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We study the dynamics of the populations of a model molecule endowed with two sets of rotational levels
of different parity, whose ground levels are energetically degenerate and coupled by a constant interaction.
The relaxation rate from one set of levels to the other one has an interesting dependence on the average
collision frequency of the molecules in the gas. This is interpreted as a quantum Zeno effect due to the
decoherence effects provoked by the molecular collisions.

1. Introduction

The quantum Zeno effect is usually formulated as the
hindrance of the evolution of a quantum system due to frequent
measurements performed by a classical apparatus1–6 and is
formalized according to von Neumann projection rule.7 The
literature of the past few years on this topic is vast and
contemplates a variety of physical phenomena, ranging from
oscillating (few level) systems8–18 to more complex ones19–29

and to bona fide unstable systems,30–36 where the so-called
“inverse” Zeno effect can take place.

The ideas and concepts at the basis of the quantum Zeno
effect (QZE) were also successfully extended to continuous
measurement processes by different authors and in different
contexts37–42 and led to a remarkable explanation of the stability
of chiral molecules.43–46 This was a fertile idea in that it
explained the behavior of a variety of physical systems in terms
of a similar underlying mechanism.

The QZE is, however, a much more general phenomenon
that takes place when a quantum system is strongly coupled to
another system47 or when it undergoes a rapid dephasing process.
Such a rapid loss of phase coherence (“decoherence”) of the
quantum mechanical wave function (for instance, as a result of
frequent interactions with the environment) is basically equiva-
lent to a continuous measurement process (the main difference
being that the state of the system is not necessarily explicitly
recorded by a pointer). In this article, we shall focus on this
formulation of the QZE that stems from the dephasing effects
due to molecular collisions. We shall argue that such a
formulation can be more or less intuitive (according to our
“classical” intuition) but can always be rigorously formulated
and interpreted in terms of a master equation that duly takes

into account quantum mechanical and (environment-induced)
classical effects.

The quantum Zeno effect is always ultimately ascribable to
the short-time features of the dynamical evolution law;48–50 it
is only the study of this dynamical problem that determines the
range in which a frequent disturbance or interaction will yield
a QZE. The very definition of “frequent” is a delicate problem
that depends on the features of the interaction Hamiltonian.
Moreover, one should also notice that the quantum system is
not necessarily frozen in its initial state51–53 but rather undergoes
a “quantum Zeno dynamics”, possibly evolving away from its
initial state.54 The study of such an evolution in the “quantum
Zeno subspace”55 is in itself an interesting problem, whose
mathematical and physical aspects, as well as the possible
applications to chemistry and physical chemistry, are not
completely clear and require further study and elucidation.

After the seminal experiment by Itano and collaborators,8 the
QZE has been experimentally verified in a variety of different
situations, on experiments involving photon polarization,56

nuclear spin isomers,57 individual ions,58–61 optical pumping,62

NMR,63 Bose-Einstein condensates,64 and the photon number
of the electromagnetic field in a cavity,65 and new experiments
are in preparation with neutron spin.66,67

We focus here on the interesting example of QZE proposed
in ref 57; the nuclear spin depolarization mechanisms in 13CH3F,
due to magnetic dipole interactions and collisions among the
molecules in the gas, were experimentally investigated and
interpreted as a QZE. In a few words, the 13CH3F molecule has
two kinds of angular momentum states, according to the value
of the total spin of the three protons (H nuclei), I ) 3/2 (ortho)
and 1/2 (para). Transitions between states with different parity
are (electric dipole) forbidden, so that spin flip occurs via a
weak coupling between two levels of different spin parity (this
is most effective when there is an accidental degeneracy between
the levels, achievable, for example, via a Stark effect68–70). One
observes a significant dependence of the spin relaxation on the
gas pressure and interprets this as a QZE provoked by the
dephasing due to molecular collisions. Nuclear spin conversion
in polyatomic molecules is reviewed in ref 71.

The aim of this article is to study the occurrence of the QZE
in the general framework of collision-inhibited Rabi-like oscil-
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lations between two sets of rotational levels. We shall study
the evolution of the level populations in a model multilevel
molecule endowed with two sets of rotational levels of different
parity. In particular, we shall concentrate on the interesting
effects that arise as a consequence of the interactions (collisions)
with the other molecules in the gas. The model that we shall
adopt will be studied both numerically and analytically, and
the results will be compared. One of the main objectives of our
investigation will be the analysis of apparently different
phenomena in terms of a Zeno dynamics.

We shall introduce the system in section 2 and the Zeno
problem in the present context in section 3. In sections 4-6,
we study the problem from an analytic point of view by deriving
and approximately solving a master equation. In section 7, the
analytical results are compared to an accurate numerical
simulation. We conclude in section 8 with a few remarks.

2. The System

Our model molecule has two subsets of rotational levels (to
be called left (L) and right (R) levels in the following) of
different parity, whose ground levels are energetically degenerate
and coupled by a constant interaction. (The choice of the ground
levels is motivated by simplicity; one could choose any other
couple of energetically degenerate levels in the L-R subspaces.)
The molecules undergo collisions with other identical molecules
in the gas, and we assume that these collisions couple the
rotational energy levels but do not violate spin parity conserva-
tion. We shall focus on the dependence of the relaxation rate
on the average collision time or, equivalently, on gas pressure;
a QZE takes place if the transition between the left and right
subspaces is inhibited when the collisions become more frequent
(i.e., the gas pressure increases).

A sketch of the system is shown in Figure 1. The total Hilbert
spaces of each molecule is made up of two subspaces HL (left)
and HR (right), with NL and NR levels, respectively. Collisions
cannot provoke LT R transitions; therefore, no transitions are
possible between the two subspaces, except through their ground
states. However, collisions with other particles in the gas
provoke transitions within each subspace.

The Hamiltonian is

where Hf ) H0 + H1 is the free Hamiltonian and

with s ) L, R. The energy levels |ns〉 have energies Ens
(s )

L, R), and H1 provokes L T R transitions between the two
ground states, with (Rabi) frequency Ω. Ω is small (in a sense
to be made precise later) for such a transition is electric-dipole-
forbidden. Hcoll accounts for the effect of collisions with the
gas (environment); the collisions are distributed according to
the Poisson statistics, appropriate for the gas phase with short-
range binary collisions, so that they occur at times

where δτj’s are independent random variables with distribution

and (common) average τ. The coupling constants RL,R are, in
general, different from each other and measure the “effective-
ness” of a collision. For the sake of simplicity, we assume that
collisions provoke transitions only between adjacent levels [Vs

in eq 6 involves only “nearest-neighbor” couplings]. We will
assume, for concreteness, that the energy levels are rotational,
so that

and |1L〉 and |1R〉 are the only resonant pair of states

(see Figure 1). The Hilbert spaces HL and HR are finite
dimensional, with dimensions NL and NR, respectively. This is
because, in general, the number of accessible rotational levels
is limited to a few tens since for sufficiently high energies,
molecules tend to dissociate. This could be accounted for by
introducing two “absorbing” levels |NL+1〉, |NR+1〉.72,73 However,
in our analysis, we will explore a time region in which the
introduction of absorbing levels is not necessary (in other words,
the times involved will not be long enough to display “border
effects”).

