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Abstract

The deviations from a purely exponential behavior in a decay process are analyzed in relation
to Van Hove’s “�2t” limiting procedure. Our attention is focused on the e�ects that arise when
the coupling constant is small but nonvanishing. We �rst consider a simple model (two-level
atom in interaction with the electromagnetic �eld), then gradually extend our analysis to a more
general framework. We estimate all deviations from exponential behavior at leading orders in
the coupling constant. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The evolution law in quantum mechanics is governed by unitary operators [1]. This
entails, by virtue of very general mathematical properties, that the decay of an unstable
quantum system cannot be purely exponential. In general, a rigorous analysis based on
the Schr�odinger equation shows that the decay law is quadratic for very short times
[2–8] and governed by a power law for very long times [9–14]. These features of the
quantum evolution are well known and discussed in textbooks of quantum mechanics
[15,16] and quantum �eld theory [17]. The temporal behavior of quantum systems is
reviewed in Ref. [18].
Although the domain of validity of the exponential law is limited, the Fermi “Golden

Rule” [19–21] works very well and no deviations from the exponential behavior have
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ever been observed for truly unstable systems [22,23]. Although non-exponential leak-
age through a potential barrier has recently been detected: see [24]. The quantum me-
chanical derivation of this law is based on the sensible idea that the temporal evolution
of a quantum system is dominated by a pole near the real axis of the complex energy
plane (Weisskopf–Wigner approximation [25–28]). This yields an irreversible evolu-
tion, characterized by a master equation and exponential decay [29,30]. An important
contribution to this issue was given in the 1950s by Van Hove [31], who rigorously
showed that it is possible to obtain a master equation (leading to exponential behavior)
for a quantum mechanical system endowed with many (in�nite) degrees of freedom,
by making use of the so-called “�2t” limit. The crucial idea is to consider the limit

�→ 0 keeping t̃ = �2t �nite (�-independent constant) ; (1.1)

where � is the coupling constant and t time. One then looks at the evolution of the
quantum system as a function of the rescaled time t̃. There has recently been a re-
newed interest in the physical literature for this time-scale transformation and its subtle
mathematical features: see [32,33].
The purpose of this paper is to consider the e�ects that arise when the coupling

constant is small but nonvanishing. This will enable us to give general estimates for
deviations from exponential behavior. The paper is organized as follows. We shall �rst
look, in Section 2, at a simple system: we summarize some recent results on a charac-
teristic transition of the hydrogen atom in the two-level approximation. In Section 3 we
consider the action of the Van Hove limiting procedure on a generic two-level atom in
the rotating-wave approximation and then generalize our result when the other discrete
levels and the counter-rotating terms are taken into account. We look in particular at
the scaling procedure from the perspective of the complex energy plane, rather than in
terms of the time variable. This enables us to pin down the di�erent sources of nonex-
ponential behavior. In Section 4 our analysis is extended to a general �eld-theoretical
framework: general estimates are given of all deviations from the exponential law (both
at short and long times) at leading orders in the coupling constant.

2. Hydrogen atom in the two-level approximation

We start our considerations from a simple �eld-theoretical model. Consider the
Hamiltonian (˝= c = 1)

H = H0 + �V ; (2.1)

H0 =Hatom + HEM

≡!0b†2b2 +
∑
�

∫ ∞

0
d!!a†!�a!� ; (2.2)

V =
∑
�

∫ ∞

0
d![’�(!)b

†
1b2a

†
!� + ’

∗
�(!)b

†
2b1a!�] ; (2.3)
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where Hatom is the free Hamiltonian of a two-level atom (!0 being the energy gap
between the two atomic levels), bj; b

†
j are the annihilation and creation operators of

the atomic level j, obeying anticommutation relations

{bk ; b†‘}= �k‘ (k; ‘ = 1; 2) ; (2.4)

HEM is the Hamiltonian of the free EM �eld, � the coupling constant and V the inter-
action Hamiltonian. We are working in the rotating-wave approximation and with the
energy-angular momentum basis for photons [34,35], with

