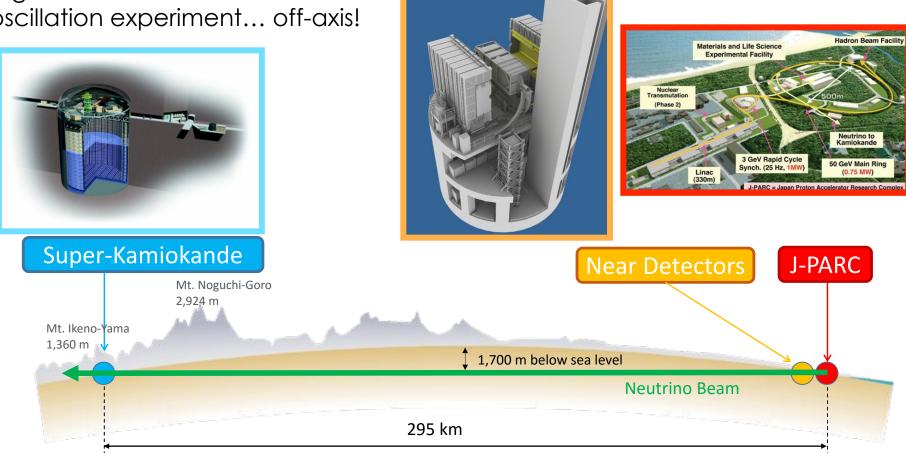


T2K neutrino-nucleus cross-section results

M. Buizza Avanzini on behalf of the T2K collaboration

xsec


NOW 2018

Rosa Marina, Ostuni, Sep. 12th 2018

T2K experiment

Long-baseline accelerator neutrino oscillation experiment... off-axis!

See F. 7immerman talk... the first of the conference!

Far detector: oscillation analyses

Near detectors:

- Constrain flux and cross-section model before oscillation
- Cross-section measurements in unoscillated beam

Oscillation experiments require to know $\Phi(E_{\nu})$, $\sigma(E_{\nu},x) \& D(x)$... simplified version:

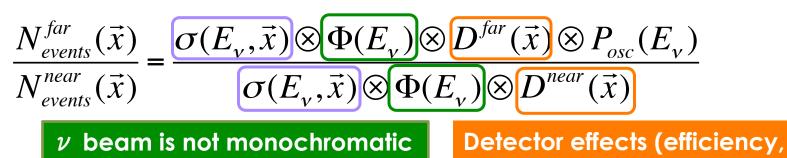
$$\frac{N_{events}^{far}(\vec{x})}{N_{events}^{near}(\vec{x})} = \frac{\sigma(E_v, \vec{x}) \otimes \Phi(E_v) \otimes D^{far}(\vec{x}) \otimes P_{osc}(E_v)}{\sigma(E_v, \vec{x}) \otimes \Phi(E_v) \otimes D^{near}(\vec{x})}$$

Oscillation experiments require to know $\Phi(E_{\nu})$, $\sigma(E_{\nu},x) \& D(x)...$ simplified version:

$$\frac{N_{events}^{far}(\vec{x})}{N_{events}^{near}(\vec{x})} = \frac{\sigma(E_{\nu}, \vec{x}) \otimes \Phi(E_{\nu}) \otimes D^{far}(\vec{x}) \otimes P_{osc}(E_{\nu})}{\sigma(E_{\nu}, \vec{x}) \otimes \Phi(E_{\nu}) \otimes D^{near}(\vec{x})}$$

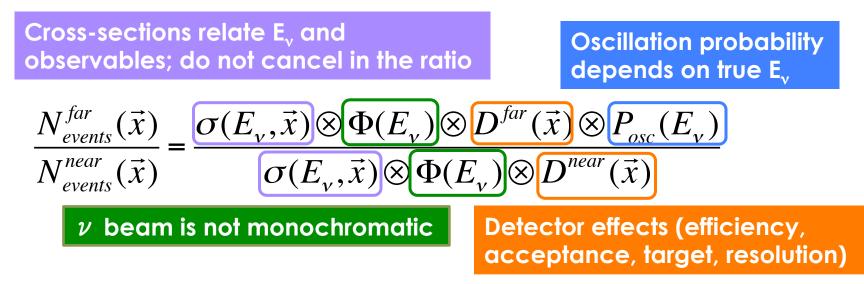
$$\nu \text{ beam is not monochromatic}$$

Oscillation experiments require to know $\Phi(E_{\nu}, \sigma(E_{\nu}, \overline{x}) \& D(\overline{x})...$ simplified version:

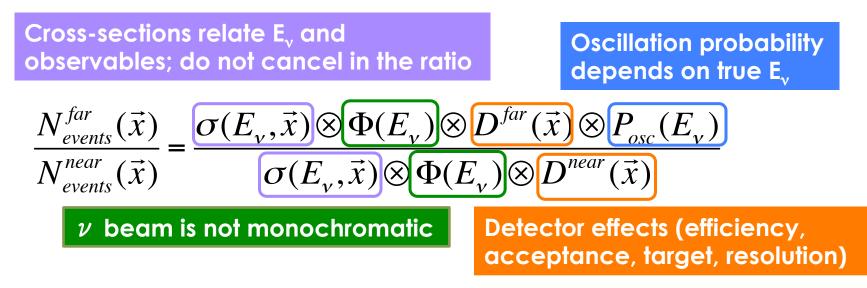

Cross-sections relate E_v and observables; do not cancel in the ratio

$$\frac{N_{events}^{far}(\vec{x})}{N_{events}^{near}(\vec{x})} = \frac{\sigma(E_{\nu}, \vec{x}) \otimes \Phi(E_{\nu}) \otimes D^{far}(\vec{x}) \otimes P_{osc}(E_{\nu})}{\sigma(E_{\nu}, \vec{x}) \otimes \Phi(E_{\nu}) \otimes D^{near}(\vec{x})}$$

$$\nu \text{ beam is not monochromatic}$$


Oscillation experiments require to know $\Phi(E_{\nu}, \sigma(E_{\nu}, \overline{x}) \& D(\overline{x})$... simplified version:

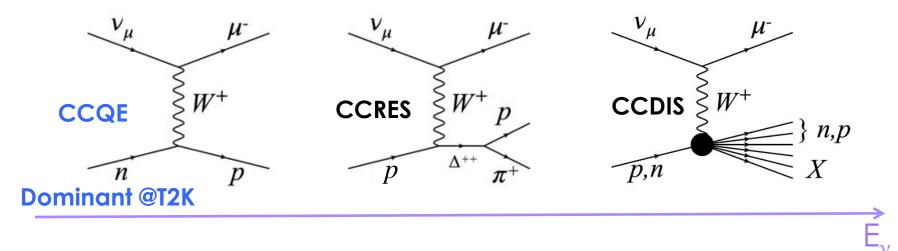
Cross-sections relate E_v and observables; do not cancel in the ratio



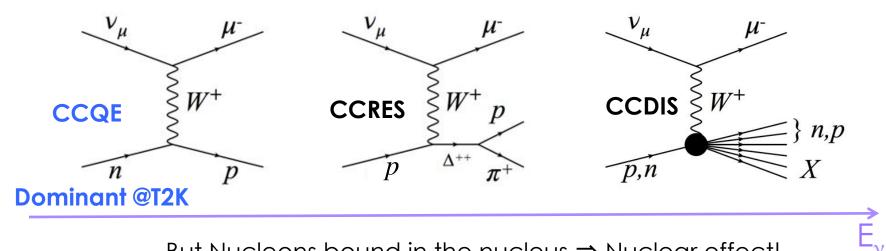
acceptance, target, resolution)

Oscillation experiments require to know $\Phi(E_{\nu}, \sigma(E_{\nu}, \overline{x}) \& D(\overline{x})$... simplified version:

