CP Violation Predictions from Flavour Symmetries

Arsenii V. Titov

in collaboration with Ivan Girardi and Serguey T. Petcov SISSA and INFN, Trieste, Italy

Neutrino Oscillation Workshop 2016

September 6, 2016, Otranto, Lecce, Italy

Outline

- 3-Neutrino Mixing
- Discrete Flavour Symmetry Approach
- General Set-up
- Dirac Phase
- Sum Rules
- Predictions
- Statistical Analysis
- Majorana Phases
- Sum Rules
- Predictions
- Generalised CP Symmetry
- Neutrinoless Double Beta Decay
- Conclusions

3-Neutrino Mixing

$$
\begin{aligned}
& \nu_{l L}=\sum_{i=1}^{3} U_{l i} \nu_{i L}, \quad l=e, \mu, \tau \quad \begin{array}{l}
U \text { is the Pontecorvo-Maki-Nakagawa-Sakata (P) } \\
\text { neutrino mixing matrix }
\end{array} \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
\end{aligned}
$$

Parameter	Best fit	3σ range
$\sin ^{2} \theta_{12}$	0.297	$0.250-0.354$
$\sin ^{2} \theta_{23}(\mathrm{NO})$	0.437	$0.379-0.616$
$\sin ^{2} \theta_{23}(\mathrm{IO})$	0.569	$0.383-0.637$
$\sin ^{2} \theta_{13}(\mathrm{NO})$	0.0214	$0.0185-0.0246$
$\sin ^{2} \theta_{13}(\mathrm{IO})$	0.0218	$0.0186-0.0248$
$\delta / \pi(\mathrm{NO})$	1.35	$0-2$
$\delta / \pi(\mathrm{IO})$	1.32	$0-2$
$\Delta m_{21}^{2} / 10^{-5} \mathrm{eV}^{2}$	7.37	$6.93-7.97$
$\Delta m_{31}^{2} / 10^{-3} \mathrm{eV}^{2}(\mathrm{NO})$	2.54	$2.40-2.67$
$\Delta m_{23}^{2} / 10^{-3} \mathrm{eV}^{2}(\mathrm{IO})$	2.50	$2.36-2.64$

Capozzi et. al., NPB 908 (2016) 218

Symmetry behind this?

King and Luhn, RPP 76 (2013) 056201

3-Neutrino Mixing

Bounds on single oscillation parameters
(preliminary update)

Discrete Flavour Symmetry Approach

Flavour symmetry group (non-Abelian discrete)

Residual symmetries (Abelian) of the charged lepton and neutrino mass matrices M_{e} and M_{v}

$$
-\mathcal{L} \supset \overline{l_{L}} M_{e} l_{R}+\overline{\nu_{L}^{c}} M_{\nu} \nu_{L}+\text { h.c. }
$$

$\rho\left(g_{e}\right)^{\dagger} M_{e} M_{e}^{\dagger} \rho\left(g_{e}\right)=M_{e} M_{e}^{\dagger}, g_{e} \in G_{e} \quad \rho\left(g_{\nu}\right)^{T} M_{\nu} \rho\left(g_{\nu}\right)=M_{\nu}, g_{\nu} \in G_{\nu}$
ρ is a unitary representation of G_{f} under which LH fields are transformed
$U_{e}^{\dagger} M_{e} M_{e}^{\dagger} U_{e}=\operatorname{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right)$

$$
\begin{aligned}
& U_{\nu}^{T} M_{\nu} U_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \\
& U_{\nu}^{\dagger} \rho\left(g_{\nu}\right) U_{\nu}=\rho\left(g_{\nu}\right)^{\operatorname{diag}}
\end{aligned}
$$

If $G_{e}=Z_{k}, k>2$ or $Z_{m} \times Z_{n}, m, n \geq 2$ and $G_{v}=Z_{2} \times Z_{2}$, the matrices U_{e} and U_{v} are fixed (up to permutations of columns and right multiplication by diagonal phase matrices) $\Rightarrow U=U_{e}^{\dagger} U_{v}$ is fixed

Discrete Flavour Symmetry Approach

$G_{f}=A_{4} / T^{\prime}, S_{4}, A_{5}$ possess a 3-dimensional ρ (unification of 3 flavours at high energies, where G_{f} is unbroken)