∑
�=

∑∞
j=1

∑j
m=−j

∑1
�=0,

where � de�nes the photon parity P = (−1) j+1+�, j is the total angular momentum
(orbital+spin) of the photon, m its magnetic quantum number and

[a!jm�; a
†
!′j′m′�′ ] = �(!− !′)�jj′�mm′���′ : (2.5)

We shall focus our attention on the 2P–1S transition of hydrogen, so that !0= 3
8�
2me '

1:550× 1016 rad=s (� is the �ne structure constant and me the electron mass) and the
matrix elements ’�(!) of the interaction are known exactly [36–38]:

’�(!) = 〈1; 1!�|V |2; 0〉= ’ ��(!)�� ��
= i(�)1=2

(!=�)1=2

1 + (!=�)2]2
�j1�mm2��1 ; (2.6)

where

|1; 1!�〉 ≡ |1〉 ⊗ |!; j; m; �〉; |2; 0〉 ≡ |2〉 ⊗ |0〉 (2.7)

(the �rst ket refers to the atom and the second to the photon) and the selection rule,
due to angular momentum and parity conservation, entails that the only nonvanishing
term in (2.3) and (2.6) is �� = (1; m2; 1). We emphasize that the so-called “retardation
e�ects” are taken into account in (2.6). The normalization reads

〈1; 1!�|1; 1!′�′〉= �(!− !′)���′ ; 〈2; 0|2; 0〉= 1 (2.8)

and the quantities

�=
3
2
�me =

3
2a0

' 8:498× 1018 rad=s ;

�=
(
2
�

)1=2(2
3

)9=2
�3=2 ' 0:802× 10−4 (2.9)

are the natural cuto� of the atomic form factor, expressed in terms of the Bohr radius
a0, and the coupling constant, respectively. Observe that there are no free parameters
in (2.1)–(2.3).
The above model was analyzed in a previous paper [39], where we mainly concen-

trated our attention on the deviations from exponential, both at short and long times.
There is interesting related work on this subject [40–45]. Let us summarize the main
results, by concentrating our attention on the role played by the coupling constant �.
Assume one can prepare (at time t=0) the atom in the initial state |2; 0〉. This is an

eigenstate of the unperturbed Hamiltonian H0, whose eigenvalue is !0. The evolution
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is governed by the unitary operator U (t) = exp(−iHt) and the “survival” or nondecay
amplitude and probability at time t are de�ned as (interaction picture)

A(t) = 〈2; 0|eiH0tU (t)|2; 0〉 ; (2.10)

P(t) = |〈2; 0|eiH0tU (t)|2; 0〉|2 : (2.11)

The survival probability at short times reads

P(t) = 1− t2=�2Z + · · · ; �Z ≡ (�2〈2; 0|V 2|2; 0〉)−1=2 : (2.12)

The quantity �Z is the so-called “Zeno time” and yields a quantitative estimate of the
deviation from exponential at very short times. Strictly speaking, �Z is the convexity
of P(t) in the origin. One �nds [39]

�Z =

√
6

��
= (3�)1=2

(
3
2

)7=2 1
�5=2me

' 3:593× 10−15 s : (2.13)

It is possible to obtain a closed expression for A(t), valid at all times, as an inverse
Laplace transform:

A(t) =
ei!0t

2�i

∫
B
ds

es�t

s+ i!0=�+ �2Q(s)
; (2.14)

Q(s) ≡ −i
∫ ∞

0
dx

x
(1 + x2)4

1
x − is ; (2.15)

where B is the Bromwich path, i.e. a vertical line at the right of all the singularities
of the integrand. Q is a self-energy contribution and can be computed exactly:

Q(s) =
−15�i− (88− 48�i)s− 45�is2 + 144s3

96(s2 − 1)4

+
15�is4 − 72s5 − 3�is6 + 16s7 − 96s log s

96(s2 − 1)4 : (2.16)