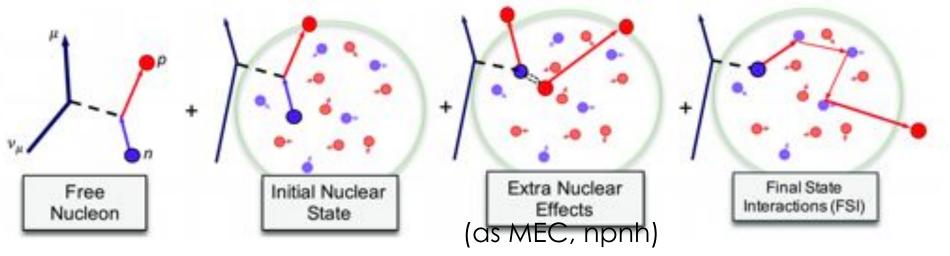
Oscillation experiments require to know $\Phi(E_{\nu}, \sigma(E_{\nu}, \overline{x}) \& D(\overline{x})$... simplified version:



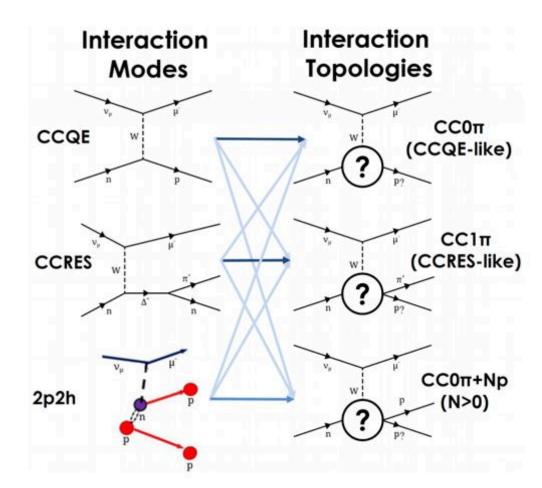
Near/far ratios don't fully cancel systematics:


- $\Phi(E_{\nu})$ change due to geometry and oscillation
- Acceptance, efficiency and targets different in the 2 detectors
- ND is ν_{μ} dominated, but used to infer (via model) ν_{e}

Uncertainties on cross section is the main source of systematics for T2K. For future Long baseline experiments: require few % cross-section systematics!


Neutrino Interactions (and nuclear effects)

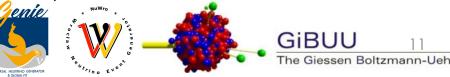
Neutrino Interactions (and nuclear effects)



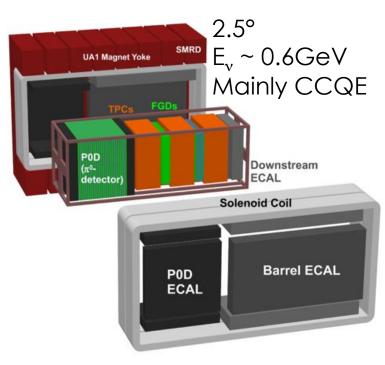
But Nucleons bound in the nucleus \Rightarrow Nuclear effect!

How to select a genuine CCQE interaction?? No way...

T2K strategy: topology catalogue



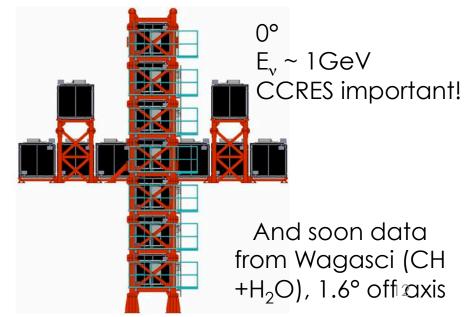
Nuclear and detector effects obfuscate true interaction mode Signal definition based on **final** state topology, to avoid model dependence trying to extract a CCQE component


NEUT 5.3.2

Int/topo	СС0л	CC1π		
CCQE	82%	0.3%		
CCRES	6%	77.1%		
CCDIS	0.2%	7%		
2p2h	11.8%	0.04%		

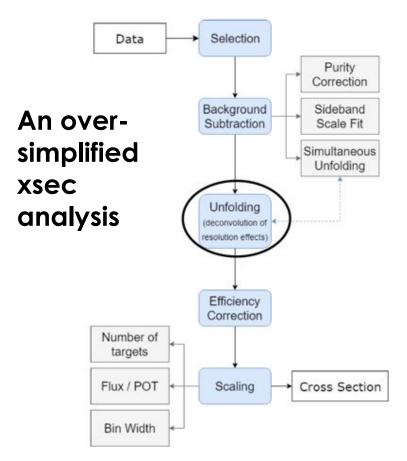
Comparing different generators: NEUT, GENIE, NuWro, GIBUU

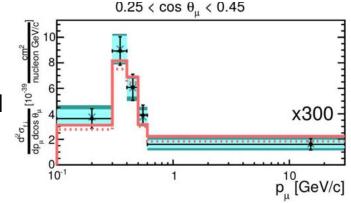
T2K strategy: multi target, multi flux



ND280 off-axis detector located 280 m from the target:

- π^0 detector (P0D); targets: CH+H₂O+Pb
- 3 Time Projection Chambers (TPC); target: Ar
- 2 Fine-grained detectors (FGD); targets: CH +H₂O
- Electromagnetic calorimeters (ECal)
- UA1 refurbished Magnet instrumented with side muon range detector (SMRD)


INGRID on-axis detector:


- Monitor the beam direction
- 14 modules arranged as a cross and other 2 outside the main cross; targets: CH+Fe
- Extra modules
- Proton Module (CH)
- Water module (H₂O)

T2K strategy: observables & techniques

Observables chosen in order to avoid model dependence: mainly muon kinematics (p_{μ} and $\cos\theta_{\mu}$) but also new (xsec) model independent variables for hadrons. Usually double differential and flux integrated xsec measured

• **Techniques**: blind analysis. D'Agostini or binned likelihood fit for unfolding. Datadriven regularization. No bias from prior checked on lots of pseudo data sets. After lot of checks and reviews: unblind

• Also started « forward folding » techniques (not yet shown here)

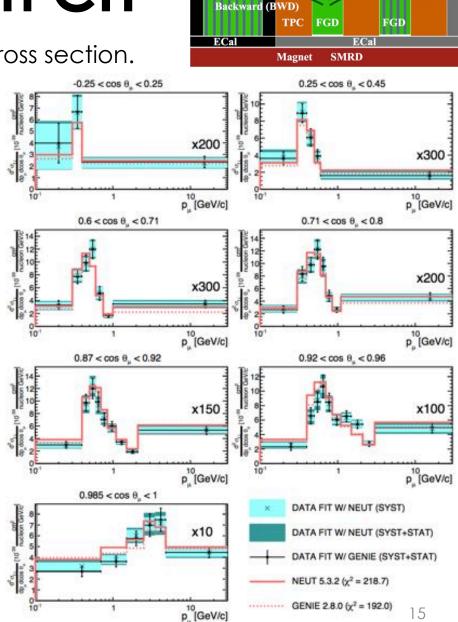
T2K measurements

1. CC-inclusive

- on CH off axis
- on CH, Fe, H_2O on axis

2. CC0π

- v_{μ} on CH off-axis
- v_{μ} on H₂O off axis
- v_{μ} +p on CH off-axis
- Anti- v_{μ} on H₂O off axis (NEW!)


3. CC1 π on CH and H₂O

- 4. NC1 π^0
- 5. v_e selection

CC Inclusive on CH

Muon kinematics double differential cross section.