3. Zeno Effect

Before we start our theoretical and numerical analysis, it is
convenient to focus on the physics of the model introduced in
the preceding section and to clarify in which sense we expect
a Zeno effect to take place. We start from a simple numerical
experiment and calculate the time evolution of the populations
by the Monte Carlo method described in refs 74 and 75.

Figure 1. Poissonian collisions in a gas of multilevel molecules.

H ) Hf + Hcoll(t) ) H0 + H1 + Hcoll(t) (1)

H0 ) ∑
nL)1

NL

EnL
|nL〉〈nL|+ ∑

nR)1

NR

EnR
|nR〉〈nR| (2)

H1 ) pΩ(|1L〉〈1R|+ |1R〉〈1L|) (3)

Hcoll ) p∑
j

δ(t - τj)V (4)

V ) RLVL + RRVR (5)

Vs ) ∑
ns)1

Ns-1

Vns
) ∑

ns)1

Ns-1

|ns〉〈ns + 1|+ |ns + 1〉〈ns| (6)

τj+1 ) τj + δτj (7)

p(δτj) )
1
τ

exp(-δτj/τ) (8)

Ens
) pωsns(ns + 1) (s ) L, R) (9)

E1L
) E1R

, EmL
* EnR

for mL, nR > 1 (10)
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Consider a uniform gas of identical molecules, having the
internal structure described in the preceding section. A single
molecule freely wanders in a total volume and undergoes
random collisions. By neglecting the spatial component of the
wave function, each molecule can be represented by an (NL +
NR)-dimensional state vector |ψ(t)〉 that describes its internal
state.76,77 This physical situation is well schematized by the
model described in section 2. During the free flight, the evolution
is governed by the free Hamiltonian

Since the molecules are immersed in a bath, the collisions are
distributed in time according to the Poisson statistics, (eqs 7
and 8) with average collision frequency (per particle) τ-1.
Collision times are sampled according to

y being a random number uniformly distributed in [0, 1]. The
collisions are modeled as instantaneous events and act on the
left/right subspaces independently. As a result of a collision,
the state becomes

The matrix exp(-i ∑s RsVs) is evaluated numerically. It is
assumed to be independent of the internal state of the colliding
partners and of their kinetic energy.

As already mentioned, that since our aim is to investigate
the occurrence of a QZE within the proposed level structure;
we are not interested in the dissociation of highly excited
molecules. To this end, we must restrict our attention to times
such that the molecules do not “see” the upper limit of the
rotational levels, so that “border” effects do not play any
significant role. In this way, the dissociation of highly excited
molecules can be safely neglected.

The aforementioned qualitative features of our analysis will
be carefully scrutinized and made precise in the following
sections. We now take them for granted and give a few
preliminary results in order to get a feeling for the physics at
the basis of the Zeno effect.

We set NL ) NR ) 40 energy levels, with energies given by
eq 9, where ns ) 1, ..., 40, ωL ) 1.3 × 1010 s-1, and ωR ) 9.7
× 109 s-1. We always compute the average over an ensemble
of 5 × 103 particles. All particles are initially in the |1L〉 state,
and we study the temporal behavior of the relative population
in the left subspace

pnL
being the occupation probability of state |nL〉.

The results of our numerical integration are shown in Figures
2 and 3. In Figure 2, RL ) 0.2, and RR ) 0, so that collisions
do not provoke transitions among the right states (or, equiva-
lently, the right subspace consists only of state |1R〉). It is
apparent that when the collision frequency τ-1 is increased
between 500TR

-1 and 1500TR
-1 (TR ) 2π/Ω being the Rabi

period), the survival probability in the left subspace increases.

If the collisions are viewed as a dephasing process (effectively
yielding a “measurement” of the occupation probabilities of the
left states), this can be viewed as a Zeno effect. This is in
agreement with our “classical” intuition; since the system is
initially in the left subspace and collisions remove population
density from the ground state |1L〉 of this subspace (the only
level coupled to the right subspace), it is intuitively clear that
by increasing the collision frequency, transitions to the right
subspace are hindered. This is a “classically intuitive” version
of the Zeno effect.

The situation depicted in Figure 3 is different; here RL ) 0,
and RR ) 0.2, so that now collisions do not provoke transitions
among the left states, or equivalently, the left subspace consists
only of state |1L〉 (which is also the only state coupled to the
right subspace). Once again, when the collision frequency τ-1

is increased in the same range as before, the survival probability
in the left subspace increases. We stress that the collisions are
effective in hindering the transition from a single level toward
a subspace that is initially empty. In other words, now, the
collisions act only on the right subspace, where virtually no
particles are present. Once again, this can be viewed as a Zeno
effect; however, it is somewhat less intuitive than the previous

|ψ(t)〉 ) exp(- i
p

Hft)|ψ(0)〉 (11)

δτ ) -τ log(y) (12)

|ψ(t + 0+)〉 ) exp(-i ∑
s)L,R

RsVs)|ψ(t)〉 (13)

PL ≡ ∑
nL

pnL
(14)

Figure 2. Temporal evolution of PL. The collision frequency τ-1 is
varied between 500TR

-1 and 1500TR
-1 (TR ) 2π/Ω). We set RL ) 0.2

and RR ) 0, so that, in practice, NL ) 40 left energy levels are coupled
to only NR ) 1 right level. The survival probability in the left subspace
increases as the collision frequency is increased; frequent collisions
hinder transition to the right subspace, a manifestation of a (“classically
intuitive”) Zeno effect.

Figure 3. Temporal evolution of PL. The collision frequency τ-1 is
varied between 500TR

-1 and 1500TR
-1. Unlike in the previous figure, we

set RL ) 0 and RR ) 0.2, so that, in practice, the NL ) 1 left level is
coupled to NR ) 40 right levels. Again, the survival probability in the
left subspace increases as the collision frequency is increased; frequent
collisions hinder transition to the right subspace, a manifestation of a
(“classically counterintuitive”) Zeno effect.
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one (and maybe a bit puzzling for our “classical” intuition).
This is a “classically counterintuitive” version of the Zeno effect.

After having rapidly analyzed these two simple situations,
we are ready to tackle the more general case of NL left levels
coupled to NR right ones. This will be done in the following.