Examples
Bimaximal mixing $\left(S_{4}\right)$

$$
U_{\mathrm{BM}}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Tri-bimaximal mixing $\left(A_{4} / T^{\prime}, S_{4}\right)$

$$
U_{\text {тBM }}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}
\end{array}\right)
$$

These mixing forms per se are excluded by the data ($\theta_{13}=0$) However, perturbative corrections are sufficient to reconstitute compatibility of, e.g., tri-bimaximal mixing with the data

If $G_{e}=1$ (G_{f} is fully broken in the charged lepton sector), then U_{e} is not fixed, and it provides the requisite corrections (charged lepton corrections)

For different breaking patterns see Girardi, Petcov, Stuart, Titov, NPB 902 (2016) 1

Discrete Flavour Symmetry Approach

$G_{v}=Z_{2} \times Z_{2} \Rightarrow U_{v}$ is fixed (up to permutations of columns and right multiplication by a diagonal phase matrix):

$$
U_{\nu}=\tilde{U}_{\nu} Q_{0}, \quad Q_{0}=\operatorname{diag}\left(1, e^{i \frac{\xi_{21}}{2}}, e^{i \frac{\xi_{31}}{2}}\right)
$$

Symmetry Forms of \widetilde{U}_{v}

$\tilde{U}_{\nu}=R_{23}\left(\theta_{23}^{\nu}\right) R_{12}\left(\theta_{12}^{\nu}\right) \quad R_{i j}$ is a rotation matrix in the $i-j$ plane

Symmetry form	Group	θ_{12}^{v}	θ_{23}^{v}	θ_{13}^{v}
Tri-bimaximal (TBM)	A_{4} / T^{\prime}	$\sin ^{-1}(1 / \sqrt{3}) \approx 35^{\circ}$		
Bi-maximal (BM)	S_{4}	$\pi / 4=45^{\circ}$		
Golden ratio A (GRA)	A_{5}	$\sin ^{-1}(1 / \sqrt{2+r}) \approx 31^{\circ}$	$-\pi / 4=-45^{\circ}$	0
Golden ratio B (GRB)	D_{10}	$\sin ^{-1}(\sqrt{3-r} / 2)=36^{\circ}$		
Hexagonal (HG)	D_{12}	$\pi / 6=30^{\circ}$		

$$
r \text { is the golden ratio: } r=(1+\sqrt{5}) / 2
$$

General Set-up

$$
\begin{gathered}
U=U_{e}^{\dagger} U_{\nu}=\tilde{U}_{e}^{\dagger} \Psi \tilde{U}_{\nu} Q_{0} \\
\Psi=\operatorname{diag}\left(1, e^{-i \psi}, e^{-i \omega}\right), \quad Q_{0}=\operatorname{diag}\left(1, e^{i \frac{\xi_{21}}{2}}, e^{i \frac{\xi_{31}}{2}}\right)
\end{gathered}
$$

In general, \widetilde{U}_{e} and \widetilde{U}_{v} are CKM-like matrices

Frampton, Petcov, Rodejohann, NPB 687 (2004) 31

Considered Cases

Case	$\widetilde{U}_{e}^{\dagger}$	\widetilde{U}_{v}
A1	$R_{12}\left(\theta_{12}^{e}\right)$	
A2	$R_{13}\left(\theta_{13}^{e}\right)$	
B1	$R_{12}\left(\theta_{12}^{e}\right) R_{23}\left(\theta_{23}^{e}\right)$	$R_{23}\left(\theta_{23}^{v}\right) R_{12}\left(\theta_{12}^{v}\right)$
B2	$R_{13}\left(\theta_{13}^{e}\right) R_{23}\left(\theta_{23}^{e}\right)$	
C1	$R_{12}\left(\theta_{12}^{e}\right)$	
C2	$R_{13}\left(\theta_{13}^{e}\right)$	$R_{23}\left(\theta_{23}^{v}\right) R_{13}\left(\theta_{13}^{v}\right) R_{12}\left(\theta_{12}^{v}\right)$

