

Neutrinoless double beta decay: Experimental challenges

Konstantin Gusev JINR, Dubna

collaboration

NOW 2018 September 2018 – Rosa Marina (Ostuni, Italy)

Short intro in 0vββ-decay

 In 1936 Maria Göppert-Mayer noted, that in some even-even nuclei the single β-decay is energetically forbidden whereas the simultaneous but independent β-decay of two nucleons (so-called double beta decay) is allowed

Short intro Why (0v)ββ-decay?

2νββ

- violates lepton number? **NO**
- forbidden in SM? NO
- but half life is 10¹⁰ longer than the age of the universe, however already observed!

⁷⁶Ge: $T_{1/2}^{2\nu} = 1.92 \times 10^{21} \text{yr}$

- violates lepton number? YES!
- forbidden in SM? YES!

New Physics!

• v has Majorana mass component

Short intro Why (0v)ββ-decay?

- violates lepton number? NO
- forbidden in SM? NO
- but half life is 10¹⁰ longer than the age of the universe, however already observed!

⁷⁶Ge: $T_{1/2}^{2\nu} = 1.92 \times 10^{21} \text{yr}$

- violates lepton number? YES!
- forbidden in SM? YES!

New Physics! 🛁

- v has Majorana mass component
- IF light neutrino exchange
 Access to v mass scale

Short intro What are we measuring?

Summed electron spectrum (⁷⁶Ge):

Short intro What are we measuring?

✓ Resolution remains essential due to $2\nu\beta\beta$

Short intro How to measure?

Experimental sensitivity:

• Zero background:

 $T_{1/2}^{0\nu} \propto M t$

• Non-zero background:

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{M t}{\Delta E BI}}$$

- *M* t exposure (kg yr)
- ΔE energy resolution (keV)
- BI background index (counts/keV kg yr)

Isotope	$\frac{G^{0\nu}}{\left(10^{-14}\mathrm{yr}\right)}$	Q (keV)	Nat. ab. (%)
⁴⁸ Ca	6.3	4273.7	0.187
⁷⁶ Ge	0.63	2039.1	7.8
⁸² Se	2.7	2995.5	9.2
¹⁰⁰ Mo	4.4	3035.0	9.6
¹³⁰ Te	4.1	2530.3	34.5
¹³⁶ Xe	4.3	2461.9	8.9
¹⁵⁰ Nd	19.2	3367.3	5.6

enrichment required except for ¹³⁰Te, not (yet) possible for all, costs differ

✓ Target mass and detector efficiency as high as possible

✓ "Zero-background" to have linear increase of sensitivity vs exposure

Short intro What about mass?

Effective Majorana neutrino mass contributes in the decay rate:

Short intro NME

See today's talk by **Fedor Simkovic**

Short intro Two experimental approaches

Source = Detector

GERDA, MJD, CUORE, EXO, Kamland-Zen, SNO+, ...

- + High detection efficiency
- + Large target mass possible
- **±** Reconstruction of event topologies
- Restricted number of isotopes

Source ≠ Detector

- + Reconstruction of event topologies
- + Coincidence scheme
 - → zero background
- + No restriction on isotopes
- Difficult to obtain large masses

0vββ-experiments Now

Gas or liquid	TPCs	EXO-200 NEXT-10
Easy to get huge	Liquid scintillators	KamLAND-Zen
Crystal	Bolometers	CUORE CUPID-0,-Mo AMoRE
Energyresolu	Ge-detectors	GERDA MJD
Source ≠ Detector		

0vββ-experiments Soon

Gas or liquid	TPCs	EXO-200 NEXT-10	NEXT-100 PANDA-X-III
Easy to get huge	Liquid scintillators	KamLAND-Zen	KZ-800 SNO+ phase I
Crystal	Bolometers	CUORE CUPID-0,-Mo AMoRE	AMoRe II
Energy resolu	Ge-detectors	GERDA MJD	LEGEND-200
Source ≠ Detector			SuperNEMO

Now

Adapted from A. Giuliani, Neutrino2018

0vββ-experiments Future

		Now	Soon	
Gas or liquid	TPCs	EXO-200 NEXT-10	NEXT-100 PANDA-X-III	nEXO NEXT-2.0 PANDAX-III 1t
Easy to get huge	Liquid scintillators	KamLAND-Zen	KZ-800 SNO+ phase I	KamLAND2-Zen SNO+ phase II
Crystal	Bolometers	CUORE CUPID-0,-Mo AMoRE	AMoRe II	CUPID
Energy resolu	Ge-detectors	GERDA MJD	LEGEND-200	LEGEND-1000
Source ≠ Detector			SuperNEMO	