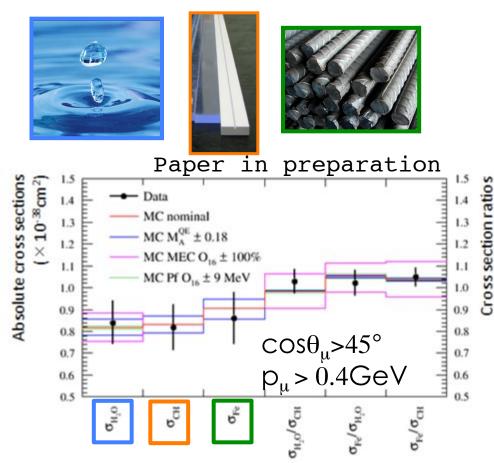
- Off-axis (FGD1)
- Dominated by CCQE due to low energy beam
- 4π selection
- Maximum likelihood fit
- Flux integrated cross section to avoid neutrino energy dependence
- Data <u>fit with NEUT and GENIE</u> <u>as prior</u> to check we do not have model dependence
- Background constrained with two sidebands
- 5.7×10²⁰ POT

High angle

Backward (HABWD)

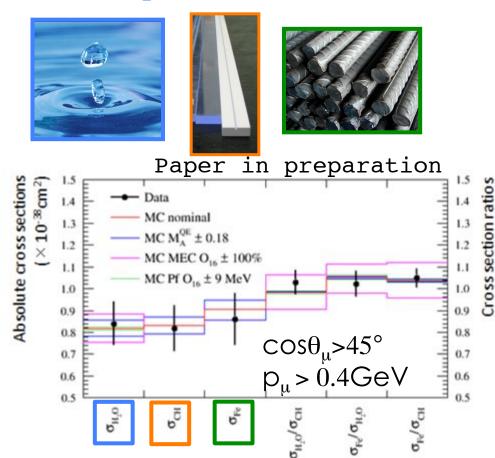
POD

High angle


Forward (HAFWD)

Forward (FWD)

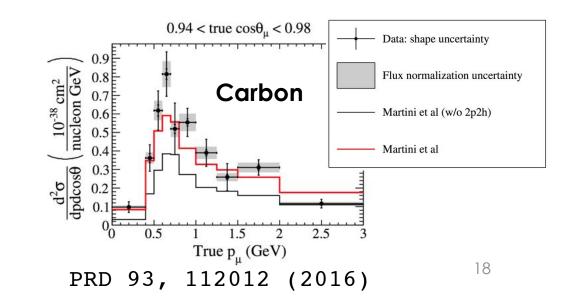
PRD 98, 012004 (2018)

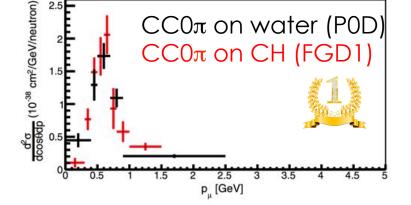

CC Inclusive A scaling

Combination measurements to constrain physics models: Look at different targets to probe A-scaling models: how the cross section scale with the size of the nucleus On axis: H_2O , CH and Fe targets

CC Inclusive A scaling

Combination measurements to constrain physics models: Look at different targets to probe A-scaling models: how the cross section scale with the size of the nucleus On axis: H_2O , CH and Fe targets

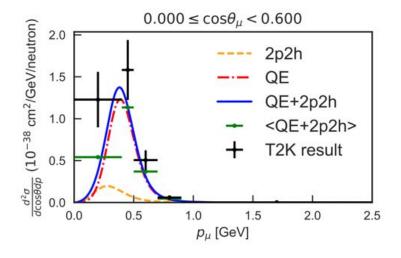

Promising event reconstruction in gas TPC... soon cross section measurement on Ar??? Important for future LBL experiments

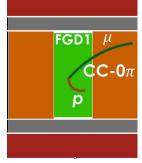

$CC0\pi$ on CH and H_2O

• Off axis.

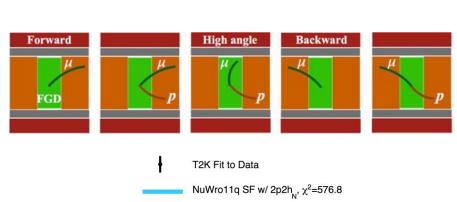
PRD 97, 012001 (2018) • $CC0\pi \sim 80\% CCQE + 12\% 2p2h$ $0.850 \le \cos\theta_{\mu} < 0.900$

- Two independent measurements: FGD1 (2016) and P0D (2018)
- Comparison with various models
- Low momentum, high angle region under-predicted
- 2p2h required
- Try to look at the protons to learn more!