At short and long times one gets

P(t) ∼ 1− t2

�2Z
(t.�Z) ; (2.17)

P(t) ∼ Z2e−
t + �4
C2

(!0t)4
− 2�2 CZ

(!0t)2
e−
=2tcos[(!0 −�E)t − �] (t/�−1) ;

(2.18)

where


= 2��2|’ ��(!0)|2 + O(�4) = 2��2!0 + O(�4) ' 6:268× 108 s−1 ; (2.19)

�E = �2P
∫ ∞

0
d!|’ ��(!)|2

1
!− !0 + O(�

4) ' 0:5�2� ; (2.20)
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Zei� ' (1− 4:38�2)e−i1:00��2 = 1 + O(�2) ; (2.21)

C ' 1 + 5:38�2 = 1 + O(�2) : (2.22)

The �rst two formulae give the Fermi “Golden Rule”, yielding the lifetime

�E = 
−1 ' 1:595× 10−9 s (2.23)

and the second-order correction to the energy level !0. The exact expressions for
quantities (2.19)–(2.22) are given in Ref. [39].

3. Van Hove’s limit

Let us look at Van Hove’s “�2t” limiting procedure applied to the model of the
previous section. Before proceeding to a detailed analysis, it is worth putting forward
a few preliminary remarks: we shall scrutinize (in terms of the coupling constant) the
mechanisms that make the nonexponential contributions in (2.17)–(2.18) vanish. To
this end, observe �rst that as �→ 0 the Zeno time (2.13) diverges, while the rescaled
Zeno time vanishes:

�̃Z ≡ �2�Z = �
√
6
�
=O(�) : (3.1)

On the other hand, the rescaled lifetime (2.23) remains constant [see (2.19)]:

�̃E ≡ �2�E = 1
2�!0

= O(1) : (3.2)

Moreover, the transition to a power law occurs when the �rst two terms in the
right-hand side of (2.18) are comparable, so that

(!0t)2e−
=2t ' �2 ; (3.3)

because both C and Z are ' 1. In the limit of small �, (3.3) yields t = �pow, with
2 log(!0�pow)− 


2
�pow ' 2 log � ; (3.4)

namely, by (2.19),

�pow
�E

' 4 log 1
�
+ 4 log

�pow
2��2�E

= 12 log
1
�
+ 4 log

�pow
�E

+ 4 log
1
2� : (3.5)

Therefore, when time is rescaled,

�̃pow ≡ �2�pow = 12�̃E log 1� +O
(
log log

1
�

)
=O

(
log

1
�

)
: (3.6)

Finally, the power contributions are ∼ O(�3�)t̃−� (�=2; 4), the period of the oscillations
[last term in (2.18)] behaves like �2=!0 and the quantities (2.21) and (2.22) both
become unity.
In conclusion, only the exponential law survives in limit (1.1), with the correct

normalization factor (Z= 1), and one is able to derive a purely exponential behavior
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(Markovian dynamics) from the quantum mechanical Schr�odinger equation (unitary
dynamics). It is important to notice that, in order to obtain the exponential law, a
normalizable state (such as a wave packet) must be taken as initial state. Our initial
state |2; 0〉 is indeed normalizable: see (2.8).

3.1. Two-level atom in the rotating-wave approximation

Let us now proceed to a more formal analysis. Write the evolution operator as

U (t) =
i
2�

∫
C
dE

e−iEt

E − H ; (3.7)

where the path C is a straight horizontal line just above the real axis (this is the
equivalent of the Bromwich path in the Laplace plane). By de�ning the resolvents
(IE¿ 0)

S(E) ≡
〈
2; 0

∣∣∣∣ 1
E − H0

∣∣∣∣ 2; 0
〉
=

1
E − !0 ; S ′(E) ≡

〈
2; 0

∣∣∣∣ 1
E − H

∣∣∣∣ 2; 0
〉
:

(3.8)