$\widetilde{U}_{e}^{\dagger}=R_{23}\left(\theta_{23}^{e}\right)$ leads to

- $\theta_{13}=0$ for \widetilde{U}_{v} containing 2 rotations
- $\theta_{13}=\theta_{13}^{v}$ for \widetilde{U}_{v} containing 3 rotations

In the case of $\widetilde{U}_{e}^{\dagger}=R_{12}\left(\theta_{12}^{e}\right) R_{13}\left(\theta_{13}^{e}\right)$ and \widetilde{U}_{v} containing 2 rotations, a free phase parameter ω enters resulting sum rules for the CP-violating phases

Dirac Phase: Sum Rules

Case	s_{23}^{2}	$\cos \delta$
A1	$\frac{s_{23}^{\nu 2}-s_{13}^{2}}{1-s_{13}^{2}}$	$\frac{\left(c_{13}^{2}-c_{23}^{\nu 2}\right)^{\frac{1}{2}}}{\sin 2 \theta_{12} s_{13}\left\|c_{23}^{\nu}\right\|}\left[\cos 2 \theta_{12}^{\nu}+\left(s_{12}^{2}-c_{12}^{\nu 2}\right) \frac{s_{23}^{\nu 2}-\left(1+c_{23}^{\nu 2}\right) s_{13}^{2}}{c_{13}^{2}-c_{23}^{\nu 2}}\right]$
A 2	$\frac{s_{23}^{\nu 2}}{1-s_{13}^{2}}$	$-\frac{\left(c_{13}^{2}-s_{23}^{\nu 2}\right)^{\frac{1}{2}}}{\sin 2 \theta_{12} s_{13}\left\|s_{23}^{\nu}\right\|}\left[\cos 2 \theta_{12}^{\nu}+\left(s_{12}^{2}-c_{12}^{\nu 2}\right) \frac{c_{23}^{\nu 2}-\left(1+s_{23}^{\nu 2}\right) s_{13}^{2}}{c_{13}^{2}-s_{23}^{2}}\right]$
B 1	Not fixed	$\frac{\tan \theta_{23}}{\sin 2 \theta_{12} s_{13}}\left[\cos 2 \theta_{12}^{\nu}+\left(s_{12}^{2}-c_{12}^{\nu 2}\right)\left(1-\cot ^{2} \theta_{23} s_{13}^{2}\right)\right]$
B 2	Not fixed	$-\frac{\cot \theta_{23}}{\sin 2 \theta_{12} s_{13}}\left[\cos 2 \theta_{12}^{\nu}+\left(s_{12}^{2}-c_{12}^{\nu 2}\right)\left(1-\tan ^{2} \theta_{23} s_{13}^{2}\right)\right]$
C 1	$\frac{c_{13}^{2}-c_{23}^{\nu 2} c_{13}^{\nu 2}}{1-s_{13}^{2}}$	$\frac{\left(c_{13}^{2}-c_{13}^{\nu 2} c_{23}^{\nu 2}\right) s_{12}^{2}+c_{12}^{2} s_{13}^{2} c_{13}^{\nu 2} c_{23}^{\nu}-c_{13}^{2}\left(c_{12}^{\nu} s_{13}^{\nu} c_{23}^{\nu}-s_{12}^{\nu} s_{23}^{\nu}\right)^{2}}{\sin 2 \theta_{12} s_{13}\left\|c_{13}^{\nu} c_{23}^{\nu}\right\|\left(c_{13}^{2}-c_{12}^{\nu 2} c_{23}^{\nu 2}\right)^{\frac{1}{2}}}$
C 2	$\frac{s_{23}^{\nu 2} c_{13}^{\nu 2}}{1-s_{13}^{2}}$	$-\frac{\left(c_{13}^{2}-c_{13}^{\nu 2} s_{23}^{\nu 2}\right) s_{12}^{2}+c_{12}^{2} s_{13}^{2} c_{13}^{\nu 2} s_{23}^{\nu 2}-c_{13}^{2}\left(c_{12}^{\nu} s_{13}^{\nu} s_{23}^{\nu}+s_{12}^{\nu} c_{23}^{\nu}\right)^{2}}{\sin 2 \theta_{12} s_{13}\left\|c_{13}^{\nu} s_{23}^{\nu}\right\|\left(c_{13}^{2}-c_{13}^{\nu 2} s_{23}^{\nu 2}\right)^{\frac{1}{2}}}$

