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8.4.1 Stochastic differentials and Itō formula . . . . . . . . . . . . . . 239
8.4.2 The SDE ’s and their solutions . . . . . . . . . . . . . . . . . . . 240
8.4.3 SDE ’s and Fokker-Planck equations . . . . . . . . . . . . . . . . 241

8.5 Notable SDE ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.5.1 SDE ’s with constant coefficients . . . . . . . . . . . . . . . . . . 243
8.5.2 SDE ’s with time dependent coefficients . . . . . . . . . . . . . . 244

5



N. Cufaro Petroni: Probability and Processes CONTENTS

8.5.3 SDE ’s with no drift and x-linear diffusion . . . . . . . . . . . . 245
8.5.4 SDE ’s with x-linear drift and constant diffusion . . . . . . . . . 248

9 Dynamical theory of Brownian motion 251
9.1 Free Brownian particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.2 Ornstein-Uhlenbeck vs Einstein-Smoluchowski . . . . . . . . . . . . . . 254
9.3 Ornstein-Uhlenbeck Markovianity . . . . . . . . . . . . . . . . . . . . . 255
9.4 Brownian particle in a force field . . . . . . . . . . . . . . . . . . . . . 258
9.5 Boltzmann distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

III Appendices 267

A Consistency (Sect. 2.3.4) 269

B Inequalities (Sect. 3.3.2) 277

C Bertrand’s paradox (Sect. 3.5.1) 281

D Lp spaces of rv ’s (Sect. 4.1) 285

E Moments and cumulants (Sect. 4.2.1) 287

F Binomial limit theorems (Sect. 4.3) 291

G Non uniform point processes (Sect 6.1.1) 295

H Stochastic calculus paradoxes (Sect. 6.4.2) 297

I Pseudo-Markov processes (Sect. 7.1.2) 303

J Fractional Brownian motion (Sect. 7.1.10) 307

K Ornstein-Uhlenbeck equations (Sect. 7.2.4) 309

L Stratonovich integral (Sect. 8.2.2) 313

Index 315

6



Part I

Probability

7





Chapter 1

Probability spaces

1.1 Samples

The first ideas of modern probability came (around the XVII century) from gambling,
and we too will start from there. The simplest example is that of a flipped coin with
two possible outcomes: head (T ) and tail (C). When we say that the coin is fair we
just mean that there is no reason to surmise a bias in favor of one of these two results.
As a consequence T and C are equiprobabile, and to make quantitative this statement
it is customary to assign a probability as a fraction of the unit so that in our example

p = P {T} =
1

2
q = P {C} =

1

2

Remark that p+ q = 1, meaning that with certainty (namely with probability 1) either
T or C shows up, and that there are no other possible outcomes. In a similar way for
a fair dice with six sides labeled as I, II, ..., V I we have

p1 = P {I} =
1

6
; . . . ; p6 = P {V I} =

1

6

Of course we still find p1 + ...+ p6 = 1
From these examples a first idea comes to the fore: at least in the elementary cases,

we allot probabilities by simple counting, a protocol known as classical definition (see
more later) providing the probability of some statement A about a random experiment.
For instance in a dice throw let A be “a side with an even number comes out”: in this
case we instinctively add up the probabilities of the outcomes corresponding to A; in
other words we count both the possible equiprobable results, and the results favorable
to the event A, and we assign the probability

P {A} =
number of favorable results

number of possible results

Remark that, as before, this probability turns out to be a number between 0 and 1. In
short, if in a fair dice throw we take A = “a side with an even number comes out”, B =

9
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“a side with a multiple of 3 comes out”, and C = “a side different from V I comes out”,
a simple counting entails that, with 6 equiprobabile results, and 3, 2 and 5 favorable
results respectively for A,B and C, we get

P {A} =
1

2
, P {B} =

1

3
, P {C} =

5

6

When instead we throw two fair dices the possible result are 36, namely the ordered
pairs (n,m) with n and m taking the 6 values I, ..., V I. The fairness hypothesis means
now that the 36 elementary events (I, I) ; (I, II) ; ... ; (V I, V I) are again equiprobable
so that for every pair

P {I, I} =
1

36
, P {I, II} =

1

36
, . . . ; P {V I, V I} =

1

36

We then find by counting that A = “the pair (V I, V I) fails to appear” comes out with
the probability

P {A} =
35

36

From the previous discussion it follows that the probability of a random event will
be a number between 0 and 1: 1 meaning the certainty of its occurrence and 0 its
impossibility while the intermediate values represent all the other cases. These assign-
ments also allow (at least in the simplest cases) to calculate the probabilities of more
complicated events by counting equiprobable results. It is apparent then the relevance
of preliminarily determining the set of all the possible results of the experiment, but
it is also clear that this direct calculation method becomes quickly impractical when
the number of such results grows beyond a reasonable limit. For example, the possible
sequences (without repetition) of the 52 cards of a French card deck are

52 · 51 · 50 · ... · 2 · 1 = 52! ≃ 8 · 1067

a huge number making vain every hope of solving problems by direct counting

Definition 1.1. A sample space Ω is the set (either finite or infinite) of all the
possible results ω of an experiment

Remark that Ω is not necessarily a set of numbers: its elements can be numbers, but
in general they are of an arbitrary nature. In our previous examples the sample space
Ω = {ω1, ω2, . . . , ωN} was finite with cardinality N : for a coin it has just two elements

Ω = {T, C} ; N = 2

while for a dice
Ω = {I, II, . . . , V I} ; N = 6

When instead our experiment consists in two coin flips (or equivalently in one flip of
two coins) we have

Ω = {TT, TC, CT, CC} ; N = 4

10
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while for n flips

Ω = {ω = (a1 , . . . , an) : ai = T oppure C} ; N = 2n

The most relevant instances of infinite spaces on the other hand are the sets of the
integer numbers N , of the real numbers R, of the n-tuples of real numbers Rn, of the
sequences of real numbers R∞, and finally RT the set of the real functions from T to
R. Of course in the case of finite sample spaces Ω – where we can think of adopting
the classical definition – it would be paramount to know first its cardinality N as in
the following examples

Exemple 1.2. Take a box containing M numbered (distinguishable) balls and sequen-
tially draw n balls by replacing them in the box after every extraction: we call it a
sampling with replacement. By recording the extracted numbers we get that the
possible results of the experiment are ω = (a1, a2, . . . an) with ai = 1, 2, . . .M and
i = 1, 2, . . . n, and possibly with repetitions. The sample spaces – the set of our
n-tuples – can now be of two kinds:

1. ordered samples (a1 , . . . , an): the samples are deemed different even just for
the order of the extracted labels and are called dispositions; for example with
n = 4 extractions, the sample (4 , 1 , 2 , 1) is considered different from (1 , 1 , 2 , 4);
it is easy to find then that the cardinality of Ω is in this case

Nd = Mn

2. non-ordered samples [a1 , . . . , an]: in this case the samples (4 , 1 , 2 , 1) and
(1 , 1 , 2 , 4) coincide so that the number of the elements of Ω, called partitions,
is now smaller than the previous one, and it is possible to show1 that

Nr =

(
M + n− 1

n

)
=

(M + n− 1)!

n! (M − 1)!

When instead we draw the balls without replacing them in the box we will have a sam-
pling without replacement. Apparently in this case the samples (a1, . . . , an) will
exhibit only different labels (without repetitions), and n ≤ M because we can not
draw a number of balls larger than the initial box content. Here too we must itemize
two sample spaces:

1. ordered samples (a1 , . . . , an): the so called permutations of M objects on n
places; their number is now

Np = (M)n =
M !

(M − n)!
= M(M − 1) . . . (M − n+ 1)

because with every draw we leave a chance less for the subsequent extractions.
Remark that if n = M , we have N = M ! namely the number of the permutations
of M objects on M places

1A.N. Shiryaev, Probability, Springer (New York, 1996)
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2. non-ordered samples [a1 , . . . , an]: we have now the combinations of M
objects on n places, and their number is

Nc =

(
M

n

)
=

M !

n!(M − n)!
(1.1)

because every non-ordered sample [a1, . . . , an] allows n! permutations of its labels
(see the previous remark), and then Nc · n! = Np leading to the required result

We started this section from the equiprobabile elements ω of a sample space Ω, and went
on to calculate the probabilities of more complicated instances by sums and counting
(classical definition). We also remarked however that this course of action is rather
impractical for large Ω, and is utterly inapplicabile for uncountable spaces. We will
need then further ideas in order to be able to move around these obstacles

1.2 Events

We already remarked that a subset A ⊆ Ω represents a statement about the results
of a random experiment. For instance, in the case of three coin flips the sample space
consists of N = 23 = 8 elements

Ω = {TTT, TTC, . . . , CCC}

and the subset
A = {TTT, TTC, TCT, CTT} ⊆ Ω

stands for the statement “T comes out at least twice on three flips”. In the following
we will call events the subsets A ⊆ Ω, and we will say that the event A happens if the
result ω of the experiment belongs to A, namely if ω ∈ A.