Dyson’s resummation reads

S ′(E) = S(E) + �2S(E)�(2)(E)S(E) + �4S(E)�(2)(E)S(E)�(2)(E)S(E) + · · · ;
(3.9)

where �(2)(E)= 〈2; 0|V (E−H0)−1V |2; 0〉 is the 1-particle irreducible self-energy func-
tion. In the rotating-wave approximation �(2)(E) consists only of a second-order dia-
gram and can be evaluated exactly:

�(2)(E) ≡
∫ ∞

0
d!

|’(!)|2
E − ! = i�Q(−iE=�) ; (3.10)

where the matrix element ’ = ’ �� in (2.6) and Q is the function in (2.16). In the
complex E-plane �(2)(E) has a branch cut running from 0 to ∞, a branching point in
the origin and no singularity on the �rst Riemann sheet. Summing the series

S ′(E) =
1

S(E)−1 − �2�(2)(E) =
1

E − !0 − �2�(2)(E) ; (3.11)

we obtain for the survival amplitude

A(t)≡ 〈2; 0|eiH0tU (t)|2; 0〉= i
2�

∫
C
dE e−iEtS ′(E + !0)

=
i
2�

∫
C
dE

e−iEt

E − �2�(2)(E + !0) : (3.12)

In Van Hove’s limit one looks at the evolution of the system over time intervals of
order t = t̃=�2 (t̃ independent of �), in the limit of small �. Our purpose is to see how
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Fig. 1. Singularities of propagator (3.12) in the complex-E plane. The �rst Riemann sheet (I) is singularity
free. The logarithmic cut is due to �(2)(E) and the pole is located on the second Riemann sheet (II). In the
complex-Ẽ plane, the pole has coordinates (3.17)–(3.18).

this limit works in the complex-energy plane, i.e. what is the limiting form of the
propagator. To this end, by rescaling time t̃ ≡ �2t, we can write

A

(
t̃
�2

)
=

i
2�

∫
C
dẼ

e−iẼt̃

Ẽ − �(2)(�2Ẽ + !0)
; (3.13)

where we are naturally led to introduce the rescaled energy Ẽ ≡ E=�2. Taking the Van
Hove limit we get

Ã(t̃) ≡ lim
�→ 0

A

(
t̃
�2

)
=

i
2�

∫
C
dẼ e−iẼt̃ S̃

′
(Ẽ) ; (3.14)

where the propagator in the rescaled energy reads

S̃
′
(Ẽ) ≡ lim

�→ 0

1

Ẽ − �(2)(�2Ẽ + !0)
=

1

Ẽ − �(2)(!0 + i0+)
; (3.15)

the term +i0+ being due to the fact that I Ẽ ¿ 0. The self-energy function in the �→ 0
limit becomes

�(2)(!0 + i0+) =−
∫ ∞

0
d!

|’(!)|2
!− !0 − i0+ = �(!0)−

i
2
�(!0) ; (3.16)

where

�(!0) ≡ P

∫ ∞

0
d!

|’(!)|2
!0 − ! ; (3.17)

�(!0) ≡ 2�|’(!0)|2 (3.18)

which yields a purely exponential decay (Weisskopf–Wigner approximation and Fermi
Golden Rule). In Fig. 1 we endeavoured to clarify the role played by the time–energy
rescaling in the complex-E plane.
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One can get a more detailed understanding of the mechanisms that underpin the
limiting procedure by looking at higher-order terms in the coupling constant. The pole
of the original propagator (3.11) satis�es the equation

Epole − �2�(2)(Epole + !0) = 0 (3.19)

which can be solved by expanding the self-energy function around E = !0 in power
series

�(2)(E + !0) = �(2)(!0) + E�(2)
′
(!0) +

E2

2
�(2)

′′
(!0) + · · · (3.20)

whose radius of convergence is !0, due to the branching point of �(2) in the origin.
We get (iteratively)

Epole = �2�(2)(!0) + �4�(2)
′
(!0)�(2)(!0) + O(�6) (3.21)

which, due to (3.16), becomes

Epole ≡ �E − i
2

= �2�(!0)− i�

2

2
�(!0) + O(�4) : (3.22)

In the rescaled energy (3.22) reads

Ẽpole =
Epole
�2

= �(!0)− i
2
�(!0) + O(�2)

�→ 0→ �(!0)− i
2
�(!0) (3.23)

which is the same as (3.16). This is again the Fermi Golden Rule.

