS ν in cosmology: $\Delta N_{\rm eff}$

Radiation energy density ρ_r in the early Universe:

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \textit{N}_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 \textit{N}_{\text{eff}}\right] \rho_\gamma$$

 ρ_{γ} photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $ightharpoonup N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: $N_{\text{eff}} = 3.046$ [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos See Pastor talk

- \blacksquare + Non Standard Interactions: $3.040 < N_{
 m eff} < 3.059$ [de Salas et al., 2016]

$$\Delta N_{\rm eff} = \frac{\rho_s^{\rm rel}}{\rho_\nu} = \left[\frac{7}{8} \frac{\pi^2}{15} T_\nu^4 \right]^{-1} \frac{1}{\pi^2} \int dp \, p^3 f_s(p) \quad [\text{Acero et al., 2009}]$$

 $ho_{
u}$ energy density for one active neutrino species, $ho_{
m S}^{
m rel}$ energy density of LSu when relativistic, p neutrino momentum, $f_s(p)$ momentum distribution, $T_{
u}=(4/11)^{1/3} T_{\gamma}$

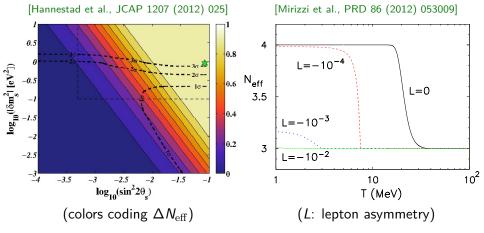
(Relativistic) LS ν in cosmology: $\Delta N_{\rm eff}$

Radiation energy density ρ_r in the early Universe:

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \textit{N}_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 \textit{N}_{\text{eff}}\right] \rho_\gamma$$

 ρ_{γ} photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $ightharpoonup N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: $N_{\text{eff}} = 3.046$ [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos See Pastor talk


- \blacksquare + Non Standard Interactions: $3.040 < N_{
 m eff} < 3.059$ [de Salas et al., 2016]
- additional LS ν contributes with $\Delta N_{\rm eff} = N_{\rm eff} 3.046$:

$$\Delta N_{\rm eff} = \frac{\rho_{\rm s}^{\rm rel}}{\rho_{\nu}} = \left[\frac{7}{8} \frac{\pi^2}{15} T_{\nu}^{4} \right]^{-1} \frac{1}{\pi^2} \int dp \, p^3 f_{\rm s}(p) \quad [\text{Acero et al., 2009}]$$

 $ho_{
u}$ energy density for one active neutrino species, $ho_{
m s}^{
m rel}$ energy density of LSu when relativistic, p neutrino momentum, $f_s(p)$ momentum distribution, $T_{\nu}=(4/11)^{1/3} T_{\gamma}$

LS ν thermalization

Using SBL best-fit parameters for the LS ν (Δm_{41}^2 , θ_s):

Unless $L\gtrsim \mathcal{O}(10^{-3})$, $\Delta N_{\mathrm{eff}}\simeq 1$

See also: [Saviano et al., PRD 87 (2013) 073006], [Hannestad et al., JCAP 08 (2015) 019]

(Non-relativistic) LS ν in cosmology: $m_s^{\rm eff}$ and m_s

 $m_s \simeq 1 \ {\rm eV} o
u_s$ is non-relativistic today ($T_
u \propto 10^{-4} \ {\rm eV}$) LSu density parameter today:

$$\omega_s = \Omega_s h^2 = \frac{\rho_s}{\rho_c} h^2 = \frac{h^2}{\rho_c} \frac{m_s}{\pi^2} \int dp \, p^2 f_s(p)$$
 [Acero et al., 2009]

 ho_s energy density of non-relativistic LSu, ho_c critical density and h reduced Hubble parameter

Alternatively:

$$m_s^{
m eff} = 94.1\,{
m eV}\,\omega_s$$

[Planck 2013 Results, XVI]

The factor $(94.1 \, \mathrm{eV})$ is the same for the active neutrinos:

$$\omega_{
u, {
m active}} = \sum_{
m active} m_{
u}/(94.1\,{
m eV})$$

If
$$f_s(p) = f_{
m active}(p)$$
, $m_s^{
m eff} \equiv m_s$

Thermal production
$$\Longrightarrow f_s(p) = \frac{1}{e^{p/T_s} + 1} \Longrightarrow m_s^{\rm eff} = \Delta N_{\rm eff}^{3/4} m_s$$

