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We compare the Radon transform in its standard and symplectic formulations and argue that the analytical

inversion of the latter is easier to perform.
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1. Introduction

The Radon transform [1] is a key mathematical tool
in tomography. Its inverse enables one to reconstruct a
function if some of its integrals are known. The whole
subject has been recently revived by quantum mechan-
ical applications. The possibility of reconstructing
the tomographic map of the Wigner quasidistribution
function [2-4] associated with a given quantum state
[5-8] has motivated experiments [9—11], triggered novel
proposals [12] and boosted innovative theoretical
techniques [13]. In a classical context, the Radon
transform is widely used in target and sample discrim-
ination methods and medical applications. The exten-
sion of these well-established applications and
techniques to a quantum mechanical context is of
great interest and sometimes quite straightforward, the
only differences lying in the properties of the functions
to be reconstructed and/or discriminated. Quantum
applications are widespread and diverse. The entire
field, driven by a blizzard of technical advances,
is attracting increasing attention and is growing at a
lively pace. Good reviews on the subject can be
found in [14].

The Radon transform was originally introduced
as an integral transform defined over submanifolds
of R”, that may be viewed as a ‘configuration space’.
However, if n is even, one may think of R” as a phase
space and consider the integrals over its Lagrangian
submanifolds. One may then associate the tomo-
graphic map with the symplectic transform on the
phase space [15]. In this context, motion is instrumen-
tal for the identification of the phase space and its
Lagrangian variables: the Hamilton equations do
not appear in the definition of the Radon transform
and this interpretation differs from the original one.

Nevertheless, the approach is prolific and enables
one to identify different types of tomograms [16],
extend tomography to curved surfaces [17] and con-
sider more general problems and applications. This
is in line with previous historical developments,
by Radon himself [1], John [18], Helgason [19] and
Strichartz [20], and paves the way towards so-far
unearthed quantum mechanical applications.

In this article we shall focus on the theoretical and
analytical characteristics of the Radon transform
and its inversion. The application of these ideas and
techniques to experimental data is left for future
investigation. We shall compare the standard Radon
approach with that based on the aforementioned
symplectic identification and shall argue that, although
mathematically equivalent, they may differ in practice.
In particular, the inversion may be far from trivial and
may turn out to be simpler in the symplectic
framework.

2. Symplectic tomography

Let us focus on the two-dimensional case for the sake
of concreteness. The Radon transform, in its original
formulation, solves the following problem: reconstruct
a function of two variables, say f(p, q), if its integrals
over arbitrary lines are given. The Radon transform
(or homodyne tomogram) reads

F.X)= | fapxt = geoso—psinddgdp. (1)

where § is the Dirac distribution, @ € [0, 27), w = (cos ¥,
sin ¥) € S (the unit sphere in 1D) and X € R. In order to
obtain a symplectic formulation, a central observation
is the following: it is possible to express the Radon
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transform in affine language (the so-called tomo-
graphic map) [1,21] and write

S (v, X) = J[sz (4-p)S(X — pg — vp)dgdp,  (2)

where p,v, Xe€R, u?>+1*>> 0. We have named ‘M>
the tomographic map (Equation (2)) after Man’ko
and Marmo, who gave a seminal contribution towards
its significance [22-25]. Clearly

FL, X) = M (cos B, sind, X). (3)

Consider now a particle moving on the line ¢ € R and
a function f(g, p) on its phase space (¢, p) € R*. Since

o 1))
=ng+vp=(-v N)(? _01><Z>’ @)

the argument in the Dirac delta in Equation (2) may be
considered either as a Euclidean product or as a
symplectic product. The two interpretations are
completely equivalent and one can equivalently solve
the inversion problem by using the Euclidean or
symplectic Fourier transform. We shall see in the
next section that the two procedures can vastly differ in
complexity.

Note that the Radon transform is defined in an
equivalent way by

A9, X) = J f(Xcos v+ ssin ), X'sin ¥ + scos 9)ds.
R

(%)
The inversion formula, as given by Radon, amounts
to considering first the average value of /* on all lines
tangent to the circle of center (¢,p) and radius r,
namely,

1 2 )
Fp(r) = 7 L fA(9,gcos ¥ + psind +r)d  (6)

and then compute

| T dr
f(q,p)=—;1£1iglj Flap ()= (7

where F (r) denotes the derivative with respect to r.
The Radon transform maps a (suitable) function on
the plane into a function on the cylinder. Some condi-
tions that guarantee the invertibility and continuity of
the map were studied by Radon himself [1], John [18],
Helgason [19] and Strichartz [20].