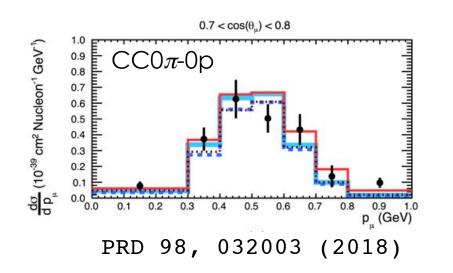


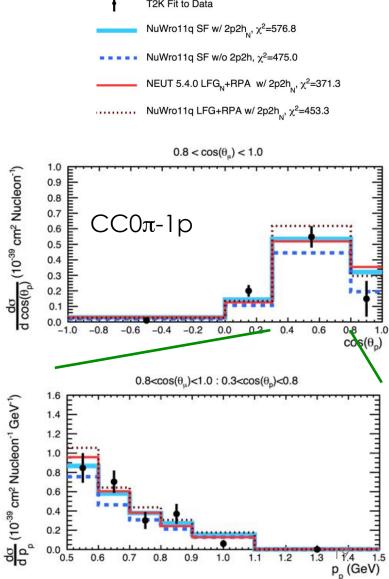

POD

μ

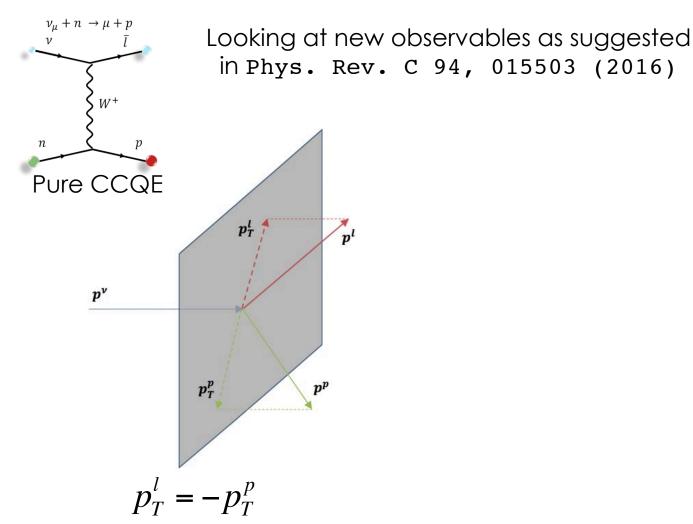

CC-0π

Water: comparison with Susav2

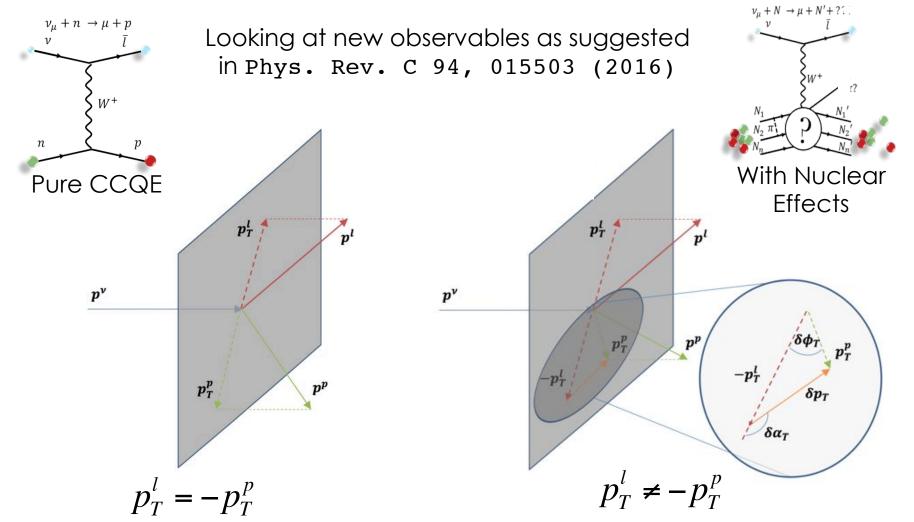




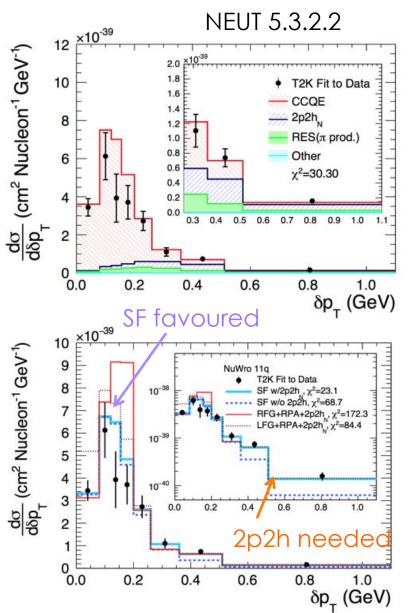
CC0π+p on CH



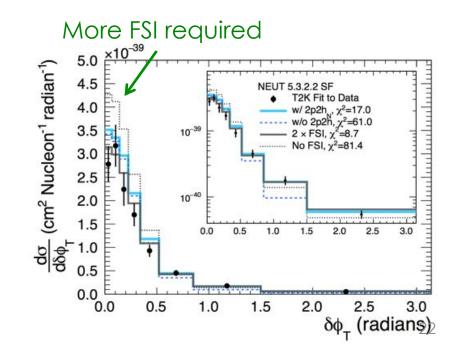
- Off axis
- Cross section extracted as function of the muon momentum and angle for CC0π-0p
- Cross section extracted as function of the muon and proton angle and muon momentum for CC0π-1p with momentum greater than 500 MeV/c
- No model describing correctely the whole considered phase space

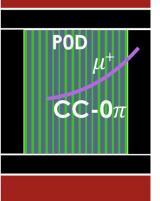


Single Transverse Variables (STV)


Search for momentum imbalance (lepton-hadron) in the transverse plane. Approaching 2p2h and Final State Interaction with hadron variables. 20

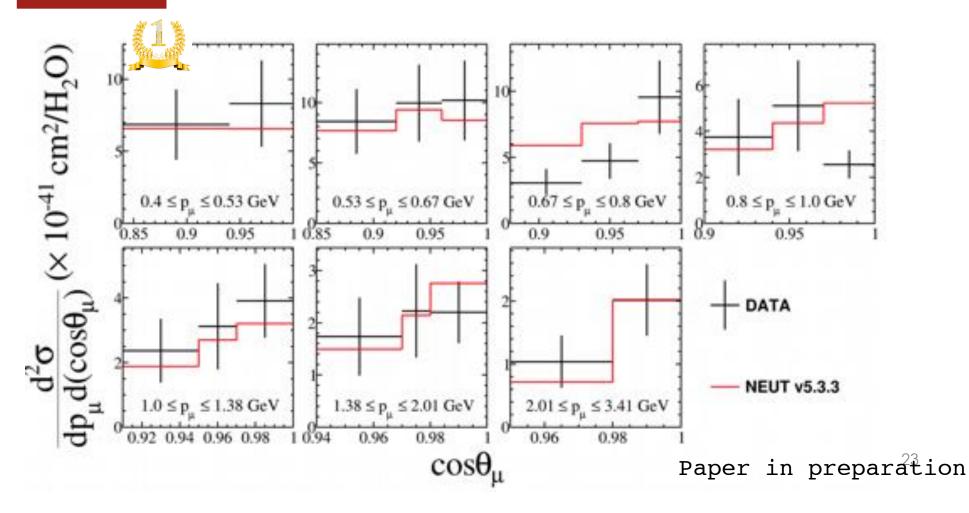
Single Transverse Variables (STV)

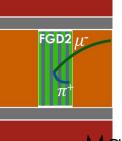

Search for momentum imbalance (lepton-hadron) in the transverse plane. Approaching 2p2h and Final State Interaction with hadron variables. 21


$CC0\pi + p$ on CH with STV

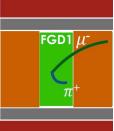
PRD 98, 032003 (2018)

- Low δp_t, below Fermi momentum: mainly CCQE
- δp_t probe for initial state nucleon
- Preference for spectral function
- Not clear winner yet



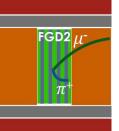


CC0 π anti- v_{μ} on H₂O


- Off axis
- POD data with and without water bags filled.
- Joint fit: Fit simultaneously water-in and water-out samples: water out samples act as control regions for non-water events

NEW!

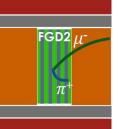
$CC1\pi^+$ on CH and H_2O


Look at muon and pion kinematics

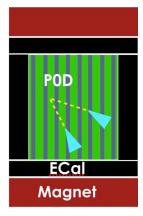
Main background for T2K, but signal for other oscillation experiments

Already public results: off axis on H_2O (FGD2) and CH (FGD1)

Many other analyses on-going: v_{μ} on axis on CH and H₂O, anti- v_{μ} and v_{μ} off-axis

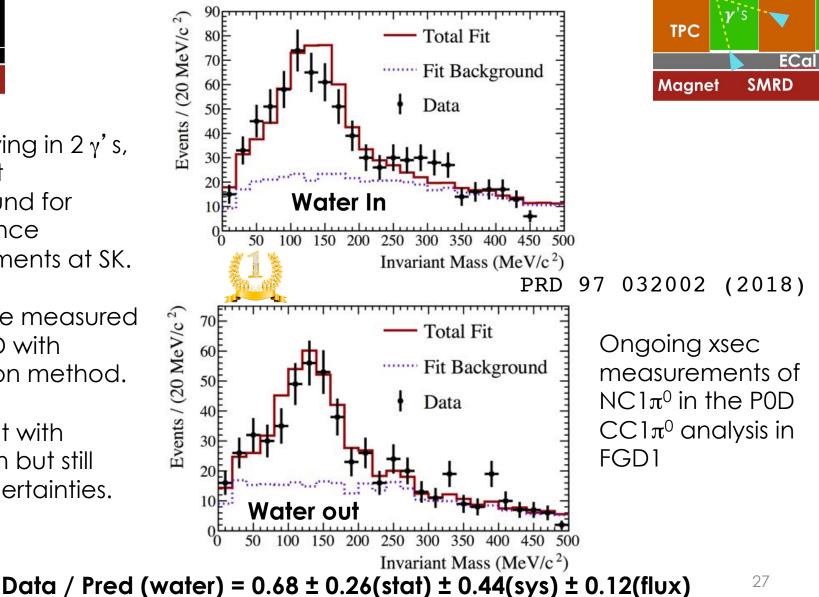

on CH and H_2O

$CC1\pi^+$ on CH and H_2O


Look at muon and pion kinematics Main background for T2K, but signal for other oscillation experiments Already public results: off axis on H₂O (FGD2) and CH (FGD1) Many other analyses on-going: v_{μ} on axis on CH and H_2O , anti- v_{μ} and v_{μ} off-axis on CH and H_2O $d\sigma/dp_{\pi}$ (x $10^{-38}~cm^2$ / nucleon / GeV) $d\sigma/dcos~\theta_{\mu}~(\times~10^{-38}~cm^2\,/~nucleon$ PRD 95 (2017) 012010 - NEUT -- NEUT 0.7E 0.12 GENIE GENIE $\cos\theta_{\mu}, \theta_{\pi} > 0.3$ $p_{\mu'}, p_{\pi} > 0.2 \text{ GeV}$ 0.6 T2K data T2K data 0.1 0.08 0.06 oo large GENIE xsec 0.04 0.02F 0.1 8.2 1.6 1.8 0.4 0.6 0.5 0.6 0.8 0.7 cosθ_u p_{π} (GeV)