4. Master Equation

4.1. The General Case. We start our analysis by deriving a
master equation for the density matrix of the molecule. Write
eq 4 as

where

is the derivative of a Poisson process N(t) with mean time τ78

One gets

where 〈...〉 is the average over the probability ditribution eq 17,
so that the process

has a vanishing mean and a linear variance in dt

In terms of the noise η(t), these equations read

The collision Hamiltonian can then be rewritten in terms of a
constant part and a noise

whence the total Hamiltonian (eq 1) reads

The Schrödinger equation (in Itô form) is

and the average density matrix [〈...〉 is introduced in eq 18]

follows a master equation in the Kossakowski-Lindblad
form79–81

By using eqs 23, 5, and 6, we get

This equation for the average density matrix (eq 25) is exact
but complicated. However, it can be greatly simplified under
some reasonable hypotheses.

4.2. Reduced Master Equation. We assume that all level
pairs EmR

and EnL
are sufficiently far from resonance, namely

where ∆E is the smallest energy difference between states |mR〉
and |nL〉, with mR, nL > 1. This requirement will be discussed in
more detail in section 7. At this stage, we only observe that,
typically, ∆E/p = 10-9 s, while Ω = 1 kHz and τ = 1 µs;
therefore, the above condition appears very reasonable.

It is then possible to show that in eq 27, the dynamics of the
populations pms

) Fmsms
(s ) L, R) plus the coherence term F1L1R

completely decouples from the dynamics of the coherence terms
Fmsns′ (s, s′ ) L, R and ms, ns′ * 1). This is because, roughly
speaking, no “diagonal” fast frequency is present [essentially
because 〈ms|[H0, F]|ms〉 ) 0 in eq 27] and, under the hypothesis
in eq 28, the contribution of all of the other fast terms is
averaged to zero over the long time scales τ and Ω-1, and the
dynamics of the slow and fast terms completely decouple. In
conclusion, only the “slow” dynamics is relevant over the large
time scales τ and Ω-1.

The above argument has a general rigorous justification55 in
terms of an adiabatic theorem and is elucidated in the Appendix
for the model studied in this article. One shows that the part of
the master eq 27 pertaining to the populations becomes

Hcoll(t) ) pµ(t)V (15)

µ(t) ) dN(t)
dt

) ∑
j

δ(t - τj) (16)

Prob{N(t) ) n} ) P(n, t) ) e-t/τ 1
n!( t

τ)n
(17)

〈dN(t)〉 ) dt
τ 〈(dN(t) - dt

τ )2〉 ) dt
τ

(18)

dW(t) ) η(t)dt ) µ(t)dt - dt
τ

) dN(t) - dt
τ

(19)

〈dW(t)〉 ) 0 〈dW(t)2〉 ) dt
τ

(20)

〈η(t)〉 ) 0 〈η(t)η(t')〉 ) 1
τ

δ(t - t') (21)

Hcoll(t) )
p
τ

V + pη(t)V (22)

H ) Hj+pη(t)V Hj ) H0 + H1 + p
τ

V (23)

|ψ(t + dt)〉 ) (1 - i
p

Hjdt - 1
2τ

V2dt)|ψ(t)〉 - iVdW|ψ(t)〉
(24)

F(t) ) 〈|ψ(t)〉〈ψ(t)|〉 (25)

dF
dt

) - i
p

[Hj ,F] - 1
2τ

[V, [V, F]]

) - i
p

[Hj ,F] - 1
2τ

{V2, F} + 1
τ

VFV
(26)

dF
dt

) - i
p

[H0, F] - i
p

[H1, F] - i
τ

[V, F]

- 1
2τ

{V2, F} + 1
τ

VFV

) - i
p

[H0, F] - i
p

[H1, F]

+ ∑
s)L,R

(-1
Rs

τ
[Vs, F] -

Rs
2

2τ
{Vs

2, F} +
Rs

2

τ
VsFVs)

+
RLRR

τ
(VLFVR + VRFVL)

(27)

∆E
p

. Ω, τ-1 (28)
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where the reduced operator Ã, defined by

involves only matrix elements belonging to the eigenspaces of
H0

55

[remember the condition in eq 10] and is diagonal with respect
to H0

In particular, from eq 3

and from eqs 5 and 6

and

so that eq 29 reads

This is the master equation that we will study in detail. The
only assumption made in its derivation is eq 28.

The reduced density matrix F̃ is given by eq 30 and involves
only the level populations pns

) Fnsns
(s ) L, R) and the two

coherence terms F1L,1R
and F1R,1L

, all other matrix elements being
zero. Thus, it describes two classical Markov chains (1L, ...,
NL) and (1R, ..., NR), whose transition rates are proportional to
DL ) RL

2/τ and DR ) RR
2 /τ, respectively, linked by quantum

Rabi oscillations between |1L〉 and |1R〉, whose period is TR )
2π/Ω.

By setting D ) (DL + DR)/2, that is, R2 ) (RL
2 + RR

2 )/2, the
ratio between the two time scales

is an important parameter that describes different dynamical
regimes. Larger values of x correspond to more frequent
collisions (within a Rabi period) and consequently to a more
evident manifestation of the QZE.

5. Stochastic Dynamics in Decoupled Subspaces

Let us first study the subdynamics of each subspace HL/R

separately. To this end, set Ω ) 0 in eq 36; the time evolution
is governed only by the collision dynamics, the right and left
subspaces decouple, and their subdynamics can be studied
separately.

In terms of (s ) L, R)

equation 36 reduces to

where Ws is the stochastic matrix

and

Note that Ws is a real symmetric matrix with real eigenvalues
and a complete set of eigenvectors.

The resulting dynamics is diffusive. Indeed, eq 39 explicitly
reads

which is nothing but a diffusion equation (dropping the suffix s)

where

and

dF̃
dt
= - i

p
[H̃1, F̃] - i

τ
[Ṽ,F̃] - 1

2τ
{V2̃,F̃} + 1

τ
VF̃Ṽ

(29)

Ã ) QAQ + ∑
s)L,R

∑
ms)2

Ns

Pms
APms

(30)

Q ) P1L
+ P1R

and Pms
) |ms〉〈ms| (31)

[H0, Ã] ) 0 (32)

H̃1 ) QH1Q ) H1 ) pΩσ1

σ1 ≡ |1L〉〈1R|+ |1R〉〈1L|
(33)

Ṽ ) 0 V2̃ ) ∑
s)L,R

Rs
2Vs

2̃ ) ∑
s)L,R

Rs
2 ∑

ms)1

Ns-1

Vms

2

(34)