On the other hand, the inverse transform of
Equation (2) reads [22,23]

ydXdudv

(2n) ®

f(q,p) = JR3](M2(M, v, X)e"(X*ltqfvP

f(q.p)=

3. The inverse transform: an explicit example

We now compare the inversions (6), (7) and (8) by
looking at a very simple example: the ground state
of a one-dimensional quantum harmonic oscillator,

Otz 20,2 12
f(g.p)=—e T, ©)

Its M>-transform reads
M2 o’ —o(¢*+p%)
ST (v, X) = I 8(X — ug —vp)dgdp

2 [ e,

|l )
azj ‘%[(V’””” m) mffz}d
LI p
|l )

o —o? x2

=" @ (10)
Va(u? +v?)
which is a Gaussian with respect to X, but has a
nontrivial dependence on p and v. On the other hand,
by making use of Equation (3), one gets the Radon
transform

M2 . o _ 2y2
@, X) =M (cos®, sin®, X) = Na X an
which is simply a Gaussian, independent of the angle ¥,
due to symmetry.
Let us tackle the inversion problem. We start from
the inverse M2 transform, which is easily solved in a
few lines:

) J sz(/,L, v, X)eX—raPdx dp dv

- (271)2\/71(/12 +12)

(X X[l +v
X e Iz +|
R

) _i(“q+”1’)dXdu dv

= —(21 7 J e_%e*"(“q”p)du dv
7T) JR?

— ge*(qurpz)az_ (12)
i
Let us now endeavour to invert the Radon trans-
form. It would be tempting to leave this as an exercise
for the reader, but we will sketch the main steps of
the derivation. From Equation (6) we get

3

2
Figp(r) = —rﬁL (gcos® + psind +r)

« e—az(q cos O+p sin 9+7)° ds (13)
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and thus f(q, p) =lim, o f.(q, p), where

o [t (P (gcos® +psind +r)
= — d a d'[?
Je(q.p) N L ’Jo .
% efaz(q c0s 94p sin 9+r)* ) (14)

Already in the very simple case of a Gaussian function
with a Gaussian Radon transform the above inversion
formula is not easy to manage. First, introduce a step
function, 6(r)=1 if r > 0, and 6(r) =0 otherwise, and
change the period of the angle integration

o’ T A(r—e)
o= ) o] 07

X (r—gqcos®¥ + —psind)e

—a?(r—qcos 9—psin 9)

(15)

Then change variables z=r—gcos®—psin?¥ and
t=tan (¢/2)

20 J 9<tz(z—q—e)+2pt+(z+q—e)>
[RZ

Fan = =

—a?2?

X =¢ dr
2(z—q) + 2pt + (z +q)

dz. (16)

Now look at the region where the argument of the theta
function is positive. One gets two roots: ¢; »(z — ¢), with

_ 2.2 _ 2
pE/p-+q z’ (17)
z—dq

t12(2) =

whose discriminant is negative for z¢ [—/p* + ¢* + &,

VP? + ¢* + €]. Therefore,

Jelg,p) = Li(: 4. p) + D(e: q. ), (18)
where
208 (T 22
Li(e,q,p) = nzﬁjmﬂdzze_“ z
oo 1
* J,oodt 2(z—q)+2pt+(z+q) (19
and

203 J-«/p2+q2+e +00
dzJ

s _ s dr
2(5,%[)) JTZ\/E _W+E —00
Pa—g=e)+2pi+(G+g—e)
x 0
1+2
_o22?

ze
X )
2(z — q) + 2pt + (z + q)

(20)

Let us evaluate /(e, ¢, p). The integration over ¢ yields

/22> — ¢* — p* and thus

203 [T ze™@7
[1(89%1”): J —dz. (21)
) S e V2 — ¢ — P
An integration by parts gives
11 (81 q, p)
40P J+°° 2.
=—— /22— ¢? — pre ™ F dz 4+ O(Je)
7'[\/;1: /PP +q>+e
4o J+°° 2 (Pl
— —a”(y g +p7)
=— Ve dy + O(Ve)
TNT ) e[ r g 4ed) 2
20[5 _az( 24 2) +00 7 —a?y?
= ——0Fe qrp ye Y dy + 0(\/5)5 (22)
/T oo

where y>=z>—¢*—p>. Since the Gaussian integral
equals /7/2a>, we finally get

13?01 Ii(e,q,p) = f(q.p). (23)