(Non-relativistic) LS ν in cosmology: $m_s^{\rm eff}$ and m_s

 $m_s \simeq 1 \ {\rm eV} \to \nu_s$ is non-relativistic today ($T_{\nu} \propto 10^{-4} \ {\rm eV}$) LS ν density parameter today:

$$\omega_s = \Omega_s h^2 = \frac{\rho_s}{\rho_c} h^2 = \frac{h^2}{\rho_c} \frac{m_s}{\pi^2} \int dp \, p^2 f_s(p)$$
 [Acero et al., 2009]

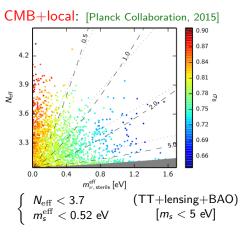
 ho_s energy density of non-relativistic LSu, ho_c critical density and h reduced Hubble parameter

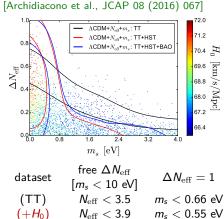
Alternatively:

$$m_s^{\mathrm{eff}} = 94.1 \, \mathrm{eV} \, \omega_s$$

[Planck 2013 Results, XVI]

The factor $(94.1 \, \text{eV})$ is the same for the active neutrinos:


$$\omega_{
u, {
m active}} = \sum_{
m active} m_{
u}/(94.1\,{
m eV})$$


If
$$f_s(p) = f_{
m active}(p)$$
, $m_s^{
m eff} \equiv m_s$

Thermal production
$$\Longrightarrow f_s(p) = \frac{1}{e^{p/T_s} + 1} \Longrightarrow m_s^{\text{eff}} = \Delta N_{\text{eff}}^{3/4} m_s$$

S. Gariazzo

LS ν constraints from cosmology

BBN constraints: $N_{\rm eff} = 2.90 \pm 0.22 \; (BBN + Y_p)$ [Peimbert et al., 2016]

"Light sterile neutrinos with pseudoscalar interactions in cosmology"

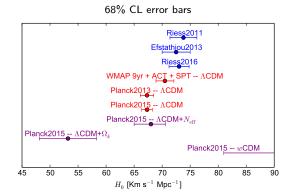
Summary: $\Delta N_{\rm eff} = 1$ from LSu incompatible with $m_{\rm s} \simeq 1$ eV!

(+BAO)

TT=Planck 2015 TT + lowTEB

All the constraints are at 2σ CL

 $m_s < 0.53 \text{ eV}$


 $N_{\rm eff} < 3.8$

Tensions on the Hubble parameter

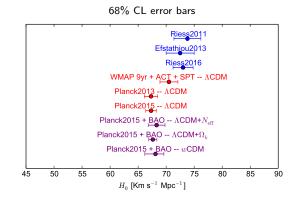
Hubble parameter today:
$$v = H_0 d$$
, with $H_0 = H(z = 0)$

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements (probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

Using HST Cepheids:

[Efstathiou 2013] $H_0 = 72.5 \pm 2.5 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$ [Riess et al., 2016] $H_0 = 73.02 \pm 1.79 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$ (most recent)


(ACDM model - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$ [Planck 2015]: $H_0 = 67.27 \pm 0.66 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$

Tensions on the Hubble parameter

Hubble parameter today:
$$v = H_0 d$$
, with $H_0 = H(z = 0)$

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements (probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

Using HST Cepheids:

[Efstathiou 2013] $H_0 = 72.5 \pm 2.5 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$ [Riess et al., 2016] $H_0 = 73.02 \pm 1.79 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$ (most recent)

(ACDM model - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$ [Planck 2015]: $H_0 = 67.27 \pm 0.66 \,\mathrm{Km \ s^{-1} \ Mpc^{-1}}$

Tensions on the matter perturbations at small scales

Assuming ACDM model:

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

$$\sigma_8(\Omega_m/0.27)^{0.46\pm0.02} = 0.774\pm0.04$$

$$\sigma_8(\Omega_m/0.27)^{0.3}=0.764\pm0.025$$

CMB results

$$\sigma_8 (\Omega_m/0.27)^{0.46} = 0.89 \pm 0.03$$

$$\mathsf{Planck} + \mathsf{WMAP} \ \mathsf{pol} + \mathsf{ACT/SPT}$$

$$\sigma_8 (\Omega_m/0.27)^{0.3} = 0.87 \pm 0.02$$

Qualitatively similar results from SPT clusters, Chandra Cluster Cosmology Project.