VF̃Ṽ ) ∑
s)L,R

Rs
2VsF̃Vs̃ ) ∑

s)L,R

Rs
2 ∑

ms)1

Ns-1

Vms
F̃Vms

(35)

dF̃
dt

) -iΩ[σ1, F̃] - ∑
s)L,R

Rs
2

2τ ∑
ms)1

Ns-1

[Vms
, [Vms

, F̃]]

(36)

x ) DTR ) R2

τ
TR ) 2πR2

τΩ
(37)

ps ) (F1s1s
, ..., Fnsns

, ...) ) (p1s
, ..., pns

, ...) (38)

dps

dt
) DsW

sps (39)

Ws ) (-1 1 0 0 ...
1 -2 1 0 ...
0 1 -2 1 ...
0 0 1 -2 ...
l l l l · · ·

) (s ) L, R)

(40)

Ds )
Rs

2

τ
(41)

ṗ1s
) Ds(-p1s

+ p2s
) (Ω ) 0) (42)

ṗns
) Ds(pns-1 - 2pns

+ pns+1) (ns g 2) (43)

∂tpn(t) ) D∆pn(t) (44)

∆ ≡ 1
2

(∇+∇- + ∇-∇+) (45)
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The boundary condition ∇-p1 ) 0 (see eq 42) is imposed by
introducing a supplementary state n ) 0, whose probability satisfies
p0 ) p1 for every t. The evolution of the population is made up of
two terms (both expressed in terms of the fundamental solution of
the heat equation); each “site” (level) gets a direct and a “reflected”
contribution from the boundary n ) 1

where qn(t) are the probabilities of the continuous-time symmetrical
random walk engendered by the equations82

whose solution starting at n ) 1 for t ) 0 [i.e., pn(0) ) δn1] is
easily found by applying the discrete Fourier transform and reads

In(t) being the modified Bessel function.83 As is well-known, for t
f ∞ and n f ∞ with n2/t ) const, this yields

Note that the boundary condition is essential in assuring probability
conservation

for any t. The above equations are of general validity. In particular

(and p1(0) ) 1). It is also possible, by using the solutions in eqs
47 and 49, to evaluate the mean and second moment

Indeed, by using eq 48, one can obtain explicit differential equations
involving these quantities, valid for any t

whose integration gives

Let us also give, for completeness, the expression of µ and σ for
times Dt . 1 [but always t , Td; see eq 60 below]. From eqs 56
and 57

In order to compare these results with those of the following
sections, consider that

where TR is the Rabi period and x ) xs ) Rs
2TR/τ (s ) 1, 2) is

essentially the scaling parameter introduced in eq 37.
In reality, as we already emphasized, the number N (NL or

NR) of accessible rotational levels is in fact finite because the
molecule dissociates after absorbing a sufficient amount of
energy. In order to account for this process, one can add an
(N+1)th absorbing level (in each subspace). However, since
we are interested in phenomena, such as the QZE, that can be
brought to light within time scales shorter than the dissociation
time, the introduction of an absorbing level is an unnecessary
complication that can be easily avoided by restricting our
attention to the relevant time scales. Let us therefore estimate
the time scale at which dissociation occurs. If a molecule
dissociates when it reaches level N + 1, namely, if only N levels
take part in the diffusion process, the “dissociation” time reads

This is the time needed by the system, which starts in the ground
level, in order to reach the uppermost level via the diffusive
propagation engendered by the collision. This rough estimate
of the “dissociation” time can be improved; a better analysis
yields Td ) N2τ/π2R2, which is roughly of the same order of
magnitude.

In our analysis, we will assume N ) 40. Within the numerical
range of the parameters R and τ to be used in our simulation,
the dissociation time Td varies between 2 and 12 Rabi periods.
In the following, we will always remain well below this
threshold.

6. Zeno Effect in Coupled Subspaces

We have seen in section 3 that when the L and R subspaces
are coupled, namely, when Ω * 0, a QZE can be obtained by
increasing the collision frequency. Indeed, as we will show, by
increasing the collision frequency, the probability of remaining
in the initial subspace decays more slowly. We also commented
on the possibility of studying the Zeno dynamics in two different
situations, one classically more intuitive and the other one less
intuitive. These different names reflect the fact that the former

∇+pn ) pn+1 - pn ∇-pn ) pn - pn-1 (46)

pn(t) ) qn(Dt) + q1-n(Dt) (47)

q̇n ) qn-1 - 2qn + qn+1 -∞ < n < ∞ (48)

qn(t) ) e-2tI|n-1|(2t) (49)

qn(t) ∼ 1

√4πt
exp(- (n - 1)2

4t ) (50)

∑
n)1

+∞

pn(t) ) ∑
n)-∞

+∞

qn(Dt) ) 1 (51)

p1(t) ) e-2Dt[I0(2Dt) + I1(2Dt)] (52)

µ(t) ) ∑
n)1

∞

npn(t) (53)

σ2(t) ) ∑
n)1

∞

n2pn(t) (54)

µ̇(t) ) Dp1(t) ) De-2Dt[I0(2Dt) + I1(2Dt)]

σ̇2(t) ) 2D + Dp1(t)
(55)

µ(t) ) 1
2
+ 1

2
e-2Dt[(1 + 4Dt)I0(2Dt) + 4DtI1(2Dt)]

(56)

σ2(t) ) 2Dt + µ(t) (57)

µ(t) ∼ �4D
π

t

σ(t) ∼ √2Dt

(58)

Dt ) x
t

TR
(59)

Td =
N2

D
) N2τ

R2
) N2

x
TR (60)
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case can be understood (at least qualitatively) by means of a
classical Markov process while the latter cannot. Both Zeno
effects are contained in the master equation derived in section
4 and are a consequence of the features of the collisions with
the other molecules constituting the environment, or, in other
words, of the coupling constants of the interaction Hamiltonian
Hcoll. The resulting dynamics will be numerically investigated
in full generality in section 7. However, before we show the
results of the numerical simulation, let us discuss the main
qualitative features of the dynamics without solving the complete
master equation. This will be done in the present section with
the help of some working hypotheses and will help us clarify
some additional features of the Zeno effects.

When Ω * 0, the two subspaces HL and HR are coupled
through their ground states. The evolution is described by eq
43, supplemented by the following three equations

where pc is the coherence term between states |1L〉 and |1R〉

responsible for the coupling between the two subspaces. The
total probabilities of being in the left and right subspaces read

respectively. The derivatives of these quantities are easily seen
to be simply related to the coherence term

Notice that ṖL + ṖR ) 0 (conservation of particles number).
Let our particles start in the left subspace at time t ) 0.
Therefore, the quantity of interest is PL. One can obtain the
evolution equation for PL(t) by eliminating pc by means of eq
63

where we set D ≡ (DL + DR)/2. This equation shows that the
dynamics of PL is governed only by the population difference
between the ground states, irrespectively of the population of
the higher levels. This introduces an interesting picture of the
dynamics, in which the Rabi oscillations act as a “source” for
the probability. The source drains particles from the left to the
right subspace if p1L

> p1R
and vice versa if p1L

< p1R
.