Petcov, NPB 892 (2015) 400; Girardi, Petcov, Titov, EPJC 75 (2015) 345
In cases A 1 and A 2 for $\theta_{23}^{v}=-\pi / 4, s_{23}^{2} \approx 1 / 2\left(1 \mp s_{13}^{2}\right)$, i.e., $\theta_{23} \approx \pi / 4$
In cases B 1 and B 2 the best fit values of all the three mixing angles can be reproduced

Dirac Phase: Predictions

$\delta\left[{ }^{\circ}\right]$, using the best fit values of the neutrino mixing angles for NO

Case	TBM	GRA	GRB	HG	BM
A1	$102 \vee 258$	$77 \vee 283$	$107 \vee 253$	$65 \vee 295$	-
A2	$78 \vee 282$	$103 \vee 257$	$73 \vee 287$	$115 \vee 245$	-
B1	$100 \vee 260$	$78 \vee 282$	$105 \vee 255$	$67 \vee 293$	-
B2	$75 \vee 285$	$104 \vee 256$	$69 \vee 291$	$118 \vee 242$	--
	$[\pi / 20,-\pi / 4]$	$[\pi / 10,-\pi / 4]$	$[a,-\pi / 4]$	$[\pi / 20, b]$	$[\pi / 20, \pi / 6]$
C1	$109 \vee 251$	$45 \vee 315$	$30 \vee 330$	$155 \vee 205$	$133 \vee 227$
	$[\pi / 20, c]$	$[\pi / 20, \pi / 4]$	$[\pi / 10, \pi / 4]$	$[a, \pi / 4]$	$[\pi / 20, d]$
C2	$146 \vee 214$	$71 \vee 289$	$135 \vee 225$	$150 \vee 210$	$139 \vee 221$

$\theta_{23}^{v}=-\pi / 4 \quad$ The values in square brackets are those of $\left[\theta_{13}^{v}, \theta_{12}^{v}\right]$
$a=\sin ^{-1}(1 / 3), \quad b=\sin ^{-1}(1 / \sqrt{2+r}), \quad c=\sin ^{-1}(1 / \sqrt{3}), \quad d=\sin ^{-1}(\sqrt{3-r} / 2)$
Non-zero values of θ_{13}^{v} : Bazzocchi, arXiv:1108.2497;
Toorop, Feruglio, Hagedorn, PLB 703 (2011) 447;
Rodejohann and Zhang, PLB 732 (2014) 174

Dirac Phase: Statistical Analysis

Likelihood: $\quad L(\cos \delta)=\exp \left(-\frac{\chi^{2}(\cos \delta)}{2}\right), \quad \chi^{2}(\cos \delta)=\min \left[\left.\chi^{2}(\vec{x})\right|_{\cos \delta=\text { const }}\right]$
Present: $\quad \chi^{2}(\vec{x})=\sum_{i=1}^{4} \chi_{i}^{2}\left(x_{i}\right), \quad \vec{x}=\left(s_{12}^{2}, s_{13}^{2}, s_{23}^{2}, \delta\right)$
χ_{i}^{2} are the 1-dimensional projections from the global analysis performed in Capozzi et. al., PRD 89 (2014) 093018

Future: $\quad \chi^{2}(\vec{x})=\sum_{i=1}^{3} \frac{\left(x_{i}-\overline{x_{i}}\right)^{2}}{\sigma_{x_{i}}^{2}}, \quad \vec{x}=\left(s_{12}^{2}, s_{13}^{2}, s_{23}^{2}\right)$
$\overline{x_{i}}$ are the current best fit values of $\sin ^{2} \theta_{12}, \sin ^{2} \theta_{13}$ and $\sin ^{2} \theta_{23}$
$\sigma_{x_{i}}$ are the prospective 1σ uncertainties:

- 0.7% for $\sin ^{2} \theta_{12}$ (JUNO)
- 3% for $\sin ^{2} \theta_{13}$ (Daya Bay)
- 5% for $\sin ^{2} \theta_{23}$ (NOvA and T2K)