In short the events are a family of propositions and the operations among events (as
set operations) are a model for the logical connectives among propositions. For instance
the connectives OR and AND correspond to the operations union and intersection:

A ∪B = {ω : ω ∈ A , OR ω ∈ B}
A ∩B = AB = {ω : ω ∈ A , AND ω ∈ B} .

The logical meaning of the following operators on the other hand is illustrated by the
Venn diagrams in the Figure 1.1:

A = {ω : ω /∈ A} ;
A\B = A ∩B = {ω : ω ∈ A , but ω /∈ B} ;
A△B = (A\B) ∪ (B\A) (symmetric difference)

In this context of course Ω is the sure (certain) event, since every result ω belongs to
Ω, while ∅ is the impossible event since no result belongs to it. We will also say that

12
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W

B

A

Figure 1.1: Venn diagrams

A e B are disjoint or incompatible whenA ∩ B = ∅. It is apparent that the properties
of the set operations replicate the properties of the logical operations as for instance
in the identities

A ∩B = A ∪B ; A ∪B = A ∩B

known as de Morgan laws. As a consequence for two coin flips, from the events

A = {TT, TC, CT} = T comes out at least once
B = {TC, CT, CC} = C comes out at least once

we can produce other events as for example

A ∪B = {TT, TC, CT, CC} = Ω , A ∩B = {TC, CT} , A\B = {TT}

We should remark at once, however, that our family of events in Ω will not necessar-
ily coincide with the collection ℘(Ω) of all the subsets of Ω. Typically we choose a
particular sub-collection of parts of Ω, as for instance when Ω = R since ℘(R) would
include also pathological sets that are practically irrelevant. Only when Ω is finite
℘(Ω) will be the best selection. In any case, when we define a probabilistic model, me
must first select a suitable family of events, and we must stop here for an instant to
ask if we can pick up an arbitrary family or not. In fact, since we require that the
set operations among events (logical operations among propositions) produce again
acknowledged events, we should also require that our family of events be closed under
all the possible set operations

Definition 1.3. A non empty family F ⊆ ℘(Ω) of parts of Ω is an algebra when

Ω ∈ F
A ∈ F , ∀A ∈ F
A ∩B ∈ F , ∀A,B ∈ F

13
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Moreover F is a σ-algebra if it is an algebra and also meets the further condition∩
n

An ∈ F ∀ (An)n∈N of elements of F

Proposition 1.4. If F is a σ-algebra, then

∅ ∈ F
A ∪B ∈ F ∀A,B ∈ F
A\B ∈ F ∀A,B ∈ F∪
n

An ∈ F ∀ (An)n∈N of elements of F

Proof: Omitted2 �

In short a σ-algebra is a family of parts of Ω closed under finite or countable set oper-
ations, but not necessarily under uncountable operations on event collections (At)t∈T
where T is uncountable. From now on we will always suppose that our events constitute
a σ-algebra F , and we will also call probabilizable space every pair (Ω,F) where F
is a σ-algebra of events of Ω. For a given Ω the simplest examples of σ-algebras are

F∗ = {∅,Ω} ,
FA = {A,A, ∅,Ω} , (A ⊆ Ω) ,
F∗ = ℘(Ω) .

In particular the σ-algebra FA is called σ-algebra generated by A and can be
generalized as follows: for a given family E ⊆ ℘(Ω) of parts of Ω, we will call σ-
algebra generated by E the smallest σ-algebra σ(E) containing E

Proposition 1.5. Given a family E ⊆ ℘(Ω) of parts Ω, the σ-algebra σ(E) generated
by E always exists

Proof: Omitted3 �

Definition 1.6. A (finite or countable) family of subsets D = {D1, D2 . . .} is called a
decomposition of Ω in the atoms Dk, if the Dk are non empty, disjoint parts of Ω
such that

∪
k Dk = Ω.

The decompositions are indeed families of events such that always one, and only one
of them occurs, and hence are the models of mutually exclusive events that exhaust
all possibilities. Apparently, however, a decomposition is neither a σ-algebra, nor an
algebra: it does not contain, for one thing, the unions of atoms. However, based on

2A.N. Shiryaev, Probability, Springer (New York, 1996)
3A.N. Shiryaev, Probability, Springer (New York, 1996)
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1.2 Events

the Proposition 1.5, from a decomposition D we will always be able to provide the
generated σ-algebra F = σ(D), the simplest example being the decomposition

DA = {A,A}

supplying the generated σ-algebra FA

Exemple 1.7. We will now quickly discuss a few examples of relevant σ-algebras4:

1. When Ω coincides with the set R of real numbers take first the family I of (both
bounded and unbounded) right-closed intervals

I = (a, b], −∞ ≤ a < b ≤ +∞

namely intervals of the type

(a, b], (−∞, b], (a,+∞), (−∞,+∞)

with a, b ∈ R (right-unbounded intervals will conventionally considered right-
closed). Since interval unions are not in general intervals, I is neither a σ-
algebra, nor an algebra. Dropping the analytical details, take then the σ-algebra
generated by I denoted as B(R), and called Borel σ-algebra of R, while its
elements will be called Borel sets of R. The σ-algebra B(R) contains all the R
subsets of the type

∅, {a}, [a, b], [a, b), (a, b], (a, b), R

along with their (both countable and uncountable) unions and intersections. As a
matter of fact the same σ-algebra can be generated by different families of subsets,
notably by that of the open sets of R. The corresponding probabilizable space will
denoted as

(R, B(R))

2. Consider now the case Ω = Rn of the Cartesian product of n real lines: its
elements will now be the n-tuples of real numbers ω = x = {x1, x2, . . . , xn}. As
in the previous example, here too there are several equivalent procedures to produce
a suitable σ-algebra that can consequently be seen as generated by the open sets of
Rn: this too will be called Borel σ-algebra of Rn and will be denoted as B(Rn),
so that the probabilizable space will be

(Rn, B(Rn))

3. If (Rn)n∈N is a sequence of real lines, the Cartesian product R∞ = R1 × . . . ×
Rn × . . . will be the set of the sequences of real numbers with ω = x = (xn)n∈N .
In this case we start from the subsets of R∞ called cylinders and consisting

4A.N. Shiryaev, Probability, Springer (New York, 1996)
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of the sequences (xn)n∈N such that a finite number m of their components – say
(xn1 , xn2 , ..., xnm) – belong to a Borel set B ∈ B(Rm) called cylinder base. Since
these bases are finite-dimensional, from the results of the previous examples it is
possible to produce cylinder families that generate a σ-algebra denoted as B(R∞)
and again called Borel σ-algebra of R∞. The corresponding probabilizable space
then is

(R∞, B(R∞))

and it is possible to show that the all following subsets belong to B(R∞)

{x ∈ R∞ : sup
n

xn > a} , {x ∈ R∞ : inf
n
xn < a} ,

{x ∈ R∞ : lim
n

xn ≤ a} , {x ∈ R∞ : lim
n

xn > a} ,

{x ∈ R∞ : x converges } , {x ∈ R∞ : lim
n

xn > a} ,

4. Take finally the set RT of the functions defined on a (generally uncountable) sub-
set T ofR, and denote its elements ω in one of the following ways: x, x(·), x(t), (xt)t∈T .
Following the previous procedures, consider first the cylinders with (finite- or at
most countably infinite-dimensional) base B: these consists of the functions that
in a (at most countable) set of points tj take values belonging B. Build then the
σ-algebra generated by such cylinders, denoted B(RT ), and take(

RT , B(RT )
)

as the probabilizable space. It is possible to prove, however, that B(RT ) exactly
coincides with the set of cylinders with finite- or at most countably infinite-
dimensional bases, namely with the family of parts of RT singled out through
restrictions on (xt)t∈T on an at most countable set of points tj. As a consequence
several RT subsets – looking at the behavior of (xt)t∈T in an uncountable set of
points t – do not belong to B(RT ): for example, with T = [0, 1], the sets (all
relevant for our purposes)

A1 =
{
x ∈ R[0,1] : sup

t∈[0,1]
xt < a, a ∈ R

}
A2 =

{
x ∈ R[0,1] : ∃ t ∈ [0, 1] ∋′ xt = 0

}
A3 =

{
x ∈ R[0,1] : xt is continuous in t0 ∈ [0, 1]

}
do not belong to B(R[0,1]). In order to circumvent this hurdle it is customary
to restrict our starting set RT . For instance a suitable σ-algebra B(C) can be
assembled beginning with the set C of the continuous functions x(t): in so
doing the previous subsets A1, A2 ed A3 all will turn out to belong to B(C). We
will neglect however the details of this approach5

5A.N. Shiryaev, Probability, Springer (New York, 1996)
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1.3 Probability