Our initial condition will always be p1L
(0) ) 1, initial

population in the ground state of the left subspace. For t , 1/D
, TR ) 2π/Ω (which is always true for our choice of

parameters), we can set p1L
(t) ) 1 + O(Dt) and p1R

(t) ) O(Dt),
and a power series solution of eq 67, with initial conditions
PL(0) ) 1 and ṖL(0) ) 0, yields

which shows that the quadratic region of the Rabi oscillation is
not perturbed by the collisional dynamics (namely, it does not
depend on R), even thought it extends up to times shorter than
1/D , TR. This result was to be expected47 and is well observed
in our numerical experiments, also for very high collision
frequencies.

Equation 67 is exact, but it is not a closed equation for the
total probability PL. One needs the populations of the ground
states in order to obtain PL. We will therefore introduce an ansatz
for the functional form of the populations of the ground states,
valid for large values of the parameter x defined in eq 37, which
will enable us to get a closed equation for PL. In addition, we
will also gain a deeper understanding of the Zeno phenomenon
for this system. The ansatz consists of substituting for p1L/R

the
solution in eq 52, obtained for the decoupled subspaces (Ω )
0), normalized to PL/R. This “adiabatic” (Born-Oppenheimer-
like) approximation relies upon the assumption that the time
scale of the internal collisional dynamics is much faster than
the Rabi one (1/D , TR), so that particles are drained from the
ground level and redistributed according to the uncoupled
dynamics. The Rabi coupling simply accounts for the varying
number of particles present in each subspace. This ansatz is
translated into the equations

where fL/R(t) are the population probabilities of the ground states
given by the uncoupled dynamics (eq 52)

Substituting into eq 67, we obtain

which is the equation of motion of a unit mass forced pendulum
with varying frequency. The initial conditions are PL(0) ) 1
and ṖL(0) ) 0. It is easy to prove that if fR/(fL + fR) tends to
a well-defined limit and its first and second derivatives vanish
when t f ∞, then there is a stable fixed point at t ) ∞

and any solution will eventually reach this point. (Actually, one
always (implicitly) assumes t , Td. If one looks at longer times
tg Td, this equilibrium state appears as a metastable state, which
decays into the true equilibrium state.) This feature of the
population of the left subspace is always observed in the
numerical solutions. An asymptotic analysis of the Bessel
functions, performed with 1/D , t , Td shows that all of these

ṗ1L
) DL(-p1L

+ p2L
) + Ωpc(t) (61)

ṗ1R
) DR(-p1R

+ p2R
) - Ωpc(t) (62)

ṗc(t) ) -
DL + DR

2
pc(t) - 2Ω(p1L

(t) - p1R
(t))

(63)

pc ) -2Im F1L1R
) i(F1L1R

- F1R1L
) (64)

PL(t) ) ∑
nL

pnL
(t) PR(t) ) ∑

nR

pnR
(t) (65)

ṖL(t) ) Ωpc(t) ṖR(t) ) -Ωpc(t) (66)

P̈L + DṖL + 2Ω2(p1L
- p1R

) ) 0 (67)

PL(t) ) 1 - Ω2t2 + O(Ω2t2) (68)

p1L ) PL(t)fL(t)
p1R ) PR(t)fR(t) ) (1 - PL)fR(t)

(69)

fL/R ) e-2DL/Rt[I0(2DL/Rt) + I1(2DL/Rt)] (70)

P̈L + DṖL + 2Ω2(PL(fL + fR) - fR) ) 0 (71)

PL* )
fR(t)

fR(t) + fL(t) |
tf∞

(72)
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requirements are satisfied and an equilibrium distribution exists
and is given by

Let us see now how the Zeno effect emerges in this picture in
three different cases.

6.1. Case rL ) rR ) r * 0. The first case study is obtained
by setting R ) RL ) RR * 0, so that the (collision dynamics in
the) two subspaces are identical and fL(t) ) fR(t) ≡ f(t). We
change the time variable from t to the dimensionless t/TR )
Ωt/2π and set x ) DTR ) R2TR/τ ) 2πR2τ/Ω, obtaining (the
dot denotes now differentiation with respect to t/TR)

where f(t) is given by eq 70. Since DL ) DR, according to eq
73, PL will eventually tend to PL* ) 1/2. However, we will see
that the typical time scale Trelax of this relaxation process will
increase with x, and this will be interpreted as a QZE.

The proposed analogy with a classical damped harmonic
oscillator suggests that when x . 1, we get ṖL ∼ 1/xR and P̈L

∼ 1/x2R, with R > 1. Indeed, we will see that the solution satisfies
this hypothesis with R ) 3/2, so that the first term (P̈L ∼ x-2R)
is negligible with respect to the second (xṖL ∼ x1-R) and the
third one (both f and PL are of order 1) and hence can be dropped
from eq 74. Thus, we are left with a first-order, separable
differential equation whose solution is [here, PL(0) ) 1 but ṖL(0)
) O(1/x)]

For xt . 1, we obtain a stretched exponential

from which one can define a relaxation time as the only
characteristic time present in the exponential (restoring natural
time units)

The Zeno effect consists in the fact that by increasing x (more
frequent collisions), the corresponding curves of PL tend to zero
more slowly. These predictions are in qualitative and quantitative
agreement with the numerical simulations of the next section.

In order to get a rough preliminary idea of the issues discussed
in this section, see Figures 4 and 5, where the numerical results
(to be described in greater details in the following) are compared
to eqs 76 and 77. The probability in eqs 75 and 76 is correct up
to a precision of 10%, showing that the ansatz (eq 69) yields
sensible results. Notice that x ) 48 in Figure 4, so that the
solution in eq 76, which is supposed to be valid for xt . 1,
must yields accurate results for t/x3 g 10-6, as one indeed

observes. A numerical fit for the exponent in the stretched
exponential yields t0.3 rather than t1/2, confirming the general
functional dependence. The very fact that the global relaxation
law is of the stretched exponential type suggests that the
dynamics is highly nontrivial, but we will not elaborate on this
here. Finally, as can be seen from Figure 5, the scaling law (eq
77) is very well verified.

6.2. Case rL * rR ) 0. Let us briefly reconsider the first
case analyzed in section 3, Figure 2. Here, the left subspace is
affected by collisions while the right one is not. Although this
is not a realistic situation, it is interesting and instructive to
look at it. We shall show that also in this case, as the collision
strength is increased, the system tends to spend more time in
the initial (left) subspace.