Tensions on the matter perturbations at small scales

Assuming ACDM model:

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

CFHTLenS weak lensing data alone [Heymans et al., 2013] (68% CL):

$$\sigma_8(\Omega_m/0.27)^{0.46\pm0.02}=0.774\pm0.04$$

Planck SZ Cluster Counts [Planck 2013 Results XX] (68% CL):

$$\sigma_8 (\Omega_m/0.27)^{0.3} = 0.764 \pm 0.025$$

CMB results

[Planck 2013] (68% CL):

 2σ discrepancy! = 0.89 ± 0.03

Planck + WMAP pol + ACT/SPT [Planck 2013] (68% CL):

 3σ discrepancy! $= 0.87 \pm 0.02$

Qualitatively similar results from SPT clusters, Chandra Cluster Cosmology Project.

Tensions on the matter perturbations at small scales

Assuming ACDM model:

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

CFHTLenS weak lensing data alone [Heymans et al., 2013] (68% CL):

(2) (5 -->) (6 | 0 02)

$$\sigma_8(\Omega_m/0.27)^{0.46\pm0.02} = 0.774\pm0.04$$

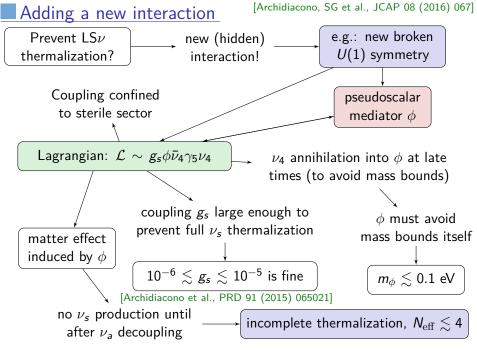
Planck SZ Cluster Counts [Planck 2013 Results XX] (68% CL):

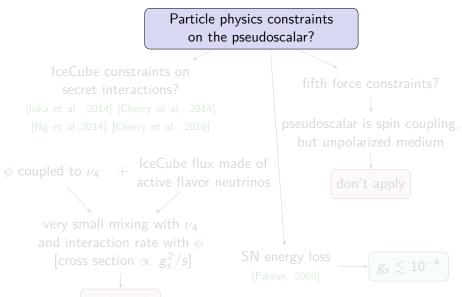
$$\sigma_8(\Omega_m/0.27)^{0.3} = 0.764 \pm 0.025$$

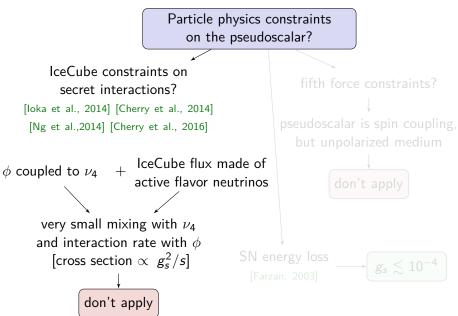
CMB results

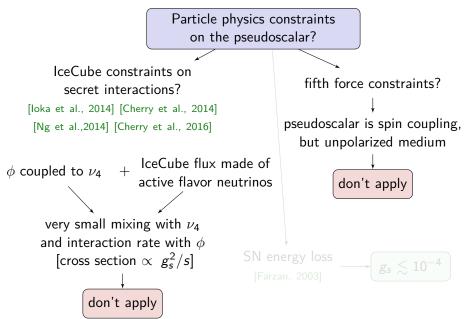
[Planck 2013] (68% CL):

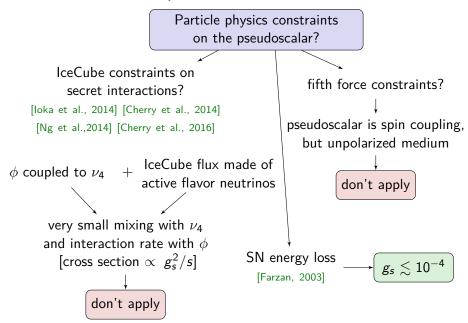
$$2\sigma$$
 discrepancy! = 0.89 ± 0.03


Planck + WMAP pol + ACT/SPT


$$3\sigma$$
 discrepancy! $= 0.87 \pm 0.02$

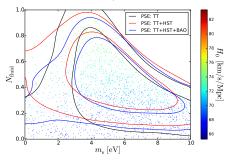

Qualitatively similar results from SPT clusters, Chandra Cluster Cosmology Project.


Alert!

