Glimpse of the KATRIN tritium analysis

Valérian Sibille, on behalf of the KATRIN collaboration

ΜΙΤ

15th September 2018

Introduction	Data	Model components	Fitting	Unbiased analysis	Conclusion
000					
Outline					

2 Data

- Model components
- Ø Fitting
- Onbiased analysis

Introduction		Model components	Fitting	Unbiased analysis	Conclusion
000					
Neutrino ma	ss from β	spectrum			

• Analyse electrons from molecular tritium β -decay

- \Rightarrow Transport electrons
- \Rightarrow Select energy
- \Rightarrow Model comparison

Introduction		Model components	Fitting	Unbiased analysis	Conclusion
000					
Karlsruhe Tri	tium <mark>N</mark> eut	rino experiment			

- 70-metre beam-line
- Gaseous T_2 from Tritium Laboratory Karlsruhe (40 g d⁻¹)
- eV-resolution spectrometer
- 95%-efficiency Si-PIN diode wafer

Introduction	Data	Model components	Fitting	Unbiased analysis	Conclusion
	0000				
Outline					

2 Data

3 Model components

Ø Fitting

6 Unbiased analysis

First tritium	· commis	scioning phase			
000	0000	00000	0000	0000	000
Introduction	Data	Model components	Fitting	Unbiased analysis	Conclusion

First tritium: commissioning phase

- Loop operation from 5th to 18th June
- 0.5% tritium atoms in D₂
- 0.1% stability

	Data	Model components	Fitting	Unbiased analysis	Conclusion
	0000				
Counting hits	;				

• Set retarding potential \boldsymbol{U}

• Integration over the region of interest

	Data	Model components	Fitting	Unbiased analysis	Conclusion
	0000				
Integrated rat	te stability				

- Spectrometer retarding potential set 1 keV below endpoint
- Rate averaged on minute-basis

- \Rightarrow Stable over hours
- \Rightarrow Start analysis?

Introduction	Data	Model components	Fitting	Unbiased analysis	Conclusion
		00000			
Outline					

2 Data

3 Model components

Ø Fitting

6 Unbiased analysis

		Model components	Fitting	Unbiased analysis	Conclusion
		0000			
Tritium β -d	ecay spec	trum			

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E}(E) \propto F(E) \phi_e(E) \int f(V) \phi_\nu(E+V) \Theta(Q-E-V-m_\nu) \,\mathrm{d}V$$
$$\phi_\nu(E) = (Q-E) \sqrt{(Q-E)^2 - m_\nu^2}$$

		Model components	Fitting	Unbiased analysis	Conclusion
		00000			
HeT or He) molecul	es after decay			

- Spectrum *f* of excitations
- Theoretical work
- Likely dominant 5-year term systematic
- Learn from data (spectroscopy, KATRIN, TRIMS)

Introduction	Data	Model components	Fitting	Unbiased analysis	Conclusion
000	0000	00000	0000	0000	000
Magnetic A	liabatic (Collimation & Elec	ctrostatic fil	ter	

- Align electrons along electrostatic field
- Select all signal electrons with $E > q U_A \left(1 + \frac{B_A}{B_{\text{max}}}\right)$

		Model components	Fitting	Unbiased analysis	Conclusion
		0000			
Response fu	nction wi	th scattering in t	he source		

- Mitigate scattering with $\theta < 51 \deg$ acceptance
- Upcoming scattering energy loss spectrum measurements

 \Rightarrow KATRIN model is semi-analytical (arXiv:1806.00369)

Introduction	Model components	Fitting	Unbiased analysis	Conclusion
		0000		
Outline				

2 Data

3 Model components

4 Fitting

G Unbiased analysis

Minimisers, samplers and systematics							
			0000				
		Model components	Fitting	Unbiased analysis	Conclusion		

Minimisers & samplers

- Minuit
- Custom with analytical derivatives
- Markov Chain (BAT)

Systematics: work in progress

- Covariance matrices
- Monte Carlo propagation: pull terms or priors
 - \Rightarrow Learn from data
- Dominated by column density for First Tritium
 - \Rightarrow Normalisation (activity)
 - \Rightarrow Shape (scattering)

		Model components	Fitting	Unbiased analysis	Conclusion
			0000		
First 3h-run fit: custom minimiser					

- Fit Endpoint, Normalisation, Background
- Fix $m_{\nu}^2 = 0 \, \text{eV}^2$
- Poisson likelihood, statistical errors only, 400 eV range

 \Rightarrow Already agreement

		Model components	Fitting	Unbiased analysis	Conclusion	
			0000			
Endpoint evolution: Minuit-based						

• χ^2 expression

 \Rightarrow Endpoint reproduced

 \Rightarrow Distributions exhibit no inconsistencies

Introduction	Data	Model components	Fitting	Unbiased analysis	Conclusion
				0000	
Outline					

2 Data

3 Model components

Ø Fitting

6 Unbiased analysis

		Model components	Fitting	Unbiased analysis	Conclusion
				0000	
Prevent obser	rver's bias				

• Limit blind sensitivity to $m_{\nu} < 2 \, {\rm eV} \, (95\% \, {\rm C.L.})$ at best

 \Rightarrow Add fluctuations or systematics to $m_{
u}^2$: $\sigma_{\rm blind}$

		Model components	Fitting	Unbiased analysis	Conclusion	
				0000		
Data and model blinding methods						

• Sensitivity studies for data-based and model-based methods

 \Rightarrow Three out five very suitable

		Model components	Fitting	Unbiased analysis	Conclusion
				0000	
Blind analysis of commissioning data					

- Test on First Tritium runs
- Increase systematic uncertainty on $m_{
 u}^2$ by smearing s

- \Rightarrow Matches theoretical Taylor expansion $2s^2$
- \Rightarrow Other fit parameters unscathed

Introduction	Data	Model components	Fitting	Unbiased analysis	Conclusion
					000
Outline					

2 Data

- **3** Model components
- Ø Fitting
- **6** Unbiased analysis

		Model components	Fitting	Unbiased analysis	Conclusion
					000
Conclusion &	prospects				

- ✓ Stable running experiment
- ✓ Promising data analysis
- ✓ Towards a blind analysis
- ✓ Already doing analysis with systematics
- ✓ On-going measurements
- \checkmark *v*-mass runs in early 2019

	Model components	Fitting	Unbiased analysis	Conclusion
				000
Thank you				

Thank you for your attention