If RR ) 0 and RL * 0, then fL ≡ f and fR ) 1, and eq 71
reads

where x ) RL
2TR/2τ ) πRL

2/Ωτ. By means of the same
approximations of the preceding subsection we obtain, for x .
2(2π)1/2

PL* ) 1

1 + √DR/DL

)
RL

RL + RR
(73)

P̈L + xṖL + 8π2f(t)(2PL - 1) ) 0 (74)

PL(t) ) 1
2
+ 1

2
exp[8π2

x2
(1 - e-2xt(1 + 4xt)I0(2xt)

- e-2xt4xtI1(2xt))] (75)

PL(t) =
1
2
+ 1

2
exp[8π2

x2
- 32π3/2( t

x3)1/2] (76)

Trelax ∝ x3TR (77)

Figure 4. Comparison between the numerical results and eq 76. We
set x ) 48.

Figure 5. Rescaled probabilities for x ) 32, 48, and 56 (numerical
results).

P̈L + xṖL + 8π2[PL(1 + f(t)) - 1] ) 0 (78)

PL(t) = 1 - 2√2π
x

e-
(√8π2t/x + 2√2π/x)2

×

Φ(�8π2t
x

+ 2√2π
x ) (79)
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where Φ(z) is the error function of imaginary argument83

Here, the definition of a relaxation time is not easy (no simple
scaling law exists). However, both in this solution and in the
numerical data, PL has a single minimum PL*, which is an
increasing function of x; this can be regarded as a manifestation
of a (classically intuitive) Zeno effect, as explained in section
3. From eq 79, the value of the minimum is

and is an increasing function of x. (Consider f(y) ) e-y2Φ(y). Then,
the numerical value of 2.7 in eq 81 is given by 23/2πf*, where f*
) 0.621 is the maximum of f.). This law is well confirmed by
the numerical results shown in Figure 2. Beyond the minimum,
PL tends to 1 with a power law

This is again a Zeno effect; by increasing the collision rate x,
the survival probability increases.

6.3. Case rR * rL ) 0. This is the second case analyzed in
section 3, Figure 3. If RL ) 0 and RR * 0, then fR ) f, fL ) 0,
and eq 71 reads (here, x ) RR

2 TR/2τ)

Again, we neglect P̈L with respect to xṖL and PL, obtaining a
first-order equation whose solution is (in the large x limit)

This displays a (quantum) Zeno effect since for xt . 1, one
gets

(compare with eq 79).
Once again, there is a scaling law, and one can define a

characteristic relaxation time (in natural units)

Observe that this scaling is at variance with eq 77.

7. Simulations

7.1. Method. We will now study in detail the features and
results of the integration of the kinetic equation by means of a
Monte Carlo method already used in the past to study the
kinetics of two-level systems in nonequilibrium gases.74–77

Let us recall the main features of the simulation. Some details
have already been given in section 3. We set Ω ) 935 s-1, R
) RR ) RL = 0.2-0.4, τ-1 e 2 × 105 s-1, and NL ) NR ) 40
energy levels in each subspace, with energies given by eq 9,
where ns ) 1, ..., 40, ωL ) 1.3 × 1010 s-1, and ωR ) 9.7 ×109

s-1. The minimum energy difference ∆E between the levels is
of great importance. One can check that with the above-
mentioned numerical figures, ∆E/p ) 2.8 × 109 s-1 and the
condition in eq 28 is always satisfied. (The determination of
δE ≡ min1emLeNL,1enReNR

|EmL - EnR| for generic NL/R, with Ens

given by eq 9, poses an interesting problem of number theory.
However, in our case NL ) NR ) 40, and one can numerically
check that the value ∆E/p ) 2.8 × 109 s -1 given in the text is
stable against perturbation of ωL,R of a few percent (well above
experimental uncertainties)). The population’s dynamics is
collected as an average over an ensemble of 5 × 103 simulated
particles. Since the underlying equations are linear, the particles
can be serially simulated and the precision of the results
sharpened by simply increasing the sample size. The simulations
provide the time variation of all of the elements of the one-
particle reduced density matrix. We constantly checked all of
the level populations pns

, 1 e ns e 40, s ) L, R, but will only
discuss in the following the temporal behavior of the total
population of the left subspace PL. The initial situation, in all
of the simulations, is

so that the initial population is concentrated in the |1L〉 state
(the ground state of the left subspace).

7.2. Results. It is interesting to discuss in more detail some
features of the relaxation process and compare them to the
analytical model proposed in section 4. We track the temporal
evolution of all of the populations and try to estimate the speed
and the extent at which the levels get populated. Two suitable
indicators are the mean µ ) µL and standard deviation σ ) σL,
introduced in eqs 53 and 54. They are plotted in Figures 6 and
7 and accurately reproduce the analytical results of eqs 56 and
57 (remember that Dt ) xt/TR). The analytical results are not
shown in the graphs for they cannot be distinguished from the
numerical ones.

Notice also in both figures the square root dependence (eq
58) for large times t . TR/x = 3 × 10-2TR. It is worth stressing
that this also provides a direct proof that boundary effects,

Φ(z) ) 2

√π
∫0

z
dxex2

(80)

PL* ) 1 - 2.7
x

(81)

PL(t) = 1 - � 4
πxt

(82)

P̈L + xṖL + 8π2[PL(1 + f(t)) - f(t)] ) 0 (83)

PL(t) = e-
(√8π2t/x + 2√2π/x)2

×

[1 + 2√2π
x

Φ(�8π2t
x

+ 2√2π
x )] (84)

PL(t) ∼ e-
(√8π2t/x + 2√2π/x)2

(85)

Trelax ∼ xTR (86)

Figure 6. Temporal evolution of the mean µL introduced in eq 53 for
RR ) RL ) R ) 0.2 and x ) 32, 48, and 56.

p1L
) 1 all others ) 0 (87)
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related to the finiteness of the number of levels, can be safely
neglected for the times considered here.

We now show how the relaxation of the population depends
on the collision frequency τ-1 for fixed values of the parameter
R ) RL ) RR. Figure 8 shows the temporal evolution of the
relative population of the left subspace PL(t) ≡ ∑nL

pnL
(t) (once

again, the analytical results cannot be distinguished from the
numerical ones and are not shown in the graph). We note that
this quantity will always eventually tend to its equilibrium value
of PL* ) 1/2, according to eq 73. However, the important point
is that by increasing the collision frequency from 300TR

-1 to
800TR

-1, the system tends to remain in the left subspace for a
longer time. This is evident in the plot and is a clear
manifestation of a QZE. We also notice (although this is not
clearly visible in Figure 8 due to the scale chosen) that there is
always a short-time quadratic region, characterized by a “Zeno
time” P̈L(0) ) -Ω, in full agreement with eq 68. The features
of this short-time region are independent of other parameters
(such as R and τ),47 as can be seen in the figure. Finally, we
emphasize that x ) R2T/τ ranges between 12 and 32 and is
therefore always .1, so that the analysis of section 6.1 applies.