1.3 Probability

For finite probabilizable spaces (Ω,F), with Ω of cardinality N , a probability can be
defined by attributing a number p(ωk) at every ωk ∈ Ω so that

0 ≤ p(ωk) ≤ 1 , k = 1, . . . , N ;
N∑
k=1

p(ωk) = 1

The probability of an event A ∈ F then is

P {A} =
∑
ωk∈A

p(ωk)

In this case the triple (Ω, F , P ) is called a finite probability space. We will delay
to the general setting a discussion of the usual properties of such a probability, for
instance

P {∅} = 0

P {Ω} = 1

P {A ∪B} = P {A}+ P {B} if A ∩B = ∅ (additivity)

P
{
A
}

= 1− P {A}
P {A} ≤ P {B} if A ⊆ B

This definition can be extended (with some care about the convergence) to a countable
Ω, but we must also remark that in every case the choice of the numbers p(ωk) is not
always a straightforward deal. The procedures to deduce the p(ωk) from the empirical
data would constitute the mission of the statistics that we will touch here only in
passing, while for our examples we will adopt the classical definition already men-
tioned in the Section 1.1: we first reduce ourselves to some finite sample space of N
equiprobable elements so that at every ωk a probability p(ωk) = 1/N is allotted, and
then, if N(A) is the number of samples belonging to A ∈ F , we take

P {A} =
N(A)

N

Exemple 1.8. Coincidence problem: From a box containing M numbered balls
draw with replacement an ordered sequence of n balls and record their numbers. We
showed in the Section 1.1 that the sample space Ω consists of N = Mn equiprobable
elements ω = (a1, . . . , an). If then

A = {ω : the ak are all different}

and since by simple enumeration it is

N(A) = M (M − 1) . . . (M − n+ 1) = (M)n =
M !

(M − n)!

17
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from the classical definition we apparently have

P {A} =
(M)n
Mn

=

(
1− 1

M

) (
1− 2

M

)
. . .

(
1− n− 1

M

)
.

This result can be interpreted as a birthdays problem: for n given persons what is
the probability Pn that at least two birthdays coincide? We take the ordered samples
– because every different arrangement of the birthdays on n distinguishable persons
is a different result – and an answer can be found from the previous discussion with
M = 365. If indeed P {A} is the probability that alle the birthdays differ, it is

Pn = 1− P {A} = 1− (365)n
365n

giving rise to the rather striking results

n 4 16 22 23 40 64
Pn 0.016 0.284 0.467 0.507 0.891 0.997

It is unexpected indeed that already for n = 23 the coincidence probability exceeds 1/2,
and that for just 64 people this event is almost sure. Remark in particular that when
n ≥ 366 apparently we have P {A} = 0 (namely Pn = 1) because a zero factor appears
in the product: this agrees with the fact that for more than 365 people we surely have
coincidences. On the other hand these results are less striking if we compare them with
that of slightly different question: “if I am one of the n persons of the previous problem,
what is the probability P ′

n that at least one birthday coincides with my birthday?” In
this case N(A) = 365 · 364n−1 and hence

P ′
n = 1−

(
364

365

)n−1

so that now

n 4 16 22 23 40 64 101
P ′
n 0.011 0.040 0.056 0.059 0.101 0.159 0.240

while P ′
n never coincides with 1 (even for n ≥ 366) since, irrespective of the number of

people, it is always possible that no birthday coincides with my birthday

Finite or countable probability models soon become inadequate because sample spaces
often are uncountable: it is easy to check for instance that even the well known set
of all the T -C infinite sequences of coin flips is uncountable. In these situations a
probability can not be defined by preliminarily attributing numerical weights to the
individual elements of Ω. If indeed we would allot non zero weights p(ω) > 0 to the
elements of an uncountable set, the condition

∑
ω∈Ω p(ω) = 1 < +∞ could never be

satisfied, and no coherent probability could be defined on this basis. In short, for the
general case, a definition of P {A} can not be given by simple enumeration as in the
finite (or countable) examples, but it needs the new concept of set measure that we
will now introduce

18



1.3 Probability

Definition 1.9. Given a σ-algebra F of parts of a set Ω, we call measure on F
every σ-additive map µ : F → [0,+∞], namely a map such that for every sequence
(An)n∈N of disjoint elements of F it is

µ
{∪

n

An

}
=
∑
n

µ{An}

We say moreover that µ is a finite measure se µ{Ω} < +∞, and that it is a σ-finite
measure if Ω is decomposable in the union Ω =

∪
nAn, An ∈ F of disjoint sets with

µ{An} < +∞, ∀n ∈ N . A finite measure P with P {Ω} = 1 is called a probability
measure.

Definition 1.10. We say that a statement holds P -almost surely (P -a.s.) if it holds
for every ω ∈ Ω, but for a set of P -measure zero. Sets of P -measure zero are also
called negligible

Of course for every A ∈ F we always have µ{A} ≤ µ{Ω} because µ is additive and
positive, and Ω = A∪A. This entails in particular that if µ is finite we will always have
µ{A} < +∞. Remark that a finite measure is always σ-finite, but the converse does
not hold: for example the usual Lebesgue measure on the real line, which attributes
the measure |b− a| to every interval [a, b], apparently is σ-finite, but not finite

Proposition 1.11. Given a probability measure P : F → [0, 1], the following properties
hold:

1. P {∅} = 0

2. P {A\B} = P {A} − P {AB} , ∀A,B ∈ F

3. P {A ∪B} = P {A}+ P {B} − P {AB} , ∀A,B ∈ F

4. P {A△B} = P {A}+ P {B} − 2P {AB} , ∀A,B ∈ F

5. P {B} ≤ P {A} se B ⊆ A , con A,B ∈ F

6. P {
∪

n An} ≤
∑

n P {An} , for every sequence of events (An)n∈N

The last property is also known as subadditivity

Proof: Omitted6 �

Definition 1.12. Kolmogorov axioms: We call probability space every ordered
triple (Ω,F ,P ) where Ω is a set of elements ω also said sample space, F is a σ-
algebra of events of Ω, and P is a probability measure on F

6A.N. Shiryaev, Probability, Springer (New York, 1996)

19



N. Cufaro Petroni: Probability and Processes

Remark that a event of probability 0 is not necessarily the empty set ∅, while an event
of probability 1 not necessarily coincides with Ω. This is relevant – as we will see later
– foremost for uncountable spaces, but even for finite spaces it can be useful give zero
probability to some sample ω, instead of making Ω less symmetric by eliminating such
samples. For instance it is often important to change the probability P on the same
Ω, and in so doing the probability of some ω could vanish: it would be preposterous,
however, to change Ω by eliminating these ω, and we choose in general to keep them,
albeit with 0 probability. An important case of change of probability is discussed in
the next section

1.4 Conditional probability

Definition 1.13. Given a probability space (Ω,F ,P ) ad two events A,B ∈ F with
P {B} ̸= 0, we will call conditional probability of A w.r.t. B

P {A|B} ≡ P {A ∩B}
P {B}

=
P {AB}
P {B}

while P {AB} takes the name of joint probability of A and B

Remark that for the time being the requirement P {B} ̸= 0 is crucial to have a coherent
definition: we postpone to the Section 3.4 its extension to the case P {B} = 0. Anyhow
the new map P { · |B} : F → [0, 1] is again a probability with

P {∅|B} = 0 P {Ω|B} = P {B|B} = 1 P
{
A|B

}
= 1− P {A|B}

P {A1 ∪ A2|B} = P {A1|B}+ P {A2|B} if A1 ∩ A2 = ∅

and so on, so that in fact (Ω,F ,P { · |B}) is a new probability space

Proposition 1.14. Total probability formula: Given (Ω,F ,P ), an event A ∈ F
and a decomposition D = {D1, . . . , Dn} with P {Dj} ̸= 0, j = 1, . . . , n we get

P {A} =
n∑

j=1

P {A|Dj} P {Dj}

Proof: Since

A = A ∩ Ω = A ∩

(
n∪

j=1

Dj

)
=

n∪
j=1

(A ∩Dj)

it is enough to remark that the events A ∩Dj are disjoint to have

P {A} = P

{
n∪

j=1

(A ∩Dj)

}
=

n∑
j=1

P {A ∩Dj} =
n∑

j=1

P {A|Dj} P {Dj}

because P is additive �
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1.4 Conditional probability

In particular, when D = {B, B} the total probability formula just becomes

P {A} = P {A|B} P {B}+ P
{
A|B

}
P
{
B
}

(1.2)

a form that will be used in the next example

Exemple 1.15. Consecutive draws: Take a box with M balls: m are white and
M − m black. Draw now sequentially two balls: neglecting the details of a suitable
probability space, consider the two events

B = “the first ball is white”

A = “the second ball is white”

We will suppose our balls all equiprobable in order to make use of the classical definition.
If then the first draw is with replacement, it is apparent that P {A} = P {B} = m