Therefore, it remains to prove that (e, ¢, p) vanishes
for ¢ —0. We will leave this as a very instructive
exercise and just give three hints. First, one can see that
the theta function in I»(e, g, p) is different from zero
when z—¢& > ¢ and

1€ R\[11(z — &), o(z — e)], 24)
or when z—¢ < ¢ and
t €tz —e), ti(z — ¢)]. (25)

Therefore, the integral (Equation (20)) splits into the
sum of three integrals. Secondly, by noticing that

for any z,
+Ood 1 26
e o

one can trade the integration over the range in Equation
(24), with an integration over [t1(z — ¢), t,(z — €)] and
gather together the three integrals. Thirdly, the integra-
tion over ¢ yields the logarithm of a rational function
that can be shown to vanish for ¢ — 0.

Notice that the Radon transform can also be
inverted by using the following alternative formula due
to Helgason [19], which is suitable for generalizations
to symmetric homogeneous spaces

21
f(q,p>=i(—A)‘/2j F(9.qcos 9+ psind)dd.  (27)
4 0

Here the fractional Laplacian

2 P\
12 _
"= (-5 57) .
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is defined by a Fourier transform

(—1)"g(q.p) = J (ky + ko) 28(ky Ky )o@k
[RZ

“ dklde, (29)
2

where

) o dgd
ik = | slg.pe i I G0
R T

In our case we would have to compute

1/2 2
Cf/" <_ 8_22 o 8_22) J ne—az(qcos ¥-+psin 19)2(119 (31)
dr/m\ 94> 0 ’

a task even more difficult than the previous one.

4. Extension to n dimensions and a few comments

The definitions and conclusions of the previous
sections can be easily extended to n dimensions. The
Radon transform of a function f of the n-dimensional
vector x € R” reads

Pl = [ fener—wandy, (2

where we$"~!, the (n— 1)-dimensional sphere, (-,-)
denotes scalar product and X € R. The M? transform is

P00 = | SR = nopdx. 63

where ueR"” and X eR. Obviously, from sz(pL,X)
one can immediately recover f*(w,X) by setting
u=weS" "

@, X) = (0, X). (34)

However, notice that, although f* is the restriction
of sz on the unit sphere §"°!, there is actually a
bijection between the two transforms. Therefore, they
carry exactly the same information. Indeed, since the
Dirac distribution is positive homogeneous of degree
—1,i.e. 8(ax) = |a|"'8(x), for every a # 0, one gets from
Equation (33)

M=) e

el Il el

for ©#0. In words, the tomogram fMZ(,u,X) at a
generic point u €R" is completely determined by the
tomogram at u/|u|€S""'. But the latter is nothing
but the Radon transform, by Equation (34). Therefore,
we get the bijection

o, X) =" (@, X), (36)

) 1
e (mﬂzwfﬁ(';",Wﬁ) W#£0. (37

Notice also that at the origin u =0 the M? transform
0.0 =00 feod, (39)
R

depends only on the total mass.
The inversion formulae for the transforms (32)
and (33), read
1
S(x) =

2nnnfl

(—A)““WJ Flo. @x)do  (39)
§ll*l

and

F00 = | ane i L
R (2m)

respectively. While formula (40), which is nothing but
a Fourier transform, is quite easy to handle, the
inversion formula (39) is in general very hard to tackle,
especially for even n, due to the presence of a fractional
Laplacian. Therefore, from a practical point of view,
our message is the following: in order to invert the
Radon transform (32), dilate it by Equation (37) into
the M? transform and then use the Fourier inversion
formula (40). This simple trick enables one to avoid
long and tedious calculations.

One final comment is in order. The difficulties
that one encounters in inverting the Radon transform
in the conventional framework are due to the following
‘geometrical’ picture. Reducing the space (or the
number of variables) de facto introduces ‘interactions’.
This makes inversions more cumbersome. By contrast,
the smart introduction of an additional fictitious
variable may lead to an unfolding of the interacting
problem into a non-interacting one, making inversions
elementary.

(40)
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