$CC1\pi^+$ on CH and H₂O

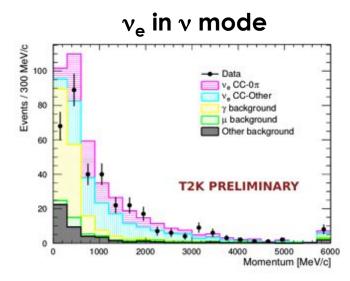
Look at muon and pion kinematics Main background for T2K, but signal for other oscillation experiments Already public results: off axis on H2O (FGD2) and CH (FGD1) Many other analyses on-going: v_{μ} on axis on CH and H_2O , anti- v_{μ} and v_{μ} off-axis on CH and H_2O $d\sigma/dp_{\pi}$ (× 10^{-38} cm² / nucleon / GeV) PRD 95 (2017) 012010 $10^{-38} \text{ cm}^2 / \text{nucleon}$ - NEUT -- NEUT 0.7 0.12 GENIE GENIE $\cos\theta_{\mu}, \theta_{\pi} > 0.3$ $p_{\mu}, p_{p} > 0.2 \text{ GeV}$ T2K data T2K data 0.1 0.08 0.06 o large GENIE xsec 0.04 0.02 1.6 1.8 0.4 0.6 p_π (GeV $\cos\theta_{\mu}$ NEUT S141 T2K preliminary - TXK Data Paper in preparation: T2K preliminary differential and double- $\cos\theta_{\mu} \ge 0.2$ $p_u \ge 0.2 \text{ GeV}$ differential cross section in large number of variables, included planar angle and hadron invariant mass p_{π}^{12} (GeV) p_u (GeV) $\nu_{\mu}\,CC1\pi^{\scriptscriptstyle +}$ in P0D almost public, larger statistics



 π^0 , decaying in 2 γ 's, important background for appearence measurements at SK.

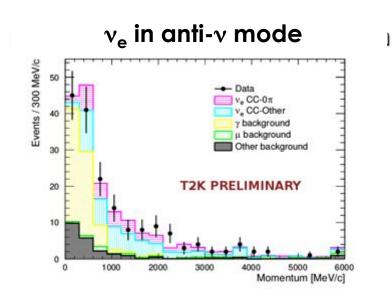
NC1 π^0 rate measured in the POD with subtraction method.

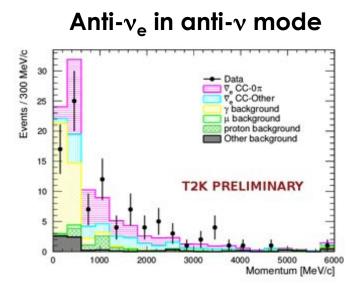
Consistent with prediction but still large uncertainties.


NC1 π^0 and CC1 π^0

FGD1

u


Electron neutrinos



In the appearence channel ($v_{\mu} \rightarrow v_{e}$), the intrinsic v_{e} component in the v_{μ} beam is the main **background**.

Very few measuerements existing

 ν_e : very challenging selection because of low statistic and π^0 background

Cross

section

analysis

coming

soon, stay

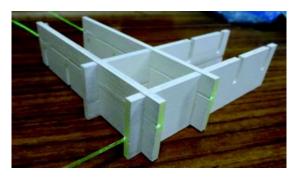
tuned!

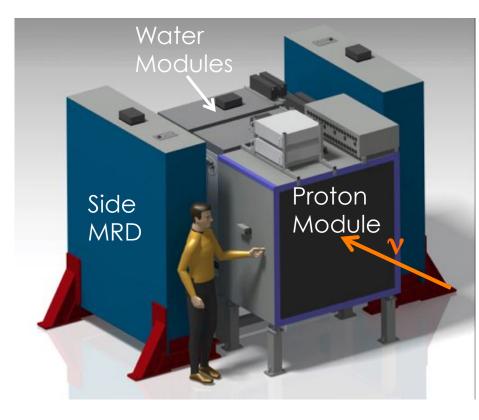
Still working hard

Ongoing analyses (ready soon):

- CCinclusive:
 - Anti- v_{μ}
 - On Ar
- CC0π:
 - v+antiv joint fit on C off axis
 - C+O off axis
 - C+Pb off axis
 - C on/off axis
 - +CC1π⁺ on axis and off axis
 - Vertex activity for CC0π-1p
- CC1π
 - $v_{\mu} H_2 O$ off axis
 - v_{μ} on axis on C and H₂O
- NC1 π^0 and CC1 π^0 on H₂O and CH off axis
- NC1γ

Plus many others at earlier stage

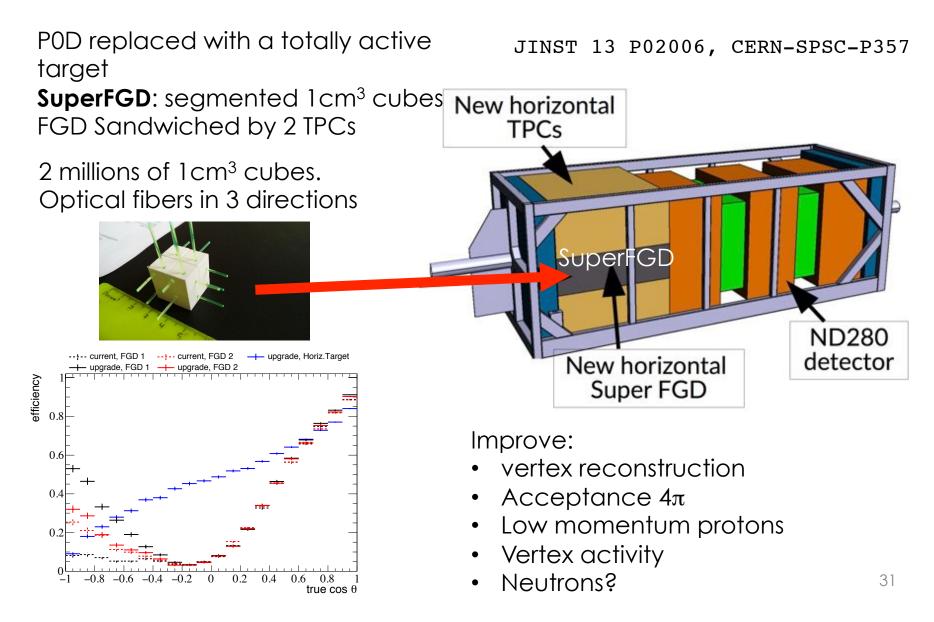

Almost 20 advanced analyses!


+ other 20 at earlier stage!

Future... almost present

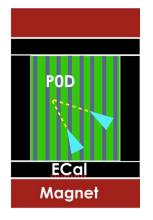
WAGASCI: first near detector upgrade. Now part of T2K

Segmented cubic CH/H $_2$ O (WAGASCI) and SMRD +Baby MIND, 1.6° off axis



Baby MIND (JINTS 12 C07028) installation @ JPARC

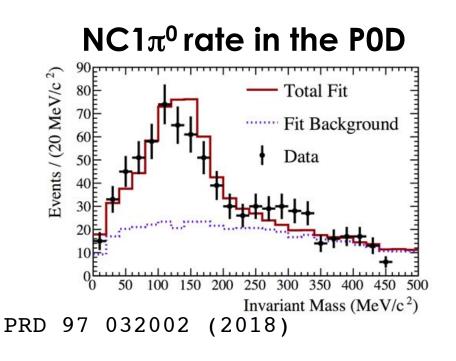
Future: ND280 Upgrade by 2021

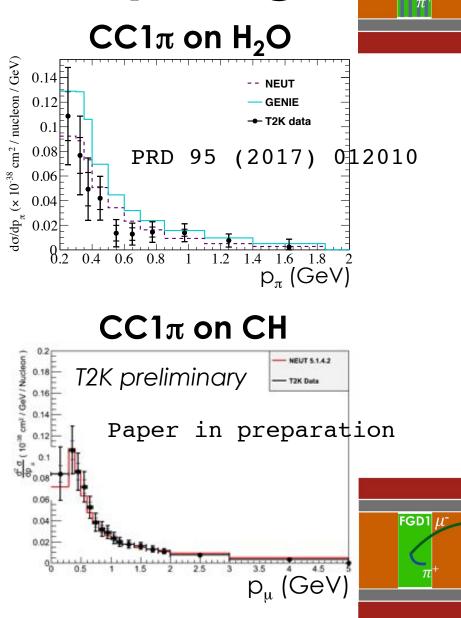


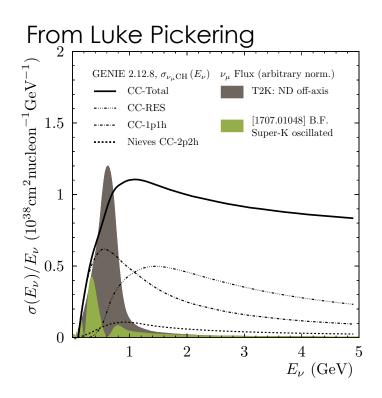
14 publications

- Neutrino interaction uncertainties are critical for present and mostly future oscillation experiments
- Lot of efforts in T2K devoted to produce results with different targets, fluxes and as much as possible model independent
- Not clear picture yet... a part that we should increase our knowledge and understanding of these interactions soon!
- Still working hard to increase acceptance, statistics and to look at rare events with new variables
- T2K upgrades will produce even better results... stay tuned!