Adapted from A. Giuliani, Neutrino2018

0vββ-experiments Now 2018

		Now	Soon	Future
Gas or liquid	TPCs			
e mass			See today's ta	l lk by Yoshihito Gando
Easy to Bet huge	Liquid scintillators	KamLAND-Zen	KZ-800 SNO+ phase I See talk on Sept	KamLAND2-Zen SNO+ phase II 11 by Edward Leming
Crystal	Bolometers	CUORE	See today	/'s talk by Paolo Gorla
		CUPID-0,-Mo		CUPID
lution.			See today'	s talk by Nicola Casali
Energy resolution	Ge-detectors	GERDA	See today's talk by	Christoph Wiesinger
Source ≠				
Detector				

0vββ-decay with TPCs EXO-200 and nEXO

K. Gusev | NOW 2018

Livetime [y]

0vββ-decay with liquid scintillators KamLAND-Zen, 800, 2-Zen

Past KamLAND-Zen 400

320-380 kg of Xenon Data taking 2011 ~ 2015

Present KamLAND-Zen 800

1800 E

~750 kg of Xenon DAQ to start in this year

Future

KamLAND2-Zen ~1 ton of ¹³⁶Xe Better energy resolution

Method	Xe-loaded LS
Location	Kamioka, JAPAN
Isotope	¹³⁶ Xe
T _{1/2} sensitivity	> 5.6·10 ²⁵ yr (90% CL)
Limit	> 1.1·10 ²⁶ yr (90% CL)

PRL 117 109903 (2016)

Status 2018:

- ✓ New ballon installed
- ✓ Filled in May 2018 with dummy LS
- ✓ Will be replaced with Xe-loaded LS
- ✓ Brigther LS
- ✓ New PMTs
- \rightarrow Better energy resolution

See today's talk by **Yoshihito Gando**

0vββ-decay with liquid scintillators SNO+

- ✓ SNOLAB, Ontario
- ✓ 780 ton LAB/PPO (2g/L) in 6m radius acrylic vessel
- ✓ ~9400 PMTs at 8.5m

Phased implementation:

✓ Water phase

 $\Gamma_{1/2}^{0v}$ (y) sensitivity

- ✓ Pure scintillator phase
- ✓ Loaded scintillator phase -
- \rightarrow ongoing
- \rightarrow LS fill in July 2018

SNQ

See talk on Sept 11 by **Edward Leming**

0vββ-decay with bolometers CUORE and CUPID

Method	Bolometers
Location	LNGS, Italy
Isotope	¹³⁰ Te
T _{1/2} sensitivity	> 0.7·10 ²⁵ yr (90% CL)
Limit (latest)	> 1.5·10 ²⁵ yr (90% CL)

PRL 120 132501 (2018)

Status 2018:

- ✓ CUORE is taking data
- ✓ 5 y projected half-life sensitivity: $^{10^{26}}$ y

See today's talk by **Paolo Gorla**

0vββ-decay with bolometers CUORE and CUPID

Method	Bolometers
Location	LNGS, Italy
Isotope	¹³⁰ Te
T _{1/2} sensitivity	> 0.7·10 ²⁵ yr (90% CL)
Limit (latest)	> 1.5·10 ²⁵ yr (90% CL)

PRL 120 132501 (2018)

Status 2018:

- ✓ CUORE is taking data
- ✓ 5 y projected half-life sensitivity: 20 y

CUORE Upgrade with Particle ID (CUPID)

New detector technology – luminescent bolometers:

 $^{130}\text{TeO}_2$ + Cherenkov light

CUPID-0 – Zn⁸²Se

See today's talk by **Paolo Gorla**

Mission:

CUPID-Mo – $Li_2^{100}MoO_4$ – baseline option for CUPID

half-life sensitivity higher than 10²⁷ y

0vββ-decay with Ge detectors HPGe detectors enriched in ⁷⁶Ge

- ✓ detector-grade germanium is high-purity material
 ⇒ low background
- ✓ established detector technology
 ⇒ industrial support
- very good energy resolution
 ~0.1% at Q_{ββ}
- high detection efficiency source = detector

0vββ-decay with Ge detectors MJD

Features:

- ✓ Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.)
- ✓ Low noise electronics yields better PSD
- ✓ Low energy threshold (cosmogenic and low-E background)

Status 2018:

- ✓ Data taking ongoing
- ✓ Planning an upgrade to improve channel reliability and background

Method	Ge detectors
Location	SURF, USA
Isotope	⁷⁶ Ge
T _{1/2} sensitivity	> 4.8·10 ²⁵ yr (90% CL)
Limit (latest)	> 2.7·10 ²⁵ yr (90% CL)

V. Guiseppe, Neutrino2018

 Arrays of Ge-diodes in high purity electroformed Cu cryostat

Expect to reach 50-70 kg yr exposure with sensitivity in the range of 10²⁶ yr

0vββ-decay with Ge detectors GERDA

Method	Ge detectors
Location	LNGS, Italy
Isotope	⁷⁶ Ge
T _{1/2} sensitivity	> 1.1·10²⁶ yr (90% CL)
Limit (latest)	> 0.9·10 ²⁶ yr (90% CL)