3.2. N -level atom with counter-rotating terms

Before proceeding to a general analysis it is interesting to see how the above model is
modi�ed by the presence of the other atomic levels and the inclusion of counter-rotating
terms in the interaction Hamiltonian. This will enable us to pin down other salient
features of the �2t limit. The Hamiltonian is

H = H ′
0 + �V

′ ; (3.24)

where

H ′
0 ≡

∑
�

!�b†�b� +
∑
�

∫ ∞

0
d!!a†!�a!� ; (3.25)

V ′ =
∑
�; �

∑
�

∫ ∞

0
d![’��� (!)b

†
�b�a

†
!� + ’

��∗
� (!)b†�b�a!�] ; (3.26)

where � runs over all the atomic states and b†� ; b� and a
†
!�; a!� satisfy anticommutation

and commutation relations, respectively. [Hamiltonian (2.1)–(2.3) is recovered if we
set !2 = !0; !1 = 0 and neglect the counter-rotating terms.] Starting from the initial
state |�; 0〉, Dyson’s resummation yields

S ′(E) =
1

S(E)−1 − �2�(E) =
1

E − !� − �2�(E) (3.27)
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Fig. 2. Graphic representation of (3.28): �(2) and �(4) are in the �rst and second line, respectively.

and the 1-particle irreducible self-energy function takes the form

�(E) = �(2)(E) + �2�(4)(E) + · · · (3.28)

with

�(2)(E) ≡
∑
�; �

∫ ∞

0
d!

|’��� (!)|2
E − !� − ! : (3.29)

Both �(2) and �(4) are shown as Feynman diagrams in Fig. 2. In the Van Hove limit
one obtains

�(�2Ẽ + !�)
�→ 0→ �(2)(�2Ẽ + !�)|�=0 = �(2)(!� + i0+) : (3.30)

The propagator in the rescaled energy now takes the form

S̃
′
(Ẽ) = lim

�→ 0

1

Ẽ − �(2)(�2Ẽ + !�) + O(�2)
=

1

Ẽ − �(2)(!� + i0+)
; (3.31)

where

�(2)(!� + i0+) =
∑
�; �

∫ ∞

0
d!

|’��� (!)|2
!� − !� − !+ i0+ : (3.32)

The last two equations correspond to (3.15)–(3.16): the propagator reduces to that of
a generalized rotating-wave approximation.
We see that the Van Hove limit works by following two logical steps. First, it

constrains the evolution in a Tamm–Danco� sector: the system can only “explore” those
states that are directly related to the initial state � by the interaction V ′. In other words,
in this limit, the “excitation number” N� ≡ b†�b� +

∑
�;! a

†
!�a!� becomes a conserved

quantity (even though the original Hamiltonian contains counter-rotating terms) and,
as a consequence, the self-energy function consists only of a second-order contribution
that can be evaluated exactly. Second, it reduces this second-order contribution, which
depends on energy as in (3.29), to a constant (its value in the energy !� of the initial
state), like in (3.30). Hence the analytical properties of the propagator, which had
branch-cut singularities, reduce to those of a single complex pole, whose imaginary
part (responsible for exponential decay) yields the Fermi Golden rule, evaluated at
second order of perturbation theory.
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Notice that it is the latter step (and not the former one) which is strictly necessary
to obtain a dissipative behavior: Indeed, substitution of the pole value in the total
self-energy function yields exponential decay, including, as is well known, higher-order
corrections to the Fermi Golden Rule. On the other hand, the �rst step is very important
when one is interested in computing the leading-order corrections to the exponential
behavior. To this purpose one can solve the problem in a restricted Tamm–Dunco�
sector of the total Hilbert space (i.e., in an eigenspace of N� – in our case, N� = 1)
and exactly evaluate the evolution of the system with its deviations from exponential
law.
Let us add a �nal remark. As is well known, a nondispersive propagator yields a