M
. If

on the other hand the first draw is without replacement, and if we find the first ball
white (namely: if B happens), the probability of A would be m−1

M−1
; while if the first

ball is black (namely: if B happens) we would have m
M−1

. In a third experiment let us
draw now consecutively, and without replacement, two balls, and without looking at the
first let us calculate the probability that the second is white namely the probability of A.
From our opening remarks we know that

P {B} =
m

M
P
{
B
}
=

M −m

M

P {A|B} =
m− 1

M − 1
P
{
A|B

}
=

m

M − 1

so that from the Total probability formula (1.2) we get

P {A} =
m− 1

M − 1

m

M
+

m

M − 1

M −m

M
=

m

M
= P {B}

In short the probability of A depends on the available information: if we draw without
replacement the first outcome affects the probability of the second, and hence P {A|B}
differs from P

{
A|B

}
, and both differ from P {B}. If instead the first outcome is

unknown, we again get P {A} = P {B} = m
M

as if we had replaced the first ball

Proposition 1.16. Multiplication formula: Given (Ω,F ,P ) and the events A1, . . . , An

with P {A1 . . . An−1} ≠ 0, it is

P {A1 . . . An} = P {An|An−1 . . . A1}P {An−1|An−2 . . . A1} . . .P {A2|A1}P {A1}

Proof: From the definition of conditional probability we have indeed

P {An|An−1 . . . A1} P {An−1|An−2 . . . A1} . . . P {A2|A1} P {A1}

=
P {A1 . . . An}
P {A1 . . . An−1}

P {A1 . . . An−1}
P {A1 . . . An−2}

. . .
P {A1A2}
P {A1}

P {A1} = P {A1 . . . An} �

This Multiplication formula is very general and will play a role in the discussion of the
Markov property in the second part of these lectures
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Proposition 1.17. Bayes theorem: Given (Ω,F ,P ) and two events A,B with
P {A} ̸= 0 and P {B} ≠ 0, it is

P {A|B} =
P {B|A}P {A}

P {B}

If moreover D = {D1, . . . , Dn} is a decomposition with P {Dj} ̸= 0, j = 1, . . . , n, we
also have

P {Dj|B} =
P {B|Dj}P {Dj}∑n
k=1P {B|Dk}P {Dk}

Proof: The first statement (also called Bayes formula) again follows from the defi-
nition of conditional probability because

P {B|A}P {A} = P {AB} = P {A|B}P {B}

The second statement then follows from the first and from the theorem of Total prob-
ability �

In the statistical applications the events Dj are called (mutually exclusive and exhaus-
tive) hypotheses and P {Dj} their a priori probability, while the conditional probabilities
P {Dj|B} take the name of a posteriori probabilities. As we will see in a forthcoming
example of the Section 2.1.2, these names originate from the fact that the occurrence
of the event B alters the probabilities initially given to the hypotheses Dj

1.5 Independent events

Two events are independent when the occurrence of one of them does not affect the
probability of the other. By taking advantage, then, of our definition of conditional
probability we could say that A is independent from B if P {A|B} = P {A}, and
hence if P {AB} = P {A}P {B}. The plus of this second statement w.r.t. that based
on conditioning is that it holds even when P {B} = 0. From the symmetry of these
equations, moreover, it is easy to see that if A is independent from B, even the converse
holds

Definition 1.18. Given (Ω,F ,P ), we say that A and B are independent events
when

P {AB} = P {A}P {B}

We also say that two σ-algebras F1 e F2 of events (more precisely: two sub-σ-algebras
of F) are independent σ-algebras if every event of F1 is independent from every
event of F2.

This notion of independence can be also extended to more than two events, but we must
pay attention first to the fact that for an arbitrary number of events A,B,C, . . . we
can speak of pairwise independence, namely P {AB} = P {A}P {B}, but also of three
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1.5 Independent events

by three independence, namely P {ABC} = P {A}P {B}P {C}, and so on, and then,
and above all, to the circumstance that such independence levels do not imply each
other: for instance three events can be pairwise independent without being so three by
three, and also the converse holds. We are then obliged to extend our definition in the
following way

Definition 1.19. Given (Ω,F ,P ) we say that A1, . . . , An ∈ F are independent
events if however taken k indices j1, . . . , jk (with k = 2, . . . , n) we have

P {Aj1 . . . Ajk} = P {Aj1} . . . P {Ajk}

namely when they are independent pairwise, three by three, . . . , n by n in every possible
way

The notion of independence is contingent on the probability P { · }: the same events can
be either dependent or independent according to the chosen P { · }. This is apparent
in particular when we introduce also the idea of conditional independence that allows
to compare the independence under the two different probabilities P { · } and P { · |D}

Definition 1.20. Given (Ω,F ,P ), we say that two events A and B are conditionally
independent w.r.t. D when

P {AB|D} = P {A|D}P {B|D}

if D ∈ F is such that P {D} ̸= 0

It would be possible to show with a few examples – that we neglect – that A and B,
dependent under a probability P , could be made conditionally independent w.r.t. some
other event D. Even the notion of conditional independence will be instrumental in
the discussion of the Markov property in the second part of these lectures
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Chapter 2

Probability measures

2.1 Probability on N

2.1.1 Finite and countable spaces

We will explore now the protocols used to define on (Ω,F) a probability P also called
either law or distribution, and we will start with finite or countable spaces so that
P will be defined in an elementary way

Exemple 2.1. Binomial distributions: An example of finite sample space is the set
of the first n + 1 integer numbers Ωn = {0, 1, . . . , n} (with the σ-algebra ℘(Ωn) of all
its subsets): given then a number p ∈ [0, 1], with q = 1− p, we can define a P by first
attributing to every ω = k the probability

pn(k) =

(
n

k

)
pk qn−k k = 0, 1, . . . , n (2.1)

and then by taking

P {B} =
∑
k∈B

pn(k) (2.2)

as the probability of B ⊆ Ωn. It would be easy to check that such a P is σ-additive,
that its values lie in [0, 1], and finally that

P {Ωn} =
n∑

k=0

pn(k) =
n∑

k=0

(
n

k

)
pk qn−k = (p+ q)n = 1 (2.3)

The numbers pn(k) (n = 1, 2, . . . and p ∈ [0, 1]) are called binomial distribution,
and we will denote them as B (n; p). The case B (1; p) on Ω1 = {0, 1} with

p1(1) = p p1(0) = q = 1− p

is also called Bernoulli distribution. The bar diagram of a typical binomial distri-
bution is displayed in the Figure 2.1 for two different values of p. The meaning of these
laws, and their link with experiments of ball drawing from urns will be discussed in the
Section 2.1.2.
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Figure 2.1: Bar diagrams of binomial distributions B (n; p).

Exemple 2.2. Poisson distributions: By going now to the countable set of the
integers Ω = N = {0, 1, 2, . . .}, with F = ℘(N), we again start by allotting to every
ω = k ∈ N the probability

P {ω} = pα(k) = e−αα
k

k!
α > 0 (2.4)

and then we define the probability of A ∈ F as

P {A} =
∑
k∈A

pα(k)

Positivity and additivity are readily checked, while the normalization follows from

P {Ω} =
∑
k∈N

e−αα
k

k!
= e−α

∑
k∈N

αk

k!
= e−αeα = 1

The probabilities (2.4) (which are non-zero for every k = 0, 1, 2, . . .) are called Poisson
distribution and are globally denoted as P(α). For the time being the parameter α > 0
and the formula (2.4) itself are arbitrarily taken: their meaning will be made clear in
the Section 4.5, where it will be also shown that the results of these probability spaces
are typically obtained by counting, for instance, the number of particles emitted by a
radioactive sample in 5 minutes, or the number of phone calls at a call center in one
hour, and so on. Examples of Poisson distributions for different α values are on display
in the Figure 2.2

2.1.2 Bernoulli trials

The binomial distribution in Example 2.1 is defined without a reference to some factual
problem, so that in particular the allotment of the probabilities pn(k) looks rather
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Figure 2.2: Bar diagrams of Poisson distributions P(α).

unmotivated, albeit coherent. To find an empirical model forB (n; p) take n drawings
with replacement from a box containing black and white balls, and the sample space
Ω consisting of all the possible ordered n-tuples of results. It is customary to encode
the outcomes by numbers – 1 for white, and 0 for black – so that our samples will be
ordered n-tuples of 0 -1 symbols

ω = (a1 , . . . an) ai = 0, 1; i = 1 , . . . , n (2.5)

with the family of all the subsets ℘(Ω) as σ-algebra of the events. Give now to every
ω = (a1 , . . . an) the probability

P {ω} = pkqn−k (2.6)

where k =
∑

i ai is the number of white balls in ω, p ∈ [0, 1] is arbitrary, q = 1 − p,
and finally define the probability of the events A ∈ F as

P {A} =
∑
ω∈A

P {ω} (2.7)