~20 planned analyses!

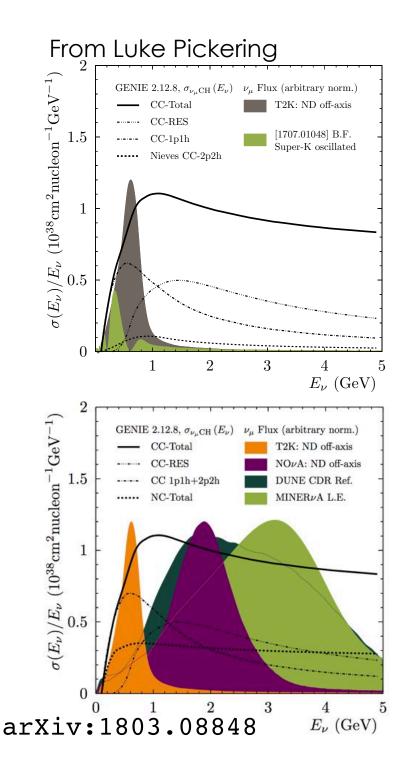



No time for everything!



See backup slides!

- NC1 π^0 rate off axis on water
- CC1π⁺: off axis on water and carbon


T2K has off axis approach to select the neutrino energy: narrow beam centered around 0.6 GeV Mainly CCQE (CC-1p1h) at this energy Precise measurements of xsec crucial for T2K

ŚŚŚ

Source [%]	ν_{μ}	ν_e	$\nu_e \pi^+$	$\bar{ u}_{\mu}$	$\bar{\nu}_e$
ND280-unconstrained cross section		7.8	4.1	1.7	4.8
Flux & ND280-constrained cross sec.		3.2	4.1	2.7	2.9
SK detector systematics		2.9	13.3	2.0	3.8
Hadronic re-interactions		3.0	11.5	2.0	2.3
Total	5.1	8.8	18.4	4.3	7.1

TADIEI Casta and the same second a first sec

arXiv:1807.07891

Why cross section uncertainty is a problem?

T2K has off axis approach to select the neutrino energy: narrow beam centered around 0.6 GeV. Mainly CCQE (CC-1p1h) at this energy Precise measurements of xsec crucial for T2K

ŚŚŚ

But also for other present and future oscillation experiments: a region full of reaction thresholds and sparse data.

	NEUT 5.3.2	GENIE 2.8.0				
CCQE	SF (Benhar et al., 2000) BBA05 (Bradford et al., 2005) MA ^{QE} = 1.21 GeV/c ² pr [¹² C] = 217 MeV/c E _B [¹² C] = 25 MeV	RFG (Bodek et al., 1981) BBA05 (Bradford et al., 2005) MA ^{QE} = 0.99 GeV/c ² pF [¹² C] = 221 MeV/c E _B [¹² C] = 25 MeV				
2p2h	Nieves et al., 2011					
CCRESW<2 GeV Rein-Sehgal, 1981 FF (Graczyk et al., 2008)CCDISW>1.3 GeV (w/o single π) GRV98 PDF (Glück et al. 1998) BY corr. at low Q2 (Bodek et al. 2003)HadronizationW<2 GeV W>2 GeV PYTHIA/JETSET		<u>W<1.7 GeV</u> Rein-Sehgal, 1981 FF (Kuzmin et al., 2016)				
		W>1.7 GeV (for W<1.7 GeV is tuned) GRV98 PDF (Glück et al. 1998) BY corr. at low Q2 (Bodek et al. 2005)				
		<u>W < 2.3 GeV</u> AGKY (Koba et al. 1972) 2.3 GeV < W < 3 GeV AGKY (Koba et al. 1972) + PYTHIA/JETSE <u>W > 3 GeV</u> PYTHIA/JETSET				
FSI	Intra-nuclear cascade	Intra-nuclear cascade (INTRANUKE hA)				

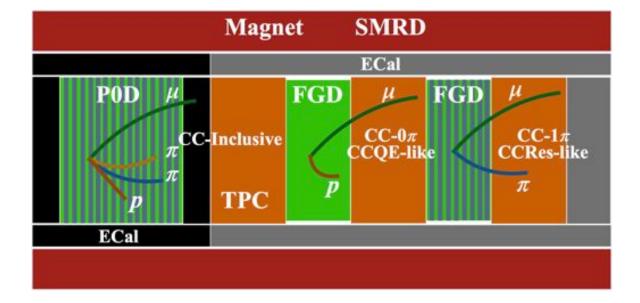
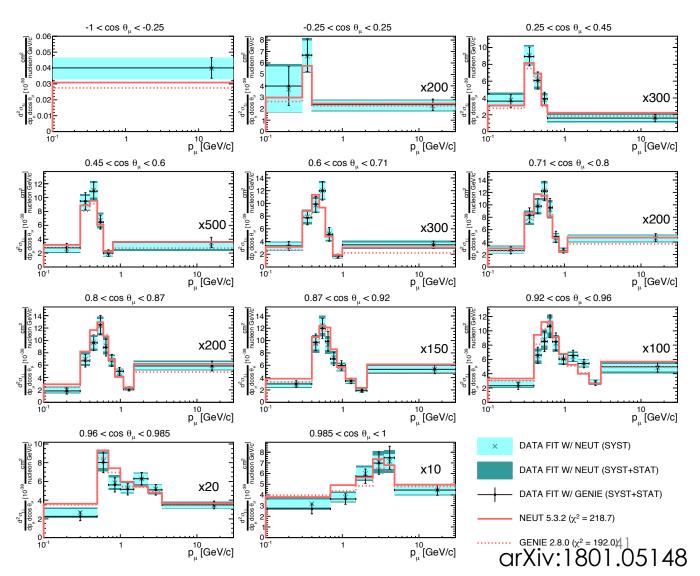
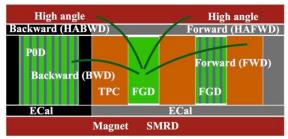


Table 20: Uncertainty on the number of event in each SK sample broken by error source before the BANFF fit. The new E_b fake data spline parameter is included in the non-constrained by ND280 cross-section parameters.

	1-Ri	$\inf \mu \parallel$	1-Ring e			
Error source	FHC	\parallel RHC \parallel FHC	RHC	FHC CC1 π		
Beam	7.6%	6.6% 8.4%	7.4%	8.4%		
Cross-section (all)	12.5%	10.3% 13.8%	11.2%	9.1%		
Beam + Cross-section (all)	14.4%	$ 12.2\% \parallel 15.7\%$	13.2%	12.5%		
Total	14.7%	12.6% 16.0%	13.9%	19.9%		

OA2018, TN321


Table 21: Uncertainty on the number of event in each SK sample broken by error source after the BANFF fit.