Markovian evolution. Let us brie
y sketch how this occurs in the present model. From
(3.27), antitransforming,

i
2�

∫
C
dE e−iEt(ES ′(E + !�)− 1) = i

2�

∫
C
dE e−iEt�2�(E + !�)S ′(E + !�) ;

(3.33)

we obtain (for t ¿ 0)

iȦ(t) = �2
∫ t

0
d� �(t − �)A(�) ; (3.34)

where A(t) is the survival amplitude (2.10) and

�(t) ≡ 1
2�

∫
C
dE e−iEt�(E + !�) =

ei!�t

2�

∫
C
dE e−iEt�(E) : (3.35)

Eq. (3.34) is clearly nonlocal in time and all memory e�ects are contained in �(t),
which is the antitransform of the self-energy function. If such a self-energy function is
a complex constant (energy independent), �(E)=C, then �(t)=C�(t) and Eq. (3.34)
becomes

i Ȧ(t) = �2CA(t) ; (3.36)

describing a Markovian behavior, without memory e�ects [29,30]. In particular, the
Van Hove limit is equivalent to set C = �(2)(!� + i0+) and the Weisskopf–Wigner
approximation is C = �(2)(!� + i0+) + O(�2).
In conclusion, in the Van Hove limit, the evolution of our system, which was non-

local in time due to the dispersive character of the propagator (the self-energy function
depended on E) becomes local and Markovian (only the value of the self-energy func-
tion in !� determines the evolution).

4. General framework

We can now further generalize our analysis: consider the Hamiltonian

H = H0 + �V (4.1)
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and suppose that the initial state |a〉 has the following properties:
H0|a〉= Ea|a〉; 〈a|V |a〉= 0 ;
〈a|a〉= 1 : (4.2)

The survival amplitude of state |a〉 reads

A(t)≡ 〈a|eiH0tU (t)|a〉= i
2�

∫
C
dE e−iEtS ′(E + Ea)

=
i
2�

∫
C
dE

e−iEt

E − �2�(E + Ea) ; (4.3)

where S ′(E) ≡ 〈a|(E − H)−1|a〉 and �(E) is the 1-particle irreducible self-energy
function, that can be expressed by a perturbation expansion

�2�(E) = �2�(2)(E) + �4�(4)(E) + · · · : (4.4)

The second-order contribution has the general form

�(2)(E)≡
〈
a
∣∣∣VPd 1

E − H0PdV
∣∣∣a
〉
=
∑
n6=a

|〈a|V |n〉|2 1
E − En

=
∫ ∞

0

dE′

2�
�(E′)
E − E′ ; (4.5)

where Pd = 1− |a〉〈a| is the projector over the decayed states, {|n〉} is a complete set
of eingenstates of H0 (H0|n〉= En|n〉 and we set E0 = 0) and

�(E) ≡ 2�
∑
n6=a

|〈a|V |n〉|2�(E − En) : (4.6)

Notice that �(E)¿0 for E¿ 0 and is zero otherwise. In the Van Hove limit we get

Ã(t̃) ≡ lim
�→ 0

A

(
t̃
�2

)
=

i
2�

∫
C
dẼ e−iẼt̃ S̃

′
(Ẽ) ; (4.7)

where the resulting propagator in the rescaled energy Ẽ = E=�2 reads

S̃
′
(Ẽ) =

1

Ẽ − �(2)(Ea + i0+)
: (4.8)

To obtain this result we used

�(�2Ẽ + Ea)
�→ 0→ �(2)(�2Ẽ + Ea)|�=0 = �(2)(Ea + i0+) (4.9)

(Weisskopf–Wigner approximation and Fermi Golden Rule).
Just above the positive real axis we can write