The definitions (2.6) and (2.6) are again unmotivated, and we will devote the following
remarks to make clear their meaning. First it is easy to see that P as defined in (2.7)
is positive and additive. To check then its normalization P {Ω} = 1 it is expedient to
consider the n+ 1 events

Dk = “there are k white balls among the n outcomes”

=

{
ω ∈ Ω :

n∑
i=1

ai = k

}
k = 0, . . . , n (2.8)

which apparently constitute a decompositionD of Ω, and to calculate their probabilities
P {Dk}
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Proposition 2.3. The probabilities P {Dk} for the decomposition D in (2.8) coincide
with the pn(k) of the binomial distribution B (n; p)

Proof: Since the k symbols 1 in a sample ω ∈ Dk can be placed in several different
ways on the n available positions without changing the probability, every Dk will be
constituted of a certain number – say nk – of equiprobable samples each with probability
P {ω} = pkqn−k, so that

P {Dk} =
∑
ω∈Dk

P {ω} = nk p
k qn−k

We are left then with the problem of finding nk: for a given k =
∑

i ai every sample
ω = (a1 . . . an) is uniquely identified by a set of occupation numbers [b1 , . . . bk] labeling
the positions of the k symbols 1 on the n places of ω; for example, with n = 7

ω = (0, 1, 1, 0, 0, 1, 0) ↔ [2, 3, 6]

Apparently the ordering in [b1 , . . . bk] is immaterial (in our example both [2, 3, 6] and
[3, 6, 2] denote the same 7-tuple with a symbol 1 at the 2nd, 3rd e 6th place); moreover
the bj values are all different, and hence nk will be the number of all the possible
non ordered k-tuples, without repetitions [b1 , . . . bk] where every bj takes the values
1, 2, . . . n. From (1.1) we then have that

nk =

(
n

k

)
P {Dk} = pn(k) =

(
n

k

)
pkqn−k

As a consequence the pn(k) of a binomial distribution B (n; p) are the probabilities
P {Dk} of the events Dk in the sample space Ω of n drawings, with a P defined as
in (2.6) and (2.7) �

We are now also able to check the coherence of the definition (2.6) because, from the
additivity of P and from (2.3), we have

P {Ω} = P

{
n∪

k=0

Dk

}
=

n∑
k=0

P {Dk} =
n∑

k=0

pn(k) = 1

Finally, to make the meaning of p ∈ [0, 1] and of (2.6) more apparent, take, for j =
1, . . . , n, the events

Aj = “a white ball comes out at the jth draw” = {ω ∈ Ω : aj = 1}

while Aj corresponds to a black ball at the jth draw. At variance with the Dk, however,
the events Aj are not disjoint (we can find white balls in different draws) so that they
are not a decomposition of Ω
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Proposition 2.4. The numbers p ∈ [0, 1] and q = 1−p respectively are the probabilities
of finding a white and a black ball in every single draw, namely

P {Aj} = p , P
{
Aj

}
= q = 1− p

Regardless of the value of p, moreover, the events Aj are all mutually independent w.r.t.
the P defined in (2.6), and this elucidates the meaning of this definition

Proof: For the sake of brevity we will neglect a complete discussion1 and we will confine
ourselves to a few remarks. For n = 1 (just one draw) we have Ω = Ω1 = {0, 1} and
from (2.6) we get

P {A1} = P {1} = p P
{
A1

}
= P {0} = q = 1− p

so that p comes out to be the probability of finding a white ball in one single draw,
and we will neglect to show that this is so even for every single draw in a sequence.
On thew other hand a little algebra, omitted again, would show that for j ̸= ℓ it is

P {AjAℓ} = p2 P
{
AjAℓ

}
= pq P

{
AjAℓ

}
= q2

so that the events Aj, Ak, together with their complements, are independent w.r.t. P
defined in (2.7). This remark can also be extended to three or more events. Finally,
since every ω ∈ Ω is the intersection of k events Aj with n−k events Aℓ, apparently the
choice (2.6) for the probability of ω has been made exactly in view of their independence
�

In short our space (Ω,F ,P ), with P defined as in (2.6), is a model for n independent
verification trials of the event: “a white ball comes out”, while the pn(k) of a binomial
distribution B (n; p) are the probabilities of finding k white balls among n independent
draws with replacement. Of course drawing balls from an urn is just an example, and
the same model also fits n independent verification trials of an arbitrary event A which
occurs with probability p in every trial. The 0 -1 random experiments of this model
are also known as Bernoulli trials and their corresponding probability space is an
example of direct product: given n replicas of the space describing a single draw
with Ω1 = {0, 1}, F1 = {1, 0,Ω1, ∅} and P1 a Bernoulli distribution B (1; p)

P1{1} = p , P1{0} = 1− p

the direct product has the Cartesian product Ω = Ω1 × . . .×Ω1 of the n-tuples of 0 -1
symbols as sample space, the family of all its parts as σ-algebra F of the events, and
a probability P defined by (2.7) taking for every sample the product

P {ω} = P1{a1} · . . . · P1{an} = pkqn−k k =
n∑

j=1

aj

This product probability is not a compulsory choice, but uniquely corresponds to the
independence of the trials

1A.N. Shiryaev, Probability, Springer (New York, 1996)
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Exemple 2.5. An application of the Bayes theorem: As foretold at the end of
the Section 1.4 we are able now to discuss a statistical application of the Bayes theo-
rem (Proposizione 1.17). Within the notations of the Section 1.4, take two externally
identical boxes D1 e D2 with black and white balls in different proportions: the fraction
of white balls in D1 is 1/2, while that in D2 is 2/3. We can not look into the boxes,
but it is allowed to sample their content with replacement. Choose then a box and ask
which one has been taken. Apparently D = {D1, D2} is a decomposition and, lacking
further information, the two events must be deemed equiprobable namely

P {D1} = P {D2} =
1

2

To know better, however, we can draw a few balls: a large number of white balls, for
example, would hint toward D2, and vice versa in the opposite case. The Bayes theorem
provides now the means to make quantitative these so far qualitative remarks. Suppose
for instance to perform n = 10 drawings with replacement from the chosen box, finding
k = 4 white, and n− k = 6 black balls, namely that the event

B = “among the n = 10 drawn out balls k = 4 are white”

occurs. According to the two possible urns D1 e D2, the probabilities of B are respec-
tively the binomial distributions B

(
10; 1

2

)
and B

(
10; 2

3

)
, namely

P {B|D1} =

(
10

4

) (
1/2
)4 ( 1/2

)10−4
=

(
10

4

)
1

210

P {B|D2} =

(
10

4

) (
2/3
)4 ( 2/3

)10−4
=

(
10

4

)
24

310

and hence from the Bayes theorem we get

P {D1|B} =
P {B|D1} P {D1}

P {B|D1} P {D1}+ P {B|D2} P {D2}
=

1
210

1
210

+ 24

310

=
310

310 + 214
= 0.783

P {D2|B} =
214

310 + 214
= 0.217

Predictably the relatively small number of white balls hints toward D1, but now we have
a precise quantitative estimate of its probability. Of course further drawings would
change this result, but intuitively these oscillations should stabilize for a large number
of trials

Exemple 2.6. Multinomial distribution: The Binomial distribution discussed in
the Example 2.1 can be generalized by supposing a sample space Ω still made of ordered
n-tuples ω = (a1, . . . , an), but for the fact that now the symbols aj can take r+ 1 (con
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2.2 Probability on R

r ≥ 1) values b0, b1 , . . . , br instead of just two. For instance we can think of drawing
with replacement n balls from a box containing balls of r + 1 different colors, but even
here it is expedient to label the r+1 colors with the numbers 0, 1, 2, . . . , r. Suppose now
that ki, i = 0, 1, . . . , r is the number of balls that in a given sample ω take the color bi,
and start by attributing to ω the probability

P {ω} = pk00 pk11 · . . . · pkrr

where k0 + k1 + . . . + kr = n, while p0, p1, . . . , pr are r + 1 arbitrary, non negative
numbers such that p0 + p1 + . . .+ pr = 1. Given then the events

Dk1...kr = “among the n balls we find k0 times b0, k1 times b1, . . . , kr times br”

it is possible to prove that they are a decomposition of Ω, and that each contains(
n

k1, . . . , kr

)
=

n!

k0! k1! . . . kr!

equiprobable samples ω, so that finally

P {Dk1...kr} = pn(k1, . . . , kr) =

(
n

k1, . . . , kr

)
pk00 pk11 · . . . · pkrr (2.9)

The set of these probabilities takes the name of multinomial distribution and is
denoted with the symbol B (n; p1, . . . , pr). This is a new family of distributions classified
by the number n of draws, and by the non negative numbers pi ∈ [0, 1], with p0 + p1 +
. . . + pr = 1, which are the probabilities of finding bi in every single drawing. Remark
that the binomial distribution B (n; p) is the particular case with r = 1: in this instance
p1 and p0 are usually labeled p e q, while k1 = k and k0 = n− k