A.J. Zsigmond, Neutrino2018

✓ Bare Ge-diodes array in liquid Ar

K. Gusev | NOW 2018

GERDA will collect data until the end of 2019

0vββ-decay with Ge detectors GERDA

Method	Ge detectors
Location	LNGS, Italy
Isotope	⁷⁶ Ge
T _{1/2} sensitivity	> 1.1·10²⁶ yr (90% CL)
Limit (latest)	> 0.9·10 ²⁶ yr (90% CL)

A.J. Zsigmond, Neutrino2018

GERDA

✓ Bare Ge-diodes array in liquid Ar

K. Gusev | NOW 2018

GERDA will collect data until the end of 2019

0vββ-decay with Ge detectors **GERDA:** results 2018

New 2018 limits:

 \checkmark

- ✓ Median sensitivity for limit setting: 1.1×10^{26} yr (world best!)
 - Best fit \rightarrow no signal $T_{1/2}^{0\nu} > 0.9 \times 10^{26} \text{ yr} (90\% \text{ CL})$

- 60 kg yr of data collected in Phase II by April 2018
- ✓ 82.4 kg yr in total (Phase I + II)
- ✓ Unique background indices achieved: Coax: $5.7^{+4.1}_{-2.6} \times 10^{-4} \text{ cts/(keV·kg·yr)}$ BEGe: $5.6^{+3.4}_{-2.4} \times 10^{-4} \text{ cts/(keV·kg·yr)}$ best in the field when normalized to FWHM!

See today's talk by **Christoph Wiesinger**

0vββ-decay with Ge detectors **GERDA:** upgrade 2018

Upgrade of the GERDA experiment aims to:

- ✓ Test the novel detectors + increase the mass of 76 Ge
- ✓ Show the possibility to improve the background index
- ✓ Prove the robustness and reproducibility of the GERDA approach

Upgrade includes:

• New LAr veto:

90 SiPMs

810 fiber ends,

- ✓ new fiber curtain (improved light collection) + central module to read out hidden Ar volume
- Installation of 5 novel inverted coaxial detectors made from ⁷⁶Ge
 - ✓ Total increase of ⁷⁶Ge mass ~ 6 kg!
- Exchange of all signal and HV cables by new ones with better radiopurity
- New signal cable routing to reduce the cross-talk and improve resolution

new curtain

• Repairing of broken electronic channels and installation of protective diodes

0vββ-decay with Ge detectors **LEGEND:** the best from GERDA and MJD

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

First stage (L200):

- ✓ (up to) 200 kg in upgrade of existing GERDA infrastructure at LNGS
- ✓ bkg reduction by factor
 3-5 w.r.t GERDA
- Sensitivity **10²⁷** yr

Subsequent stages:

- ✓ 1000 kg (staged)
- timeline connected to
 DOE down select process
- ✓ bkg factor 30 w.r.t GERDA
- Location tbd
- Sensitivity 10²⁸ yr

0vββ-decay with Ge detectors

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

First stage (L200):

- ✓ (up to) 200 kg in upgrade of existing GERDA infrastructure at LNGS
- ✓ bkg reduction by factor
 3-5 w.r.t GERDA
- Sensitivity 10²⁷ yr
 Plan to start data taking in 2019

Subsequent stages:

- ✓ 1000 kg (staged)
- timeline connected to
 DOE down select process
- ✓ bkg factor 30 w.r.t GERDA
- Location tbd
- ✓ Sensitivity 10²⁸ yr

0vββ-decay with Ge detectors LEGEND: sensitivity

- ✓ $T_{1/2}$ unknown, BSM → 'around corner'
- ✓ background reduction in steps → phased approach
- ✓ inputs: 60% efficiency (GERDA number)
- ✓ Background: GERDA/MJD ~ 3 cts/(FWHM t yr)
 200 kg ~ 0.6 cts/(FWHM t yr)
 1000 kg ~ 0.1 cts/(FWHM t yr)

N.B.: background-free operation is a prerequisite for a discovery

0vββ-decay experiments Discovery probability

Discovery probability of next-generation neutrinoless double-β decay experiments M. Agostini, G. Benato and J. A. Detwiler Phys. Rev. D 96, 053001 (2017)

0vββ-decay experiments Summary

- \checkmark Ονββ decay is a crucial process, New Physics maybe around the corner
- ✓ Very active field: several ton-scale experiments are in preparation
- ✓ Huge experimental effort: tons of material, but "zero" background
- ✓ The discovery probability for the next generation projects is pretty high
- ✓ We need to observe the signal with multiple isotopes using various experimental methods