A similar Zeno effect is evident when the parameter R is
varied while keeping the collision frequency τ-1 constant, as
displayed in Figure 9 (once again, we only display the numerical
results for the analytical ones cannot be distinguished). Unlike
in the preceding case, where the Zeno effect was due to
increasing collision frequency, now, it is due to increasing
collision effectiveness; a larger R entails more dephasing and

decoherence and, in a loose sense, a better “measurement” of
the quantum state. The parameter x ) R2T/τ ranges between 39
and 72 (.1), and one observes again the presence of a
(parameter-independent) short-time region.

As the analysis of sections 4-6 shows, the dynamics of the
system should be ruled by the scaling parameter

Figure 10 shows how this scaling law is supported by the results
of the numerical simulation. The plot shows three sets of curves
corresponding to three different values of x. In each set, the
values of R and τ were varied as indicated. Some deviations
from the scaling law (of order 5%) can be observed and are to
be ascribed to the influence of the terms neglected in deriving
eq 36. Incidentally, notice again the short-time quadratic
behavior.

8. Concluding Remarks

We have studied a Zeno effect in a multilevel molecule made
up of 40 + 40 (right and left) levels, one of which (the ground
state of the left subspace) is initially populated. The evolution
toward the right subspace is slowed down both because the
collisions remove population density “upwards” from the left
ground state (a classically intuitive process) and because they
“dephase” (or, analogously, make energetically less favorable)
the transitions toward the right subspace. The latter process is
classically less intuitive but is readily understood if one thinks

Figure 7. Temporal evolution of the standard deviation σL introduced
in eq 54 for RR ) RL ) R ) 0.2 and x ) 32, 48, and 56.

Figure 8. Temporal evolution of PL as a function of the collision
frequency τ-1. We always set R ) RL ) RR ) 0.2.

Figure 9. Temporal evolution of PL as a function of R ) RL ) RR.
For all calculations, we set τ-1 ) 800Ω/2π.

Figure 10. Test of the scaling law in eq 88. Temporal evolution of PL

for different values of x ) R2T/τ; three simulations were done with RR

) RL ) R ) 0.2, 0.25, and 0.4. The x ranges between 32 to 56.

x ) DTR )
R2TR

τ
(88)
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in terms of quantum transition amplitudes (or of the Fermi
“golden” rule for a bona fide unstable system). The description
of the underlying physical processes, including the dephasing
effects that stem from molecular collisions, has been formulated
in terms of a master equation that duly takes into account
quantum mechanical and (environment-induced) classical effects.

It is worth stressing that the general ideas and techniques
introduced in this article are valid for any multilevel molecule
and any possible level distribution; we focused on the case in
eq 9 only for concreteness. Those situations in which eq 28 is
not valid are very particular cases, and their analysis, although
of interest, goes beyond the scope of this article. We emphasize
that our analysis is in qualitative agreement with the experi-
ment57 and sheds additional light on its meaning. Roughly
speaking, more frequent collisions (namely, a higher pressure
of the surrounding gas) tend to hinder some quantum transitions,
yielding a quantum Zeno suppression of the dynamics. However,
it is also clear that there are many interesting effects that deserve
to be investigated, such as the formation of the Zeno subspaces
and the precise role played by the distribution of the energy
levels (that should ultimately affect the relaxation process). The
detailed study of these features may lead to further interesting
experimental and theoretical work and paves the way toward
the refinements of experimental techniques in (nuclear) spin
polarization by molecular collisions with the surrounding gas
(environment), the efficient preservation of spin-polarized gases,
and the control of decoherence in quantum computing with
molecules, atoms, and ions. One of the most interesting
applications of the quantum Zeno effect is in the control,
manipulation, and suppression of decoherence, and this requires
a detailed knowledge and an accurate description of the physical
and chemical phenomena at the origin of the dephasing
mechanisms. This article is a step in this direction.

On the other hand, it is also necessary to emphasize that we
neglected temperature effects and rapid structural rearrangement
phenomena leading to a Boltzmann distribution of the level
populations. This is a conceptually interesting problem that
involves delicate issues; a sensible estimate of the time scales
involved in these thermalization processes is a challenging
problem that requires further investigation.

We conclude by noticing that the Hamiltonian in eqs 1-6 is
also relevant for the study of quantum chaos and Anderson
localization.84–90 The analysis of Poissonianly distributed “kicks”
(eq 7) would introduce a novel element of discussion in such a
context, where the time interval between kicks [δτj in eq 7] is
normally taken to be constant. One would expect, on the basis
of physical intuition, that Poissonianly distributed kicks should
enhance the onset of a chaotic regime. The interplay between
quantum chaos and decoherence, besides being of fundamental
interest, has also interesting applications because one should
endeavor to avoid (classically) chaotic situations in order to
protect the system from unwanted decoherence effects.
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Appendix

It is interesting to look explicitly at the derivation of eq 36
from eq 27. The physical mechanism at work is the effective
decoupling between the fast and the slow modes in eq 27. Let

us start from the equation for F1L2L
that explicitly reads [here

ω2L1L
≡ (E2L

- E1L
)/p]

When eq 28 is satisfied, the first term on the right-hand side
dominates over the others, and one obtains

which yields a very fast dynamics for the term F1L2L

The equations for the other off-diagonal components of F are
similar. These equations yield very rapidly oscillating solutions.

On the other hand, the dynamics of the populations F1s1s
, with

s ) L, R, and of the coherent terms F1L1R
is governed by the

equations

It is apparent that no “diagonal” fast frequency ω is present,
and these matrix elements evolve over time scales τ and Ω-1,
which are much larger than ω-1. Therefore, the contribution of
all of the off-diagonal fast terms of the type in eq 91 is averaged
to zero over the long time scales τ and Ω-1; the dynamics of
the slow and fast terms completely decouples, and we get

dF1L2L

dt
) iω2L1L

F1L2L
- iΩF1R2L

- i
RL

τ
(F2L2L

- F1L1L

- F1L3L
) -

RL
2

2τ
(F1L2L

+ F3L2L
- 2F2L1L

- 2F2L3L

+ 2F1L2L
+ F1L4L

) (89)

dF1L2L

dt
= iω2L1L

F1L2L
(90)

F1L2L
(t) ) F1L2L

(0) exp(iω2L1L
t) (91)

dF1L1L

dt
) -iΩ(F1R1L

- F1L1R
) +

RL
2

τ
(F2L2L

- F1L1L
)