2.2 Probability on R

To analyze how to define a probability on uncountable spaces we will start with
(R, B(R)), by remarking at once that the distributions studied in the previous Sec-
tion 2.1 will constitute the particular case of the discrete distributions

2.2.1 Cumulative distribution functions

Suppose first that somehow a probability P is defined on (R, B(R)) and take

F (x) = P {(−∞, x]} ∀x ∈ R (2.10)

Proposition 2.7. The function F (x) defined in (2.10) has the following properties

1. F (x) is non decreasing
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2. F (+∞) = 1 , F (−∞) = 0

3. F (x) is right continuous with left limits ∀x ∈ R (cadlag); moreover it is outright
continuous if and only if (iff) P {x} = 0

Proof: The properties 1 and 2 easily result from (2.10). As for 3, remark that a
monotone and bounded F (x) always admits the right and left limits F (x+) for every
x ∈ R. Take now a monotone sequence (xn)n∈N such that xn ↓ x from right: since
(−∞, xn] → (−∞, x] the continuity of the probability2 will then entail that

F (x+) = lim
n

F (xn) = lim
n

P {(−∞, xn]} = P {(−∞, x]} = F (x)

so that F (x) is right continuous. The same can not be said, instead, if xn ↑ x from
left, because now (−∞, xn] → (−∞, x) and hence

F (x−) = lim
n

F (xn) = lim
n

P {(−∞, xn]} = P {(−∞, x)} ̸= F (x)

Being however (−∞, x] = (−∞, x) ∪ {x}, we in general get

F (x) = P {(−∞, x]} = P {(−∞, x)}+ P {x} = F (x−) + P {x}

namely F (x−) = F (x)−P {x}, so that F (x) would be also left continuous, and hence
outright continuous, iff P {x} = 0 �

The previous result entail in particular that P {x} can be non zero iff F (x) is discon-
tinuous in x, and in this case

P {x} = F (x)− F (x−) = F (x+)− F (x−) (2.11)

Moreover, since (−∞, b] = (−∞, a] ∪ (a, b], from the additivity of P we also have

P {(−∞, b]} = P {(−∞, a]}+ P {(a, b]}

and hence

P {(a, b]} = F (b)− F (a) (2.12)

for every −∞ ≤ a < b ≤ +∞

Definition 2.8. We call (cumulative) distribution function ( cdf ) on R every
F (x) satisfying 1, 2 and 3

The previous discussion shows that at every P on (R, B(R)) it is always joined a cdf
F (x). The subsequent theorem then points out that the reverse is also true: every cdf
on R always defines a probability P on (R, B(R)) such that (2.12) holds

2A.N. Shiryaev, Probability, Springer (New York, 1996)
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2.2 Probability on R

Theorem 2.9. Given a cdf F (x) on R, there is always one and only one probability
P on (R, B(R)) such that

P {(a, b]} = F (b)− F (a)

for every −∞ ≤ a < b ≤ +∞.

Proof: Omitted3 �

There is then a one-to-one correspondence between the laws P on (R, B(R)) and the
cdf F (x) on R, so that a probability on (R, B(R)) is well defined iff we know its cdf
F (x). Since, however, in the following we will make use of measures on (R, B(R))
that are not finite (for instance the Lebesgue measure) it will be expedient to slightly
generalize our framework

Definition 2.10. We say that µ is a Lebesgue-Stieltjes (L-S) measure on (R, B(R))
if it is σ-additive, and µ{B} < +∞ for every bounded B. We also call generalized
distribution function on R ( gcdf ) every G(x) on R satisfying the properties 1
and 3, but not in general 2

It is possible to show that, if µ is a L-S measure on (R, B(R)), the function G(x)
defined, but for an additive constant, by

G(y)−G(x) = µ{(x, y]} , x < y

is a gcdf, while the subsequent theorem encodes the revers statement that to every gcdf
G(x) we can always associate a unique L-S measure

Theorem 2.11. Given a gcdf G(x) on R, there is always one and only one L-S
measure µ on (R, B(R)) such that

µ{(a, b ]} = G(b)−G(a)

for every −∞ ≤ a < b ≤ +∞.

Proof: Omitted4 �

It is apparent that a gcdf G(x) has the same properties of a cdf but for 2, so that G(x)
can take both negative and larger than 1 values, while its asymptotic behavior for
x → ±∞ is not bounded. A well known example of these measures is the Lebesgue
measure on R, namely the σ-finite measure λ that to every interval (a, b] ∈ B(R)
assign the measure λ{(a, b ]} = b− a: in this case the gcdf simply is

G(x) = x

3A.N. Shiryaev, Probability, Springer (New York, 1996)
4A.N. Shiryaev, Probability, Springer (New York, 1996)
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Figure 2.3: cdf of a Bernoulli B(1, p) and of a binomial distribution B(n, p).

2.2.2 Discrete distributions

Definition 2.12. We say that a probability P is a discrete distribution on (R, B(R))
if its cdf F (x) is piecewise constant, and discontinuously changes its value in a (finite
or countable) set of points x1, x2, . . . where it is F (xi)− F (x−

i ) > 0.

The cdf of a discrete law apparently is a typical step function (see for instance the
Figure 2.3) so that P {(a, b ]} = 0 if within (a, b] we find no discontinuities xi, while in
general it is

P {(a, b ]} =
∑

xi∈(a,b]

[
F (xi)− F (x−

i )
]
= F (b)− F (a)

As already remarked we find P {x} = 0 wherever F (x) is continuous, and pi = P {xi} =
F (xi)−F (x−

i ) where F (x) makes jumps. As a consequence the probability P happens
to be concentrated in the (at most) countably many points x1, x2, . . . and is well de-
fined by giving these points and the numbers p1, p2, . . . which also are named discrete
distribution. The examples of finite and countable probability spaces discussed in the
Section 2.1 are particular discrete distributions where xk = k are integer numbers. The
main difference with the present approach is that in the Section 2.1 the sample space
Ω was restricted just to the set of points xk, while here Ω is extended to R and xk are
the points with non-zero probability. This entails, among other, that – beyond the bar
diagrams of the Figures 2.1 and 2.2 – we can now represent a discrete distribution by
means of its cdf F (x) with a continuous variable x ∈ R

Exemple 2.13. Notable discrete distributions: Consider first the case where just
one value b ∈ R occurs with probability 1, namely P -a.s.: the family of these distri-
butions, called degenerate distributions, is denoted by the symbol δb, and its cdf
F (x) show just one unit step in x = b, namely is a Heaviside function

ϑ(x) =

{
1, if x ≥ 0
0, if x < 0

(2.13)
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Figure 2.4: cdf of a Poisson distribution P(α).

Of course its bar diagram will have just one unit bar located at x = b. On the other
hand in the family B (1; p) of the Bernoulli distributions two values 1 and 0 occur
respectively with probability p and q = 1 − p, while in the binomial distributions
B (n; p) the values k = 0, . . . , n occur with the probabilities

pn(k) =

(
n

k

)
pkqn−k, q = 1− p, 0 ≤ p ≤ 1

The corresponding Bernoulli and binomial cdf ’s are displayed in the Figure 2.3. Finally
in the family P(α) of the Poisson distributions all the integer numbers k ∈ N occur
with the probabilities

pk =
αke−α

k!
, α > 0

and their cdf is shown in the Figure 2.4

2.2.3 Absolutely continuous distributions: density

Definition 2.14. Take two measures µ and ν on the same (Ω,F): we say that ν
is absolutely continuous (ac) w.r.t. a µ (and we write ν ≪ µ) when µ(A) = 0
for A ∈ F also entails ν(A) = 0. If in particular Ω = R, when a probability P on
(R, B(R)) is ac w.r.t. the Lebesgue measure we also say for short that its cdf F (x) is
ac

Theorem 2.15. Radon-Nikodym theorem on R: A cdf F (x) on R is ac iff it
exists a non negative function f(x) defined on R such that∫ +∞

−∞
f(x) dx = 1 F (x) =

∫ x

−∞
f(z) dz f(x) = F ′(x)

The function f(x) is called probability density function (pdf ) of F (x)
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Figure 2.5: cdf and pdf of the uniform distribution U (a, b).