	$\ $ 1-Ring μ $\ $			1-Ring e			
Error source	FHC	RHC	FHC	RHC	FHC CC17		
Beam	3.9%	3.8%	4.1%	3.9%	4.1%		
Cross-section (constr. by ND280)	4.7%	4.0%	4.7%	4.1%	4.1%		
Cross-section (all)	5.6%	4.3%	8.6%	6.3%	5.7%		
Beam + Cross-section (constr. by ND280)	2.9%	2.7%	3.0%	2.9%	3.8%		
Beam + Cross-section (all)	4.2%	3.1%	7.8%	5.5%	5.4%		
New E_b fake data parameter	3.3%	1.3%	7.3%	4.2%	2.9%		
SK+FSI+SI	3.3%	2.9%	4.1%	4.4%	16.8%		
Total	5.3%	4.2%	8.7%	7.1%	17.7%		

CC Inclusive on CH

Muon kinematics double differential cross section.

- Off-axis
- Dominated by CCQE due to low energy beam
- 4p selection
- Maximum likelihood fit
- Flux integrated cross section to avoid neutrino energy dependence
- Data fit with NEUT and GENIE: equal results = no bias from prior!
- Background constrained with two sidebands
- 5 7×1∩20 P∩T

CC inclusive in ingrid

Table 6.4: Elemental composition of the scintillators in the fiducial volume region

Element	Η	С	Ν	0	Ti	Si
	7.4%	88.7%	0.4%	2.8%	1.1%	0.2%

Table 6.5: The elemental composition of the water in the fiducial region

Element	H_2O	H	C	N	0
Mass fraction	99.95%	0%	0.03%	0.02%	0%

$$\frac{\sigma_{\rm CC}^{\rm H_2O}}{\sigma_{\rm CC}^{\rm CH}} = 1.028^{+0.016}_{-0.016}({\rm stat.})^{+0.05;}_{-0.05;} \qquad \sigma_{\rm CC}^{\rm CH} = (0.840^{+0.010}_{-0.010}({\rm stat.})^{+0.10}_{-0.081}({\rm syst.})) \times 10^{-38} {\rm cm}^2/{\rm nucleon}$$

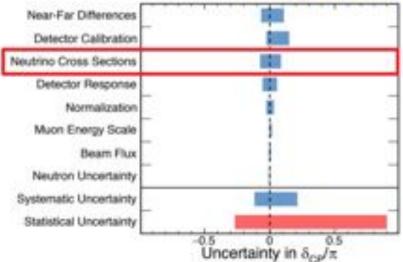
$$\frac{\sigma_{\rm CC}^{\rm Fe}}{\sigma_{\rm CC}^{\rm CH}} = 1.023^{+0.012}_{-0.012}({\rm stat.})^{+0.05;}_{-0.057} \sigma_{\rm CC}^{\rm Fe} = (0.859^{+0.003}_{-0.003}({\rm stat.})^{+0.12}_{-0.10}({\rm syst.})) \times 10^{-38} {\rm cm}^2/{\rm nucleon}$$

$$\frac{\sigma_{\rm CC}^{\rm Fe}}{\sigma_{\rm CC}^{\rm H_2O}} = 1.023^{+0.012}_{-0.012}({\rm stat.})^{+0.05;}_{-0.057} \sigma_{\rm CC}^{\rm Fe} = (0.859^{+0.003}_{-0.003}({\rm stat.})^{+0.12}_{-0.10}({\rm syst.})) \times 10^{-38} {\rm cm}^2/{\rm nucleon}$$

$$\frac{\sigma_{\rm CC}^{\rm Fe}}{\sigma_{\rm CC}^{\rm CC}} = 1.049^{+0.010}_{-0.010}({\rm stat.})^{+0.043}_{-0.043}({\rm syst.})$$

Figure 6.8: Relation between the number of iterations and calculated cross section. Black is σ_{H2O} , red is σ_{CH} and blue is σ_{Fe} .

T2K and NOVA systematics



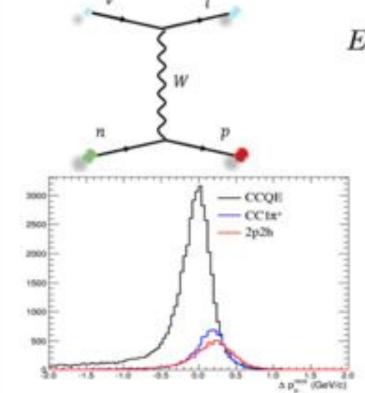
Neutrino cross sections in OA IZK

 Large systematics at T2K and NOvA long-baseline oscillation experiments

Source [%]	ν_{μ}	ν_e	$\nu_e \pi^+$	$\bar{\nu}_{\mu}$	$\tilde{\nu}_e$
ND280-unconstrained cross section	2.4	7.8	4.1	1.7	4.8
Flux & ND280-constrained cross sec.	3,3	3.2	4.1	2.7	2.9
SK detector systematics	2.4	2.9	13.3	2.0	3.8
Hadronic re-interactions	2.2	3.0	11.5	2.0	2.3
Total	5.1	8.8	18.4	4.3	7.1

T2K August 2018, https://arxiv.org/pdf/1807.07891.pdf

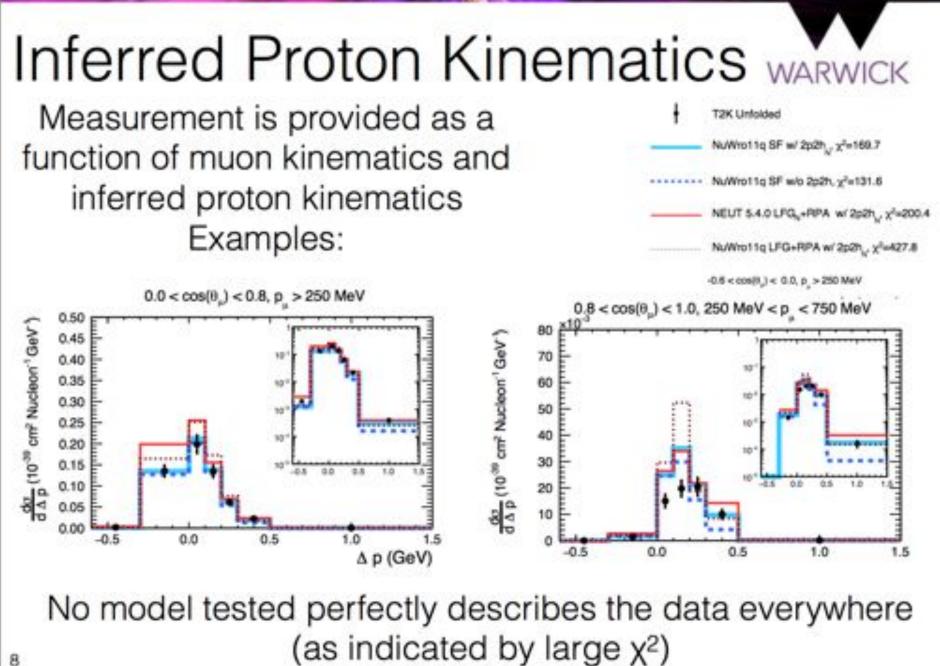
NOvA Wine and Cheese, A. Himmel, June 15, 2018


 NOvA's extensive detector calibration makes neutrino interactions dominant systematic for atmospheric parameters in future

C. Wret, NuFact 2018

Inferred Proton Kinematics

Assuming a 2 body interaction the proton kinematics can be determined from the measured lepton kinematics


$$E_{\nu} = \frac{m_p^2 - m_{\mu}^2 + 2E_{\mu}(m_n - E_b) - (m_n - E_b)^2}{2[(m_n - E_b) - E_{\mu} + p_{\mu}cos\theta_{\mu}]},$$

$$E_p^{inferred} = E_{\nu} - E_{\mu} + m_p,$$

$$\overrightarrow{p}_p^{inferred} = (-p_{\mu}^x, -p_{\mu}^y, -p_{\mu}^z + E_{\nu}),$$

$$\begin{split} \Delta p_p &= |\overrightarrow{p}_p^{measured}| - |\overrightarrow{p}_p^{inferred}|,\\ \Delta \theta_p &= \theta_p^{measured} - \theta_p^{inferred},\\ |\Delta \mathbf{p}| &= |\overrightarrow{p}_p^{measured} - \overrightarrow{p}_p^{inferred}|. \end{split}$$

Differences between inferred and measured proton kinematics manifest due to nuclear effects Steve Hadley, ICHEP 2018

Steve Hadley, ICHEP 2018

45

In FHC, the anti-ve component is tiny, however in RHC the neutrino energy tail has almost identical populations of ν e and anti- ν e. Thus, for the anti-neutrino oscillations the knowledge of both ν e and anti- ν e beam composition is important, as they both are irreducible backgrounds at far detector.