Dirac Phase: Statistical Analysis

Case B1: $\quad \widetilde{U}_{e}^{\dagger}=R_{12}\left(\theta_{12}^{e}\right) R_{23}\left(\theta_{23}^{e}\right)$

Girardi, Petcov, Titov, NPB 894 (2015) 733
RG corrections to sum rule predictions are negligible within the SM extended by the Weinberg (dimension 5) operator, see Gehrlein, Petcov, Spinrath, Titov, arXiv:1608.08409

Dirac Phase: Statistical Analysis

Case B2: $\quad \widetilde{U}_{e}^{\dagger}=R_{13}\left(\theta_{13}^{e}\right) R_{23}\left(\theta_{23}^{e}\right)$

Rephasing Invariant J_{CP} : Statistical Analysis

$$
\begin{aligned}
J_{\mathrm{CP}} & =\operatorname{Im}\left\{U_{e 1}^{*} U_{\mu 3}^{*} U_{e 3} U_{\mu 1}\right\} \\
& =\frac{1}{8} \sin \delta \sin 2 \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \cos \theta_{13}
\end{aligned}
$$

$J_{\text {CP }}$ determines the magnitude of CP-violating effects in neutrino oscillations

Krastev and Petcov, PLB 205 (1988) 84

$$
N_{\sigma}=\sqrt{\chi^{2}} \quad \square \begin{aligned}
& \text { NO case B1 } \\
& \text { IO case B1 }
\end{aligned}
$$

------. NO global fit
------. IO global fit

Relatively large CP-violating effects in neutrino oscillations in the cases of TBM, GRA, GRB, HG: $J_{\mathrm{CP}} \approx-0.03,\left|J_{\mathrm{CP}}\right| \geq 0.02 @ 3 \sigma$ and suppressed effects in the case of BM: $J_{\mathrm{CP}} \approx 0$

Case B1: $\quad \widetilde{U}_{e}^{\dagger}=R_{12}\left(\theta_{12}^{e}\right) R_{23}\left(\theta_{23}^{e}\right)$

Girardi, Petcov, Titov, NPB 894 (2015) 733

Majorana Phases: Sum Rules

Cases	$\alpha_{21} / 2$	$\alpha_{31} / 2$
$\mathrm{~A} 1, \mathrm{~B} 1, \mathrm{C} 1$	$\arg \left(U_{\tau 1} U_{\tau 2}^{*} e^{i \frac{\alpha_{21}}{2}}\right)+\varkappa_{21}+\xi_{21} / 2$	$\arg \left(U_{\tau 1}\right)+\varkappa_{31}+\xi_{31} / 2$
$\mathrm{~A} 2, \mathrm{~B} 2, \mathrm{C} 2$	$\arg \left(U_{\mu 1} U_{\mu 2}^{*} e^{i \frac{\alpha_{21}}{2}}\right)+\varkappa_{21}+\xi_{21} / 2$	$\arg \left(U_{\mu 1}\right)+\varkappa_{31}+\xi_{31} / 2$

In these expressions U is in the standard parametrisation, and the corresponding sum rules for $\sin ^{2} \theta_{23}$ and δ (slide 9) should be used

The phases κ_{21} and κ_{31} are 0 or π and known when the angles $\theta_{i j}^{v}$ are fixed for all the cases, but B 1 and B 2 , for which $\kappa_{31}=0(\pi)+\beta$, where β is a free phase parameter