Proof: Omitted5 �

It is easy to show that, taken a non negative, Lebesgue integrable and 1-normalized
function f(x), the function

F (x) =

∫ x

−∞
f(z) dz

always is an ac cdf The Radon-Nikodym theorem states the remarkable fact that also
the reverse holds: every ac cdf F (x) is the primitive function of a suitable pdf f(x),
so that every ac cdf can be given through a pdf, which is unique but for its values
on a Lebesgue negligible set of points. It is possible to show that an ac cdf is also
continuous6 and derivable (but for a Lebesgue negligible set of points), and in this case
the pdf is nothing else than its derivative

f(x) = F ′(x)

Taking then into account (2.12) and the continuity of F (x), we can now calculate the
probability of an interval [a, b] from a pdf f(x) as the integral

P {[a, b]} = F (b)− F (a) =

∫ b

a

f(t) dt

It is apparent on the other hand that a discrete cdf can never be ac because it is
not even continuous: in this case we can never speak of a pdf, and we must restrict
ourselves to the use of the cdf

5M. Métivier, Notions Fondamentales de la Théorie des Probabilités, Dunod (Paris,
1972)

6There are on the other hand (some examples are discussed in the Section 2.2.4) cdf F (x) which
are continuous but not ac, so that the existence of a pdf is not a consequence of the simple continuity
of a cdf
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Figure 2.6: cdf and pdf of the normal distribution N (b, a2).

Exemple 2.16. Uniform distribution: Take first the family of the uniform laws
on an interval [a, b] denoted as U (a, b). The cdf is

F (x) =


0 if x < a
x−a
b−a

if a ≤ x ≤ b

1 if b < x

as displayed in the Figure 2.5. This cdf defines on (R, B(R)) a probability P concen-
trated on [a, b] that to every interval [x, y] ⊆ [a, b] gives the probability

P {[x, y]} =
y − x

b− a

On the other hand intervals lying outside [a, b] have zero probability, while, since F (x)
is continuous, P {x} = 0 for every event reduced to the point x. The pdf is deduced by
derivation

f(x) =

{
1

b−a
if a ≤ x ≤ b

0 else
(2.14)

and is displayed in the Figure 2.5 along with its cdf . These behaviors also justify the
name of these laws because the probability of every interval [x, y] ⊆ [a, b] depends only
on its amplitude y − x and not on its position inside [a, b]. For short: all the locations
inside [a, b] are uniformly weighted

Exemple 2.17. Gaussian (normal) distribution: The family of the Gaussian
(normal) laws N(b, a2) is characterized by the pdf

f(x) =
1

a
√
2π

e−(x−b)2/2a2 a > 0, b ∈ R (2.15)

displayed with its cdf in the Figure 2.6. The so called degenerate case a = 0, that
is here excluded, needs a particular discussion developed in the Section 4.2.2. The
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Figure 2.7: cdf and pdf of the exponential distribution E(a)

Gaussian pdf shows a typical bell-like shape with the maximum in x = b. The two
flexes in x = b± a give a measure of the width that hance depends on the parameter a.
We will speak of standard normal law when b = 0 and a = 1, namely when the pdf
is

ϕ(x) =
1√
2π

e−x2/2

Both the standard and non standard Gaussian cdf , also called error functions, re-
spectively are

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2 dz F (x) =

1

a
√
2π

∫ x

−∞
e−(z−b)2/2a2 dz (2.16)

and are shown in the Figure 2.6: they can not be given as finite combinations of ele-
mentary functions, but have many analytical expressions and can always be calculated
numerically

Exemple 2.18. Exponential distributions: The family of the exponential laws
E(a) has the pdf

f(x) = a e−axϑ(x) =

{
a e−ax if x ≥ 0
0 if x < 0

a > 0 (2.17)

while the corresponding cdf is

F (x) = (1− e−ax)ϑ(x) =

{
1− e−ax if x ≥ 0
0 if x < 0

both represented in the Figure 2.7.

Exemple 2.19. Laplace distribution: We call Laplace laws, or even bilateral
exponentials, denoted as L(a), the laws with pdf

f(x) =
a

2
e−a|x| a > 0 (2.18)
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Figure 2.8: cdf and pdf of the Laplace distributionL(a)

and cdf

F (x) =
1

2
+

|x|
x

1− e−a|x|

2

represented in the Figure 2.8.

Exemple 2.20. Cauchy distributions: Finally the family of the Cauchy laws
C(b, a) has the pdf

f(x) =
1

π

a

a2 + (x− b)2
a > 0 (2.19)

and the cdf

F (x) =
1

2
+

1

π
arctan

x− b

a

both represented in the Figure 2.9. It is easy to see from the Figuree 2.6 and 2.9, that
the qualitative behavior of the N(b, a2) and C(b, a) pdf ’s are roughly similar: both are
bell shaped curves, symmetrically centered around x = b with a width ruled by a > 0.
They however essentially differ for the velocities of their queues vanishing: while the
normal pdf asymptotically vanishes rather quickly, the Cauchy pdf goes slowly to zero
as x−2. As a consequence the central body of the Cauchy pdf is thinner w.r.t. the
normal function, while its queues are correspondingly fatter

2.2.4 Singular distributions

Definition 2.21. We say that P is a singular distribution when its cdf F (x) is
continuous, but not ac

We have seen that the probability measures which are ac w.r.t. the Lebesgue measure,
namely that with an ac cdf F (x), have a pdf f(x). We also stated that an ac F (x)
is also continuous, while instead the reverse is not in general true: there are – but we
will neglect here to produce the classical examples – cdf F (x) which are continuous
(and hence they are not discrete) but not ac (and hence have no pdf ). It is important
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Figure 2.9: cdf and pdf of the Cauchy distribution C (b, a)

then to introduce the previous definition to point out that a singular law can be given
neither as a discrete distribution (by means of the numbers pk), nor through a pdf
f(x): the unique way to define it is to produce a suitable continuous cdf F (x) that
certainly exists. In the following however we will restrict ourselves to the discrete and
ac distributions, or – as we will see in the next section – to their mixtures, so that the
singular distributions will play here only a marginal role

2.2.5 Mixtures

Definition 2.22. We say that a distribution P is a mixture when its cdf F (x) is a
convex combination of other cdf ’s, namely when it can be represented as

F (x) =
n∑

k=1

pkFk(x), 0 ≤ pk ≤ 1,
n∑

k=1

pk = 1

where Fk(x) for k = 1, . . . , n are arbitrary cdf ’s

When the Fk(x) are all ac with pdf ’s fk(x) it is easy to understand that also the
mixture F (x) comes out to be ac with pdf

f(x) =
n∑

k=1

pkfk(x)

It is not forbidden, however, to have mixtures composed of every possible kind of cdf,
and the following important result puts in evidence that the three types of distribu-
tions so far introduced (discrete, absolutely continuous and singular), along with their
mixtures, in fact exhaust all the available possibilities

Theorem 2.23. Lebesgue-Nikodym theorem: Every P on (R, B(R)) can be rep-
resented as a mixture of discrete, ac and singular probabilities, namely its cdf F (x)
always is a convex combination
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Figure 2.10: cdf of the mixture of a Bernoulli and a Gaussian

F (x) = p1F1(x) + p2F2(x) + p3F3(x)

where F1 is discrete, F2 is ac, F3 is singular, while p1, p2, p3 are non negative numbers
such that p1 + p2 + p3 = 1

Proof: Omitted7 �

Exemple 2.24. Mixtures: To elucidate these ideas take for instance the cdf displayed
in the Figure 2.10: it is the mixture of a normal N(b, a2) and a Bernoulli B (1; p), with
arbitrary coefficients p1, p2. This F (x) has discontinuities in x = 0 and x = 1 because
of its Bernoulli component, but wherever it is continuous it is not constant (as for a
purely discrete distribution) because of its Gaussian component. Remark that in this
example the distribution – without being singular – can be given neither as a discrete
distribution on 0 and 1, nor by means of a pdf f(x): its unique correct representation
can be given through its cdf F (x)

2.3 Probability on Rn

In the case of (Rn, B(Rn)) we can extend with a few changes the definitions adopted
for (R, B(R)) in the Section 2.2, the relevant innovation being the interrelationship
between the marginal distributions and their (possible) common joint, multivariate
distribution

2.3.1 Multivariate distribution functions

In analogy with Sezione 2.2.1 take first P as a given probability on (Rn, B(Rn)), and
define the n-variate function

F (x) = F (x1, . . . , xn) = P {(−∞, x1]× . . .× (−∞, xn]} (2.20)

7M. Métivier, Notions Fondamentales de la Théorie des Probabilités, Dunod (Paris,
1972)
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Figure 2.11: Probability for Cartesian products of intervals

where x = (x1, . . . , xn). Within the synthetic notation

∆kF (x) = F (x1, . . . , xk +∆xk, . . . , xn)− F (x1, . . . , xk, . . . , xn)

(x,x+∆x] = (x1, x1 +∆x1]× . . .× (xn, xn +∆xn]

with ∆xk ≥ 0, it is then possible to show that

P {(x,x+∆x]} = ∆1 . . .∆nF (x)

For instance, in the case n = 2 we have

P {(x,x+∆x]} = ∆1∆2F (x)

=
[
F (x1 +∆x1, x2 +∆x2)− F (x1 +∆x1, x2)

]
−
[
F (x1, x2 +∆x2)− F (x1, x2)