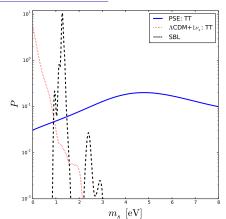

- is the nonlinear evolution well known? see e.g. [Planck 2015 Results, papers XIII and XIV]
- are we taking into account all the astrophysical systematics? [Joudaki et al., 2016] [Kitching et al., 2016]

Standard I S ν model:

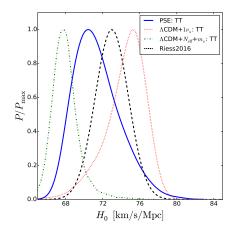
$$\Lambda CDM + N_{\rm eff} + m_s$$


(Λ CDM params+free $N_{\rm eff}$ and m_s)

Pseudoscalar model (**PSE**):

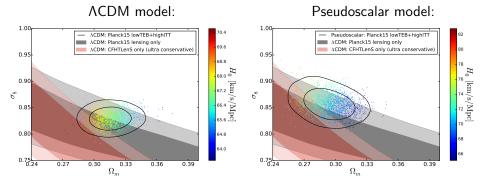

$$N_{\rm eff} = 3.046 + N_{\rm fluid}$$

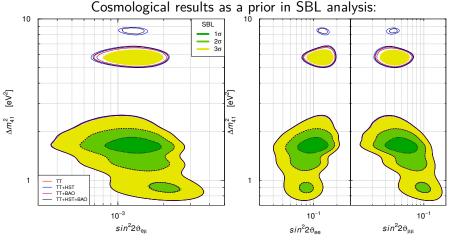
 $N_{\rm fluid}$: $\nu_s + \phi$ contributions


- Problems with $\Delta N_{\rm eff} = 1$? solved (incomplete thermalization due to suppression of active-sterile oscillations in primordial plasma);
- mass bounds avoided
 - \Rightarrow large m_s allowed and preference for $m_s \simeq 4$ eV;
- high values of H_0 predicted by cosmology
 - ⇒ more compatible with local measurements.

Results - II

- **PSE**: posterior on m_s wider
- preference for high SBL peaks? (agreement with recent results by [lceCube, 2016] and [MINOS, 2016])


[Archidiacono, SG et al., JCAP 08 (2016) 067]


- PSE: very close to **Riess2016** results (better than $\Lambda CDM + N_{eff} + m_s$)
- Λ CDM+ $1\nu_s$: even higher H_0 , but from $\Delta N_{\rm eff} = 1$ and $m_s \simeq 0$.

What about the σ_8 tension (matter perturbations at small scales)?

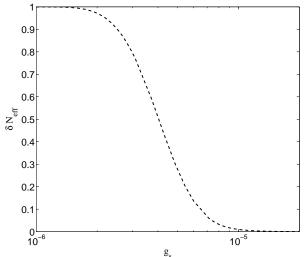
- smaller Ω_m today. Good?
- Also higher $\sigma_8 \Longrightarrow$ no improvement! The tension remains.
- due to higher H_0 , not to reduced matter fluctuations.

Cosmological constraints are too much permissive!

- Regions at $\Delta m_{41}^2 \simeq 6 \text{ eV}^2$ (slightly) enlarged
- (small) new region at $\Delta m_{41}^2 \simeq 8.5 \text{ eV}^2$ appears (3 σ CL only)
- Towards [IceCube, 2016] and [MINOS, 2016] hints for $\Delta m_{41}^2 \gtrsim 1$ eV?

- lacksquare light $u_s~(m_s \simeq 1~{
 m eV})$ from SBL analysis $oldsymbol{?}$
- full thermalization incompatible with cosmological measurements × (given mass and mixing angles from SBL oscillations)
- H_0 and σ_8 problems ?
- New interaction mediated by a pseudoscalar ϕ :
 - hidden in the sterile sector, no fifth force constraints ✓
 - lacktriangle light pseudoscalar to avoid mass bounds after u_s annihilation $\sqrt{}$
 - lacktriangle avoid full u_s thermalization in the early Universe $(10^{-6} \lesssim g_s \lesssim 10^{-5})$
 - lacktriangle matter effect induced by ϕ allows $N_{
 m eff}\lesssim 4$ \checkmark
- Results
 - preference for large m_s \checkmark
 - Towards IceCube and MIII
 - \blacksquare preference for H_0 compatible with local measurements \checkmark
 - no solution to matter fluctuations at small scales X

