(not only) Neutrinos and GUT's

A tribute to Guido Altarelli

Davide Meloni
Dipartimento di Matematica e Fisica and INFN RomaTre

NOW2016

Standard oscillations

- Mixing matrix has the same structure in both contexts

$$
U_{C K M, P M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right) \times\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{-i \delta} & 0 & c_{13}
\end{array}\right) \times\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

PMNS
vs
CKM
thanks to Andrea Di Iura

0	0.2	0.4	0.6	0.8	1

all (but 1-3) matrix almost diagonal elements are of O(1)
one small and two large mixing angles
in the Standard Model they do not talk to each other although the mechanism producing them is essentially the same

Mixing matrices

- $U_{\text {PMNS }}$ and $\mathrm{V}_{C K M}$ have contributions from two different sectors
leptons

$$
U_{P M N S}=U_{j \alpha}^{+l} U_{\alpha i}^{v}
$$

$$
V_{C K M}=U_{j \alpha}^{+d} U_{\alpha i}^{u}
$$

from the diagonalisation of the charged lepton mass matrix
from the diagonalisation of
the neutrino mass matrix

How to relate these two sectors?
D.Meloni

The need of New Physics

How to relate these two sectors?

- Invoking GUT theories (gauge groups larger than the Standard Model): leptons and quarks sit in the same irreducible representations of the group

Mass matrices are related
ex: $S U(5)$

$$
\overline{5}=\left(\begin{array}{c}
d_{1}^{c} \\
d_{2}^{c} \\
d_{3}^{c} \\
e^{-} \\
-v_{e}
\end{array}\right)_{L} \quad m_{d}=m_{e}^{T}
$$

Not enough for producing the correct mixings
D.Meloni

The need of New Physics

- to improve predictability: Invoke family symmetries:
different families sit in the same irreducible representations of the group

Matrix elements of mass matrices are related

family symmetries

D.Meloni

Being less ambitious...QLC

- Numerically, one sees that: $\theta_{12}+\theta_{c} \sim \pi / 4 \longrightarrow$ quark-lepton complementarity $\theta_{12}+O\left(\theta_{c}\right) \sim \pi / 4$ is called weak complementarity
- Numerically, one also sees that: $\theta_{13} \sim \theta_{c} /$ sqrt[2]
this suggests that the Cabibbo angle is a key-role parameter

Where θ_{c} enters in the lepton sector?
Nature seems to help us!

- $m_{\mu} / m_{\tau} \sim \theta_{c}{ }_{c}$
- $m_{e} / m_{\mu} \sim \theta_{c}^{3-4}$
we have to deal with mass matrices!
D.Meloni

Introducing θ_{c} into the charged lepton masses

- for large fermion masses, we can use renormalizable operators ($\mathrm{d}=4$):

$$
\overline{\psi_{L}} H \psi_{R}
$$

- to generate hierarchies, we can use non-renormalizable $\overline{\psi_{L}} H \psi_{R}\left(\frac{\varphi}{\Lambda}\right)^{n}$ new scalar fields, with vev $=<\phi>$
- transforming non-trivially under some flavor symmetry operators ($d>=5$):

4 cut-off of the theory (and $\langle\phi\rangle / \Lambda$ is smaller than 1)

After the breaking of the flavor symmetry

$$
\begin{gathered}
m_{\mu} / m_{\tau} \sim(d=6) /(d=4) \sim(\langle\phi\rangle / \Lambda)^{2} \\
\eta \\
\frac{\langle\varphi\rangle}{\Lambda} \sim \theta_{C} \\
\text { D.Meloni }
\end{gathered}
$$

Getting the QLC relation

- The strategy:

Start with LO prediction in the neutrino sector as $\theta_{12}=\pi / 4$
family symmetries

Corrections from charged leptons of $O\left(\theta_{C}\right)$: weak QLC

GUT
Connecting quarks and leptons: obtaining Vus $\sim \theta_{c}$
D.Meloni

Getting the QLC

Start with a model whose LO prediction in the neutrino sector is $\theta_{12}=\pi / 4$

Frampton, Petcov and Rodejohann,
Nucl. Phys. B687 (2004) 31 T.Ohlsson,

Phys.Lett.B622, 159 (2005)
Altarelli, Feruglio and Merlo, JHEP0905, 020 (2009)
D.Meloni,