- i
RL

τ
(F2L1L

- F1L2L
) -

RL
2

2τ
(F3L1L

+ F1L3L
)

dF1R1R

dt
) iΩ(F1R1L

- F1L1R
) +

RR
2

τ
(F2R2R

- F1R1R
)

- i
RR

τ
(F2R1R

- F1R2R
) -

RR
2

2τ
(F3R1R

+ F1R3R
)

dF1L1R

dt
) iΩ(F1L1L

- F1R1R
) -

RL
2

2τ
F1L1R

-
RR

2

2τ
F1R1L

-
RR

2

2τ
F1R1L

- i
RL

τ
F2L1R

- i
RR

τ
F1L2R

+
RLRR

τ
F2L2R

-
RL

2

2τ
F3L1R

-
RR

2

2τ
F1L3R

(92)

dF1L1L

dt
= -iΩ(F1R1L

- F1L1R
) +

RL
2

τ
(F2L2L

- F1L1L
)

dF1R1R

dt
= iΩ(F1R1L

- F1L1R
) +

RR
2

τ
(F2R2R

- F1R1R
)

dF1L1R

dt
= iΩ(F1L1L

- F1R1R
) -

RL
2

2τ
F1L1R

-
RR

2

2τ
F1R1L

(93)
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Analogously, the evolution equations of the populations pms

) Fmsms
read (ms * 1L,R)

and by the same argument reduce to

which are in the form of eqs 29-36. Notice the absence of fast
and oscillating terms.
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(24) Řeháček, J.; et al. Phys. ReV. A 2000, 62, 013804.
(25) Militello, B.; Messina, A.; Napoli, A. Phys. Lett. A 2001, 286, 369.
(26) Militello, B.; Messina, A.; Napoli, A. Fortschr. Phys. 2001, 49,

1041.
(27) Agarwal, G. S.; Scully, M. O.; Walther, H. Phys. ReV. Lett. 2001,

86, 4271.
(28) Frishman, E.; Shapiro, M. Phys. ReV. Lett. 2001, 87, 253001.
(29) Panov, A. D. Phys. Lett. A 2002, 298, 295.
(30) Lane, A. M. Phys. Lett. A 1983, 99, 359.
(31) Schieve, W. C.; Horwitz, L. P.; Levitan, J. Phys. Lett. A 1989,

136, 264.
(32) Gurvitz, S. A. Phys. ReV. B 1997, 56, 15215.
(33) Facchi, P.; Pascazio, S. Phys. ReV. A 2000, 62, 023804.
(34) Kofman, A. G.; Kurizki, G. Nature 2000, 405, 546.
(35) Facchi, P.; Nakazato, H.; Pascazio, S. Phys. ReV. Lett. 2001, 86, 2699.
(36) Fischer, M. C.; Gutiérrez-Medina, B.; Raizen, M. G. Phys. ReV.

Lett. 2001, 87, 040402.
(37) Peres, A. Am. J. Phys. 1980, 48, 931.
(38) Kraus, K. Found. Phys. 1981, 11, 547.
(39) Sudbery, A. Ann. Phys. 1984, 157, 512.
(40) Schulman, L. S. Phys. ReV. A 1998, 57, 1509.
(41) Facchi, P.; Pascazio, S. Quantum Zeno effects with ‘pulsed’ and

‘continuous’ measurements. In Time’s arrows, quantum measurements and

superluminal behaVior; Mugnai, D., Ranfagni, A., Schulman, L. S., Eds.;
CNR: Rome, 2001; p139.

(42) Facchi, P.; Pascazio, S. Fortsch. Phys. 2001, 49, 941.
(43) Zeh, H. D. Found. Phys. 1970, 1, 69.
(44) Simonius, M. Phys. ReV. Lett. 1978, 40, 980.
(45) Harris, R. A.; Stodolsky, L. J. Chem. Phys. 1981, 74, 2145.
(46) Harris, R. A.; Stodolsky, L. Phys. Lett. B 1982, 116, 464.
(47) Facchi, P.; Pascazio, S. Quantum Zeno and inverse quantum Zeno

effects. In Progress in Optics Wolf, E., Ed.; Elsevier: Amsterdam, The
Netherlands, 2001; Vol. 42, p 147.

(48) Nakazato, H.; Namiki, M.; Pascazio, S. Int. J. Mod. Phys. B 1996,
10, 247.

(49) Home, D.; Whitaker, M. A. B. Ann. Phys. 1997, 258, 237.
(50) For experimental confirmation, see: Wilkinson, S. R.; Bharucha,

C. F.; Fischer, M. C.; Madison, K. W.; Morrow, P. R.; Niu, Q.; Sundaram,
B.; Raizen, M. G. Nature 1997, 387, 575.

(51) Facchi, P.; Gorini, V.; Marmo, G.; Pascazio, S.; Sudarshan, E. C. G.
Phys. Lett. A 2000, 275, 12.

(52) Facchi, P.; Pascazio, S.; Scardicchio, A.; Schulman, L. S. Phys.
ReV. A 2002, 65, 012108.

(53) Machida, K.; Nakazato, H.; Pascazio, S.; Rauch, H.; Yu, S. Phys.
ReV. A 1999, 60, 3448.

(54) Facchi, P.; Pascazio, S. J. Phys. A: Math. Theor. 2008, 41, 493001.
(55) Facchi, P.; Pascazio, S. Phys. ReV. Lett. 2002, 89, 080401.
(56) Kwiat, R.; Weinfurter, H.; Herzog, T.; Zeilinger, A.; Kasevich, M.

Phys. ReV. Lett. 1995, 74, 4763.
(57) Nagels, B.; Hermans, L. J. F.; Chapovsky, P. L. Phys. ReV. Lett.

1997, 79, 3097.
(58) Balzer, C.; Huesmann, R.; Neuhauser, W.; Toschek, P. E. Opt.

Commun. 2000, 180, 115.
(59) Toschek, P. E.; Wunderlich, C. Eur. Phys. J. D 2001, 14, 387.
(60) Wunderlich, C.; Balzer, C.; Toschek, P. E. Z. Naturforsch. 2001,

56a, 160.
(61) Balzer, C.; Hannemann, T.; Reib, D.; Wunderlich, C.; Neuhauser,

W.; Toschek, P. E. Opt. Commun. 2002, 211, 235.
(62) Mølhave, K.; Drewsen, M. Phys. Lett. A 2000, 268, 45.
(63) Xiao, L.; Jones, J. A. Phys. Lett. A 2006, 359, 424.
(64) Streed, E. W.; Mun, J.; Boyd, M.; Campbell, G. K.; Medley, P.;

Ketterle, W.; Pritchard, D. E. Phys. ReV. Lett. 2006, 97, 260402.
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