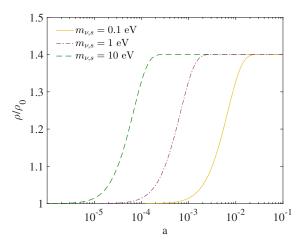
- ullet light u_s $(m_s \simeq 1 \; ext{eV})$ from SBL analysis $oldsymbol{?}$
- full thermalization incompatible with cosmological measurements X
 (given mass and mixing angles from SBL oscillations)
- H_0 and σ_8 problems ?
- New interaction mediated by a pseudoscalar ϕ :
 - lacksquare hidden in the sterile sector, no fifth force constraints \checkmark
 - light pseudoscalar to avoid mass bounds after ν_s annihilation $\sqrt{}$
 - \blacksquare avoid full u_s thermalization in the early Universe (10 $^{-6} \lesssim g_s \lesssim 10^{-5}$) \checkmark
 - matter effect induced by ϕ allows $N_{\rm eff} \lesssim$ 4 \checkmark
- Results:
 - preference for large $m_c \sqrt{}$
 - ullet preference for H_0 compatible with local measurements $\sqrt{}$
 - no solution to matter fluctuations at small scales X


- ullet light u_s $(m_s \simeq 1 \; ext{eV})$ from SBL analysis $oldsymbol{?}$
- full thermalization incompatible with cosmological measurements X
 (given mass and mixing angles from SBL oscillations)
- H_0 and σ_8 problems ?
- New interaction mediated by a pseudoscalar ϕ :
 - lacksquare hidden in the sterile sector, no fifth force constraints \checkmark
 - lacktriangle light pseudoscalar to avoid mass bounds after u_s annihilation $\sqrt{}$
 - \blacksquare avoid full u_s thermalization in the early Universe (10 $^{-6} \lesssim g_s \lesssim 10^{-5}$) \checkmark
 - matter effect induced by ϕ allows $N_{\rm eff} \lesssim$ 4 \checkmark
- Results:
 - preference for large m_s \checkmark
 - Towards IceCube and MINOS recent results ?
 - preference for H_0 compatible with local measurements $\sqrt{}$
 - no solution to matter fluctuations at small scales X

- lacksquare light u_{s} $(m_{s} \simeq 1 \; ext{eV})$ from SBL analysis $oldsymbol{?}$
- full thermalization incompatible with cosmological measurements X
 (given mass and mixing angles from SBL oscillations)
- H_0 and σ_8 problems ?
- New interaction mediated by a pseudoscalar ϕ :
 - hidden in the sterile sector, no fifth force constraints $\sqrt{}$
 - light pseudoscalar to avoid mass bounds after ν_s annihilation $\sqrt{}$
 - lacktriangle avoid full u_s thermalization in the early Universe $(10^{-6} \lesssim g_s \lesssim 10^{-5})$ $\sqrt{}$
 - matter effect induced by ϕ allows $N_{\rm eff} \lesssim$ 4 \checkmark
- Results:
 - preference for large m_s \checkmark
 - Towards IceCube and MINOS recent results ?
 - preference for H_0 compatible with local measurements $\sqrt{}$
 - no solution to matter fluctuations at small scales X

Thank you for the attention

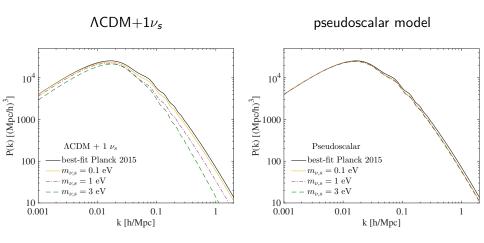
$\Delta N_{ m eff}$ and pseudoscalar interaction


[Archidiacono et al., PRD 91 (2015) 065021]

obtained with $\sin^2(2\theta_s) = 0.05$, $m_s = 1$ eV

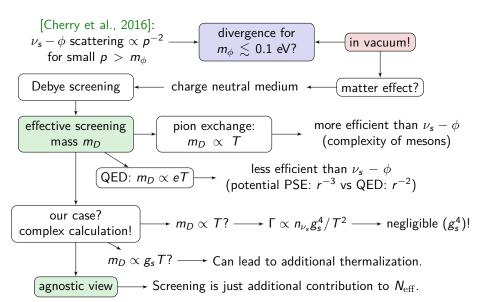
LS ν annihilation

[Archidiacono et al., PRD 93 (2016) 045004]



 ν_s annihilation into pseudoscalars \Longrightarrow energy density increased

 $ho_0 \longrightarrow$ density of 1 active neutrino family $\qquad \qquad \qquad \rho \longrightarrow$ density of $u_s + \phi$


LS ν annihilation and matter power spectrum

[Archidiacono et al., PRD 93 (2016) 045004]

Divergences for small momentum transfer?

 $\nu_s - \phi$ interaction = flavor measurement \longrightarrow contribution to ν_4 thermalization.