JHEP1110, 010 (2011)
Altarelli, Machado and Meloni, arXiv:1504.05514 [hep-ph]

$$
M_{v}=\left(\begin{array}{llc}
x & y & y \\
y & z & x-z \\
y x-z & z
\end{array}\right) \quad \text { diagonalization } \quad U_{B M}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right) \begin{aligned}
& \text { Bi-Maximal } \\
& \text { mixing }
\end{aligned}
$$

$$
\sin ^{2} \theta_{12}=\frac{1}{2} \quad \sin ^{2} \theta_{23}=\frac{1}{2} \quad \sin ^{2} \theta_{13}=0
$$

D.Meloni

Corrections

- The strategy:

Now needs corrections to fall on the experimental value $\theta_{12} \sim 33^{\circ}$
$\sin ^{2} \theta_{12}$

$\sin \theta_{13}$

Corrections provided by the diagonalization of the charged leptons D.Meloni

An SU(5) example

- group of permutation

- Example from $\mathrm{SU}(5) \times \mathrm{S}_{4}$ of 4 objects

Altarelli, Machado, Meloni arXiv:1504.05514

$$
\begin{aligned}
& m_{e} \sim\left[\begin{array}{ccc}
a_{11} \lambda_{C}^{5} & a_{12} \lambda_{C}^{4} & a_{13} \lambda_{C}^{4} \\
a_{21} \lambda_{C}^{4} & -c \lambda_{C}^{3} & 0 \\
a_{13} \lambda_{C}^{4} & c \lambda_{C}^{3} & a_{33} \lambda_{C}
\end{array}\right] \quad \square U_{1} \sim\left[\begin{array}{ccc}
1 & u_{12} \lambda_{C} & u_{13} \lambda_{C} \\
-u_{12}^{*} \lambda_{C} & 1 & 0 \\
-u_{13}^{*} \lambda_{C} & -u_{12}^{*} u_{13}^{*} \lambda_{C}^{2} & 1
\end{array}\right] \\
& U_{P M N S}=U_{1}^{+} U_{B M} \\
& \text { this gives } \sin ^{2} \theta_{12}=\frac{1}{2}-u_{12} \lambda_{C} \text { which is perfectly } \mathrm{OK}
\end{aligned}
$$

\rightarrow this relation is of the weak complementarity form
\rightarrow we also ask the model to generate Vus $\sim O\left(\lambda_{c}\right)$

The Vus matrix element

- the down sector

$$
m_{d}=m_{e}^{T} \quad \longrightarrow \quad U_{d} \sim\left[\begin{array}{ccc}
1 & d_{12} \lambda_{c} & d_{13} \lambda_{C}^{3} \\
-d_{12}^{*} \lambda_{C} & 1 & d_{23}^{*} \lambda_{C}^{2} \\
\left(d_{12}^{*} d_{23}^{*}-d_{13}^{*}\right) \lambda_{C}^{3} & -d_{23}^{*} \lambda_{C}^{2} & 1
\end{array}\right]
$$

d_{ij} are a different combination of $a_{i j}$
so mixings are different but the off-diagonal (1-2) element is again of $O\left(\lambda_{c}\right)$
(obviously we have to be sure
that the up-quark sector does
not destroy the scheme)
Since Vus is not u12* $\lambda_{c^{\prime}}$ we did not realize the "true" QLC
D.Meloni

What about BM and SO(10) ?

$$
L=16\left(f \cdot 126_{H}+h \cdot 10_{H}\right) 16
$$

all fermions are here, including nu-right

- no SO(10) singlets for right-handed neutrinos \rightarrow more difficult explanation of the difference between charged fermions and neutrinos
- see-saw type II is an useful ansatz to separate the neutrino masses from the dominant contribution to the charged fermions (given by the Yukawa h)

$$
\begin{aligned}
& \quad M_{v R} \sim f\left\langle 126_{H}\right\rangle_{3}+\text { type }-I \\
& \text { vev of the triplet component }
\end{aligned}
$$

D.Meloni

Better BM or TBM in SO(10)?

- Are the data compatible with BM ?

The answer is YES but not very conclusive

in fact, we could have started from f of the TBM form and still obtain a good description of the data, i.e., of θ_{13}
the set of parameters used in one fit are functions of the parameters of the other fit, so the χ^{2} in the two cases are simply related to each other

D.Meloni

Better BM or TBM in SO(10)?

- we have to use some estimator: the fine-tuning parameter

the TBM fit to the data is slightly less fine-tuned than BM

D.Meloni

Conclusions

- Weak form of complementarity can be easily implemented in GUT context
- BM is a good starting point in a $S U(5)$ + family symmetry framework
- No clear preference in the description of the data emerged from SO(10), weak QLC a bit more fine-tuned than a fit from QLC