Case	\varkappa_{21}	\varkappa_{31}
A 1	$\arg \left(-s_{12}^{\nu} c_{12}^{\nu}\right)$	$\arg \left(s_{12}^{\nu} s_{23}^{\nu} c_{23}^{\nu}\right)$
A 2	$\arg \left(-s_{12}^{\nu} c_{12}^{\nu}\right)$	$\arg \left(-s_{12}^{\nu} s_{23}^{\nu} c_{23}^{\nu}\right)$
B 1	$\arg \left(-s_{12}^{\nu} c_{12}^{\nu}\right)$	$\arg \left(s_{12}^{\nu}\right)+\beta$
B 2	$\arg \left(-s_{12}^{\nu} c_{12}^{\nu}\right)$	$\arg \left(-s_{12}^{\nu}\right)+\beta$
C 1	$\arg \left[-\left(c_{12}^{\nu} s_{23}^{\nu}+s_{12}^{\nu} c_{23}^{\nu} s_{13}^{\nu}\right)\left(s_{12}^{\nu} s_{23}^{\nu}-c_{12}^{\nu} c_{23}^{\nu} s_{13}^{\nu}\right)\right]$	$\arg \left[c_{23}^{\nu} c_{13}^{\nu}\left(s_{12}^{\nu} s_{23}^{\nu}-c_{12}^{\nu} c_{23}^{\nu} s_{13}^{\nu}\right)\right]$
C 2	$\arg \left[-\left(c_{12}^{\nu} c_{23}^{\nu}-s_{12}^{\nu} s_{23}^{\nu} s_{13}^{\nu}\right)\left(s_{12}^{\nu} c_{23}^{\nu}+c_{12}^{\nu} s_{23}^{\nu} s_{13}^{\nu}\right)\right]$	$\arg \left[-s_{23}^{\nu} c_{13}^{\nu}\left(s_{12}^{\nu} c_{23}^{\nu}+c_{12}^{\nu} s_{23}^{\nu} s_{13}^{\nu}\right)\right]$

Girardi, Petcov, Titov, arXiv:1605.04172

Majorana Phases: Predictions

$\alpha_{21} / 2-\xi_{21} / 2$ [${ }^{\circ}$], using the best fit values of the neutrino mixing angles for NO

Case	TBM	GRA	GRB	HG	BM
A1	$342 \vee 18$	$341 \vee 19$	$343 \vee 17$	$342 \vee 18$	-
A2	$18 \vee 342$	$19 \vee 341$	$17 \vee 343$	$18 \vee 342$	-
B1	$340 \vee 20$	$339 \vee 21$	$341 \vee 19$	$340 \vee 20$	-
B2	$15 \vee 345$	$16 \vee 344$	$14 \vee 346$	$15 \vee 345$	-
	$[\pi / 20,-\pi / 4]$	$[\pi / 10,-\pi / 4]$	$[a,-\pi / 4]$	$[\pi / 20, b]$	$[\pi / 20, \pi / 6]$
C1	$163 \vee 197$	$167 \vee 193$	$171 \vee 189$	$353 \vee 7$	$348 \vee 12$
	$[\pi / 20, c]$	$[\pi / 20, \pi / 4]$	$[\pi / 10, \pi / 4]$	$[a, \pi / 4]$	$[\pi / 20, d]$
C2	$12 \vee 348$	$17 \vee 343$	$13 \vee 347$	$9 \vee 351$	$14 \vee 346$

First number corresponds to $\delta=\cos ^{-1}(\cos \delta)$, second is for $\delta=2 \pi-\cos ^{-1}(\cos \delta)$

$$
\theta_{23}^{v}=-\pi / 4 \quad \text { The values in square brackets are those of }\left[\theta_{13}^{v}, \theta_{12}^{v}\right]
$$

$$
a=\sin ^{-1}(1 / 3), \quad b=\sin ^{-1}(1 / \sqrt{2+r}), \quad c=\sin ^{-1}(1 / \sqrt{3}), \quad d=\sin ^{-1}(\sqrt{3-r} / 2)
$$

Majorana Phases: Predictions

$$
\begin{gathered}
\alpha_{31} / 2-\xi_{31} / 1\left[{ }^{\circ}\right] \quad\left(\alpha_{31} / 2-\xi_{31} / 1-\beta\left[{ }^{\circ}\right] \text { in cases } \mathrm{B} 1 \text { and } \mathrm{B} 2\right), \\
\text { using the best fit values of the neutrino mixing angles for } \mathrm{NO}
\end{gathered}
$$

Case	TBM	GRA	GRB	HG	BM
A1	$168 \vee 192$	$167 \vee 193$	$168 \vee 192$	$167 \vee 193$	-
A2	$192 \vee 168$	$193 \vee 167$	$192 \vee 168$	$193 \vee 167$	-
B1	$346 \vee 14$	$345 \vee 15$	$347 \vee 13$	$345 \vee 15$	-
B2	$10 \vee 350$	$11 \vee 349$	$10 \vee 350$	$11 \vee 349$	-
	$[\pi / 20,-\pi / 4]$	$[\pi / 10,-\pi / 4]$	$[a,-\pi / 4]$	$[\pi / 20, b]$	$[\pi / 20, \pi / 6]$
C1	$349 \vee 11$	$350 \vee 10$	$353 \vee 7$	$175 \vee 185$	$172 \vee 188$
	$[\pi / 20, c]$	$[\pi / 20, \pi / 4]$	$[\pi / 10, \pi / 4]$	$[a, \pi / 4]$	$[\pi / 20, d]$
C2	$189 \vee 171$	$191 \vee 169$	$190 \vee 170$	$187 \vee 173$	$190 \vee 170$