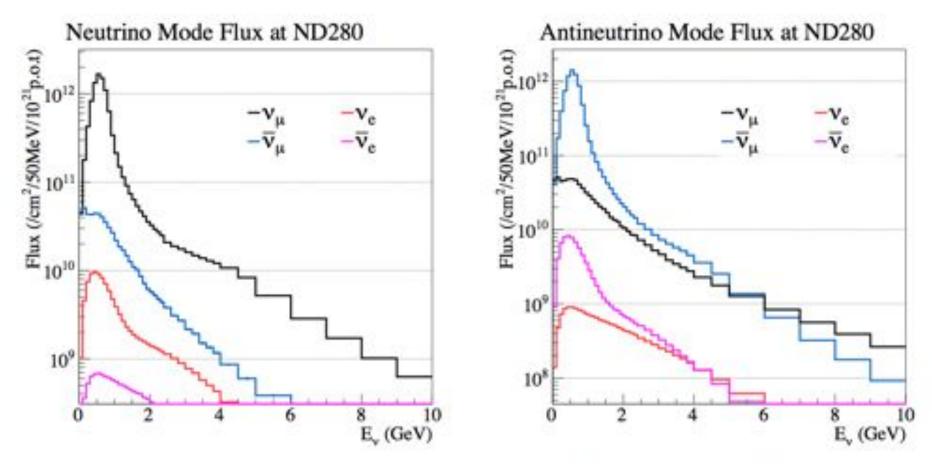


Figure 1: The neutrino flux in FHC (left) and RHC (right). From [1]. [1] T2K Technical Note 217

46

Nue and antinue flux

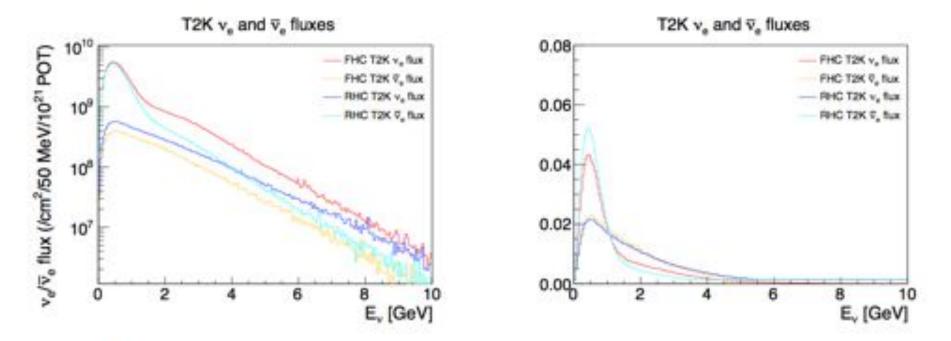
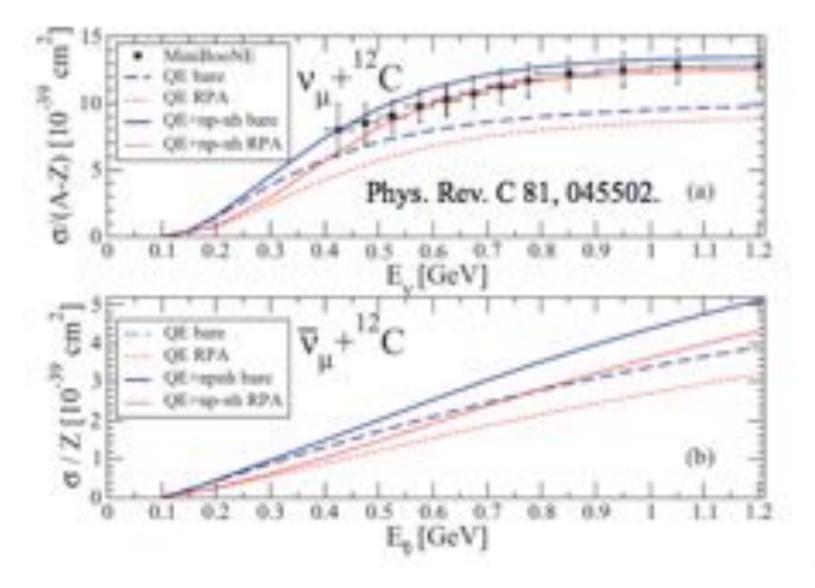
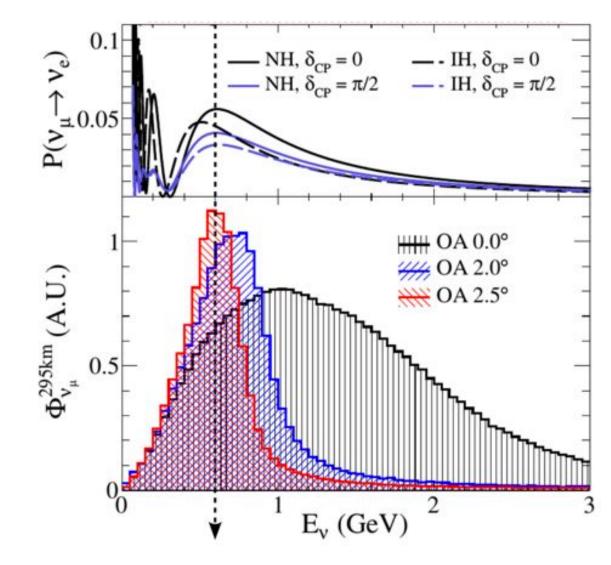
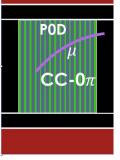
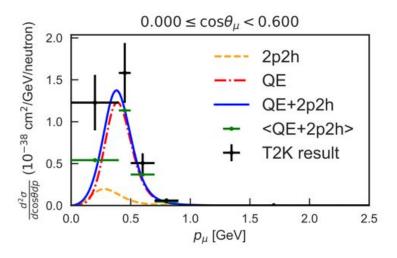




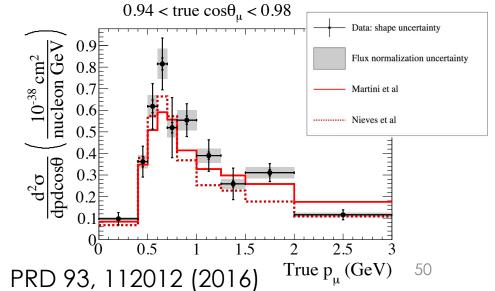
Figure 2: The ν_e and $\bar{\nu}_e$ neutrino fluxes in FHC and RHC. All fluxes in right plot are normalised to unity.

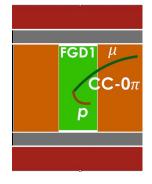

ν_{μ} and anti- ν_{μ} as 2p2h probe

Off and on axis fluxes



49




$CC0\pi$ on CH and H_2O

- PRD 97, 012001 (2018) $0.850 \le \cos\theta_{\mu} < 0.900$ (0000 CCO π on water (POD) CCO π on CH (FGD1) 0.0000 = 0.000 0.0000 = 0.000 0.0000 = 0.000 0.0000 = 0.000
 - Water: comparison with Susav2

- Off axis.
- CC0π ~ 80% CCQE + 12% 2p2h
- Two independent measurements: FGD1 (2016) and P0D (2018)
- Comparison with various models
- Low momentum, high angle region under-predicted
- 2p2h required
- Try to look at the protons to learn more!