�(2)(E + i0+) = �(E)− i
2
�(E) ; (4.10)

where

�(E) =P

∫ ∞

0

dE′

2�
�(E′)
E − E′ : (4.11)
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Let �(E) be sommable in (0;+∞). Then
�(E)˙ E�−1 for E→ 0 (4.12)

for some �¿ 0, and one gets the following asymptotic behavior at short and long
times:

P(t) ∼ 1− t2

�2Z
(t.�Z) ; (4.13)

P(t)∼ |Z |2e−t=�E + �4 |C|2
(Eat)2�

+ 2�2
|CZ |
(Eat)�

e−t=2�Ecos[(Ea +�E)t − �] (t/�Z) ;

(4.14)

where

�Z =
1
�

[∫ ∞

0

dE
2� �(E)

]−1=2
; (4.15)

�E =
1

�2�(Ea)
; (4.16)

�E = �2�(Ea) ; (4.17)

�=Arg Z − ArgC ; (4.18)

Z = 1 + O(�2) ; (4.19)

C = 1 + O(�2) : (4.20)

The transition to a power law occurs when the �rst two terms in the r.h.s. of (4.14)
are comparable, namely for t = �pow, where �pow is solution of the equation

�pow
�E

= 4(�+ 1)log
1
�
+ 2� log

Ea
�(Ea)

+ log
∣∣∣∣ZC

∣∣∣∣+ � log �pow�E ; (4.21)

i.e., for �→ 0

�pow = 4�E(�+ 1)log �−1 + O(log log �−1) : (4.22)

Let us now look at the temporal behavior for a small but �nite value of �, using Van
Hove’s technique. In the rescaled time, t̃ = �2t, the Zeno region vanishes

�̃Z ≡ �2�Z = �
[∫ ∞

0

dE
2� �(E)

]−1=2
= O(�) (4.23)

and Eq. (4.14) becomes valid at shorter and shorter (rescaled) times and reads

P(t̃)∼ |Z |2e−t̃=�̃E + �4(�+1) |C|2
(Eat̃)2�

+2�2(�+1)
|CZ |
(Eat)�

e−t̃=2�̃E cos
(
Ea +�E
�2

t̃ − �
)
; (4.24)
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Fig. 3. Essential features (not in scale!) of the survival probability as a function of the rescaled time t̃. The
Zeno time is O(�), the lifetime O(1), during the whole evolution there are oscillations of amplitude O(�2�+2)
and the transition to a power law occurs after a time O(log(1=�)) [see (4.23)–(4.26)]. From (4.19), the
normalization factor becomes unity like 1 − O(�2). The dashed line is the exponential and the dotted line
the power law.

where

�̃E ≡ �2�E = 1
�(Ea)

= O(1) ; (4.25)

�̃pow ≡ �2�pow ' 4�̃E(�+ 1)log 1� =O
(
log

1
�

)
: (4.26)

Fig. 3 displays the main features of the temporal behavior of the survival probability.
The typical values of the physical constants [see for instance (2.9)] yield very small
deviations from the exponential law. For this reason, we displayed in Fig. 3 the survival
probability by greatly exaggerating its most salient features.
The Van Hove limit performs several actions at once: It makes the initial quadratic

(quantum Zeno) region vanish, it “squeezes” out the oscillations and it “pushes” the
power law to in�nity, leaving only a clean exponential law at all times, with the right
normalization. All this is not surprising, being implied by the Weisskopf–Wigner ap-
proximation. However, the concomitance of these features is so remarkable that one
cannot but wonder at the e�ectiveness of this limiting procedure. In atomic and molec-
ular physical systems the smallness of the coupling constant and other physical param-
eters makes the experimental observation of deviations from exponential a very di�cult
task (see for example the simple model investigated in Section 2). The eventuality that
alternative physical systems might exhibit experimentally observable non-exponential
decays, as well as the possibility of modifying the lifetimes of unstable systems by
means of intense laser beams [46,47] are at present under investigation.
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