First number corresponds to $\delta=\cos ^{-1}(\cos \delta)$, second is for $\delta=2 \pi-\cos ^{-1}(\cos \delta)$

$$
\theta_{23}^{v}=-\pi / 4 \quad \text { The values in square brackets are those of }\left[\theta_{13}^{v}, \theta_{12}^{v}\right]
$$

$$
a=\sin ^{-1}(1 / 3), \quad b=\sin ^{-1}(1 / \sqrt{2+r}), \quad c=\sin ^{-1}(1 / \sqrt{3}), \quad d=\sin ^{-1}(\sqrt{3-r} / 2)
$$

Generalised CP Symmetry

$$
X^{T} M_{\nu} X=M_{\nu}^{*}
$$

X are generalised CP transformations
Generalised CP symmetry should be consistent with (residual) flavour symmetry:

$$
X \rho^{*}\left(g_{\nu}\right) X^{-1}=\rho\left(g_{\nu}^{\prime}\right), \quad g_{\nu}, g_{\nu}^{\prime} \in G_{\nu}
$$

It can be shown that

$$
\begin{gathered}
\tilde{U}_{\nu}^{\dagger} X \tilde{U}_{\nu}^{*}=\operatorname{diag}\left(\pm e^{i \xi_{1}}, \pm e^{i \xi_{2}}, \pm e^{i \xi_{3}}\right) \\
\xi_{21}=\xi_{2}-\xi_{1}, \quad \xi_{31}=\xi_{3}-\xi_{1}
\end{gathered}
$$

Thus, the phases ξ_{i} are known once \widetilde{U}_{v} is fixed by G_{v}, and X consistent with G_{v} are identified

Generalised CP Symmetry

Example: $G_{f}=A_{4}$

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

$G_{v}=Z_{2}^{S} \times Z_{2}^{a c c}$ ($Z_{2}^{a c c}$ is a $\mu-\tau$ symmetry which arises accidentally) leads to tri-bimaximal mixing in the neutrino sector

The generalised CP transformations consistent with the preserved S generator are $X=\rho(1)$ and $X=\rho(S)$. Then

$$
\begin{aligned}
U_{\mathrm{TBM}}^{\dagger} \rho(1) U_{\mathrm{TBM}}^{*} & =\operatorname{diag}(1,1,1) \\
U_{\mathrm{TBM}}^{\dagger} \rho(S) U_{\mathrm{TBM}}^{*} & =\operatorname{diag}(-1,1,-1)
\end{aligned}
$$

Thus, the phases ξ_{i}, and hence ξ_{21} and ξ_{31}, can be either 0 or π
A similar situation takes place for $G_{f}=S_{4}$ and A_{5} (BM and GRA mixing forms, respectively)

Neutrinoless Double Beta Decay

Effective Majorana mass: $\langle m\rangle=\sum_{i=1}^{3} m_{i} U_{e i}^{2}=m_{1} c_{12}^{2} c_{13}^{2}+m_{2} s_{12}^{2} c_{13}^{2} e^{i \alpha_{21}}+m_{3} s_{13}^{2} e^{i\left(\alpha_{31}-2 \delta\right)}$ Using the best fit values of $\theta_{12}, \theta_{13}, \Delta m_{21}^{2}, \Delta m_{31(23)}^{2}$ and the predicted values of the Dirac phase and Majorana phases for $\left(\xi_{21}, \xi_{31}\right)=(\mathbf{0}, \mathbf{0})$

TBM, GRA, GRB, $\mathrm{HG} \quad \beta \in[0, \pi]$

Neutrinoless Double Beta Decay

Effective Majorana mass: $\langle m\rangle=\sum_{i=1}^{3} m_{i} U_{e i}^{2}=m_{1} c_{12}^{2} c_{13}^{2}+m_{2} s_{12}^{2} c_{13}^{2} e^{i \alpha_{21}}+m_{3} s_{13}^{2} e^{i\left(\alpha_{31}-2 \delta\right)}$ Using the best fit values of $\theta_{12}, \theta_{13}, \Delta m_{21}^{2}, \Delta m_{31(23)}^{2}$ and the predicted values of the Dirac phase and Majorana phases for $\left(\xi_{21}, \xi_{31}\right)=(\pi, \pi)$

TBM, GRA, GRB, HG $\quad \beta \in[0, \pi]$

Conclusions

- Exact (within the schemes considered) sum rules for the cosine of the Dirac phase and the Majorana phases were derived and numerical predictions were obtained
- Sufficiently precise measurements of the Dirac phase and the mixing angles are the key to the possible discrete symmetry origin of the observed pattern of neutrino mixing
- Relatively large CP-violating effects in neutrino oscillations in the cases of TBM, GRA, GRB, HG and suppressed effects in the case of BM were found
- Constrained parameter space in neutrinoless double beta decay is predicted

Dirac Phase: Statistical Analysis

Case B1: Dependence on the best fit values

$$
\begin{aligned}
& \left(s_{12}^{2}\right)_{\mathrm{bf}}=0.332 \\
& \left(s_{23}^{2}\right)_{\mathrm{bf}}=0.437 \\
& \left(s_{13}^{2}\right)_{\mathrm{pbf}}=0.0234
\end{aligned}
$$

$$
\begin{array}{ll}
\left(s_{12}^{2}\right)_{\mathrm{bf}}=0.304 & \text { IO neutrino mass spectrum } \\
\left(s_{23}^{2}\right)_{\mathrm{bf}}=0.579 & \text { Gonzalez-Garcia et. al., } \\
\left(s_{13}^{2}\right)_{\mathrm{pbf}}=0.0219 & \text { JHEP } 1411(2014) 052
\end{array}
$$

Dirac Phase: Statistical Analysis

Case C1: Present

NO

10

$$
\begin{aligned}
{\left[\theta_{13}^{v}, \theta_{12}^{v}\right]: \text { Case } I } & =[\pi / 20,-\pi / 4] \text { Case } I I=[\pi / 10,-\pi / 4] \text { Case } I I I=\left[\sin ^{-1}(1 / 3),-\pi / 4\right] \\
\text { Case } I V & =\left[\pi / 20, \sin ^{-1}(1 / \sqrt{2+r})\right] \text { Case } V=[\pi / 20, \pi / 6]
\end{aligned}
$$

Girardi, Petcov, Titov, EPJC 75 (2015) 345

Dirac Phase: Statistical Analysis

Case C1: Future

Dirac Phase: Statistical Analysis

Case C2: Present

NO

10

$$
\begin{gathered}
{\left[\theta_{13}^{v}, \theta_{12}^{v}\right]: \text { Case } I=\left[\pi / 20, \sin ^{-1}(1 / \sqrt{3})\right] \text { Case } I I=[\pi / 20, \pi / 4] \text { Case } I I I=[\pi / 10, \pi / 4]} \\
\text { Case } I V=\left[\sin ^{-1}(1 / 3), \pi / 4\right] \text { Case } V=\left[\pi / 20, \sin ^{-1}(\sqrt{3-r} / 2)\right]
\end{gathered}
$$

Girardi, Petcov, Titov, EPJC 75 (2015) 345

Dirac Phase: Statistical Analysis

Case C2: Future

$\sin ^{2} \theta_{23}$: Statistical Analysis

Case B1

$N_{\sigma}=\sqrt{\chi^{2}}$

- NO case B1
—— 10 case B1
------. NO global fit
------" IO global fit

Girardi, Petcov, Titov, NPB 894 (2015) 733

$\sin ^{2} \theta_{23}$: Statistical Analysis

Case B2

$N_{\sigma}=\sqrt{\chi^{2}}$

- NO case B2

------- NO global fit
------- IO global fit

Girardi, Petcov, Titov, EPJC 75 (2015) 345

Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