]
as it is easy to see from Figure 2.11. Remark that, at variance with the case n = 1, the
probability P {(x,x+∆x]} of a Cartesian product of intervals does not coincide with
the simple difference F (x+∆x)−F (x), but it is a combination of 2n terms produced
by the iteration of the ∆k operator. The properties of these F (x) generalize that of
the case n = 1 given in the Section 2.2.1

Proposition 2.25. The function F (x) defined in (2.20) has the following properties:

1. For every ∆xk ≥ 0 with k = 1, . . . , n it is always

∆1 . . .∆nF (x) ≥ 0

so that F (x) comes out to be non decreasing in every variable xk
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2. We always have
lim

x→+∞
F (x) = 1 lim

x→−∞
F (x) = 0

where it is understood that the limit x → +∞ means that every xk goes to +∞,
while the x → −∞ means that at least one among the xk goes to −∞

3. F (x) is always continuous from above

lim
xk↓x

F (xk) = F (x)

where it is understoood that xk ↓ x means that every component of the sequence
xk goes decreasing to the corresponding component of x

Proof: Property 1. results from the positivity of every probability; property 2. on the
other hand comes from the remark that the set

(−∞,+∞]× . . .× (−∞,+∞] = Rn

coincides with the whole sample space, while every Cartesian product containing even
one empty factor, is itself empty. The argument for the last property is similar to that
of the Proposition 2.7 and we will neglect it for short �

Definition 2.26. We call multivariate distribution function on Rn every func-
tion F (x) satisfying 1, 2 and 3; we call on the other hand generalized, multivariate
distribution function on Rn every function G(x) satisfying 1 and 3, but not neces-
sarily 2

Theorem 2.27. Given a multivariate cdf F (x) on Rn, it exists a unique P on
(Rn, B(Rn)) such that for every ∆xk ≥ 0 with k = 1, . . . , n we have

P {(x,x+∆x]} = ∆1 . . .∆nF (x)

Similarly, given a multivariate gcdf G(x) on Rn, it exists a unique Lebesgue-Stieltjes
measure µ on (Rn, B(Rn)) such that for ∆xk ≥ 0, k = 1, . . . , n it is

µ(x,x+∆x] = ∆1 . . .∆nG(x)

Proof: Omitted: see also Proposition 2.9 �

In short, also in the n-variate case, a probability P or a Lebesgue–Stieltjes measure µ
are uniquely defined respectively by a cdf F (x) or by a gcdf G(x)

Exemple 2.28. Given the univariate cdf of a uniform law on [0, 1], and the univariate
gcdf of the Lebesgue measure

F1(x) =


0, se x < 0;
x, se 0 ≤ x ≤ 1;
1, se 1 < x,

G1(x) = x
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it is easy to show that

F (x) = F1(x1) · . . . · F1(xn)

G(x) = G1(x1) · . . . ·G1(xn) = x1 · . . . · xn

respectively are the cdf of a uniform law on the hypercube [0, 1]n, and the gcdf of the
Lebesgue measure on Rn.

The previous example can be generalized: if F1(x), . . . , Fn(x) are n cdf on R, it is easy
to show that

F (x) = F1(x1) · . . . · Fn(xn)

always is a cdf on Rn. The reverse, instead, is not true in general: a cdf on Rn can not
always be factorized in the product of n cdf on R; this happens only under particular
circumstances to be discussed later

2.3.2 Multivariate densities

When P is ac w.r.t. the Lebesgue measure on (Rn, B(Rn)), namely when F (x) is ac,
a generalization of the Radon–Nikodym theorem 2.15 entails the existence of a non
negative, normalized multivariate density function f(x)∫

Rn

f(x1, . . . , xn) dx1 . . . dxn =

∫
Rn

f(x) dnx = 1

and in this case we always find

F (x) =

∫ x1

−∞
. . .

∫ xn

−∞
f(z) dnz f(x) =

∂nF (x)

∂x1 . . . ∂xn

(2.21)

while the probability of the Cartesian products of intervals are given as

P {(a1, b1]× · · · × (an, bn]} =

∫ b1

a1

. . .

∫ bn

an

f(x) dnx

Exemple 2.29. Multivariate Gaussian (normal) laws: The family of the mul-
tivariate normal laws N(b,A) is characterized by the vectors of real numbers b =
(b1, . . . , bn), and by the symmetric (aij = aji), and positive definite8 matrices A = ∥aij∥:

8A matrix A is non-negative definite if, however taken a vector of real numbers x = (x1, . . . , xn),
it is always

x · Ax =
n∑

i,j=1

aijxixj ≥ 0

and it is positive definite if this sum is always strictly positive (namely non zero). If A is positive,
it is also non singular, namely its determinant |A| > 0 does not vanish, and hence it has an inverse
A−1
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the statistical meaning of b and A will be discussed in the Section 3.34. Since A is pos-
itive, its inverse A−1 always exists and N(b,A) has a multivariate pdf :

f(x) = f(x1, . . . , xn) =

√
|A−1|
(2π)n

e−
1
2
(x−b)·A−1(x−b) (2.22)

where |A−1| is the determinant of A−1, x ·y =
∑

k xkyk is the Euclidean scalar product
between the vectors x e y, and between vectors and matrices the usual rows by columns
product is adopted, so that for instance

x · Ay =
n∑

i,j=1

aijxiyj

On the other hand (in analogy with the case a = 0 when n = 1) the laws N(b,A) with
a singular, non invertible A can be defined, but have no pdf : they will be discussed in
detail in the Section 4.2.2. The multivariate, normal pdf (2.22) is then a generalization
of the univariate case presented in the Section 2.2.3: when n = 1 the pdf of N(b, a2)
has just two numerical parameters, b and a ≥ 0; in the multivariate case, instead, we
need a vector b and a symmetric, non-negative matrix A. Remark also that for n = 2,
defining ak =

√
akk > 0, k = 1, 2, and r = a12/

√
a11a22 with |r| < 1, A and its inverse

are

A =

(
a21 a1a2r

a1a2r a22

)
A−1 =

1

(1− r2)a21a
2
2

(
a22 −a1a2r

−a1a2r a21

)
(2.23)

and the pdf bivariate normal takes the form

f(x1, x2) =
e
− 1

2(1−r2)

[
(x1−b1)

2

a21
−2r

(x1−b1)(x2−b2)
a1a2

+
(x2−b2)

2

a22

]

2πa1a2
√
1− r2

(2.24)

2.3.3 Marginal distributions

For a given cdf F (x) on Rn = R1× . . .×Rn it is easy to show that the n−1 variables
function

F (1)(x2, . . . , xn) = F (+∞, x2, . . . , xn) = lim
x1→+∞

F (x1, x2 . . . , xn) (2.25)

again is a cdf on Rn−1 = R2× . . .×Rn because it still complies with the properties 1, 2
and 3 listed in the Section 2.3.1. This is true in fact whatever xi we choose to perform
the limit; by choosing however different coordinates we get cdf ’s F (i) which are in
general different from each other. To avoid ambiguities we then adopt a notation
with upper indices telling the removed coordinates. This operation can, moreover, be
performed on arbitrary m < n variables: we always get cdf ’s on a suitable Rn−m. For
instance

F (1,2)(x3, . . . , xn) = F (+∞,+∞, x3, . . . , xn) (2.26)
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is a cdf on Rn−2 = R3 × . . .×Rn. At the end of this procedure we find n cdf ’s with
a single variable, as for instance the cdf on R1

F (2,...,n)(x1) = F (x1,+∞, . . . ,+∞)

All the cdf ’s deduced from a given multivariate cdf F are called marginal distri-
bution function, and the operation to get them is called marginalization. From
the Theorem 2.27 we can extend these remarks also to the probability measures: if
P is the probability on (Rn, B(Rn)) associated to F (x), we can define the marginal
probabilities

(
Rk, B(Rk)

)
with k < n associated to the corresponding marginal cdf ’s.

The relation among P and its marginals is then for example

P (2,...,n) {(−∞, x1]} = F (2,...,n)(x1)

= F (x1,+∞, . . . ,+∞) = P {(−∞, x1]×R2 × . . .×Rn}

If the initial multivariate cdf F is ac also its marginals will be ac, and from (2.21) we
deduce for instance that the pdf ’s of F (1), F (1,2) and F (2,...,n) respectively are

f (1)(x2, . . . , xn) =

∫ +∞

−∞
f(x1, x2, . . . , xn) dx1 (2.27)

f (1,2)(x3, . . . , xn) =

∫ +∞

−∞

∫ +∞

−∞
f(x1, x2, x3, . . . , xn) dx1dx2 (2.28)

f (2,...,n)(x1) =

∫ +∞

−∞
. . .

∫ +∞

−∞
f(x1, x2, . . . , xn) dx2 . . . dxn (2.29)

For a pdf, in other words, the marginalization is performed by integrating on the
variables that are to be removed

Starting hence from a multivariate cdf (or pdf ) on Rn we can always deduce, in an
unambiguous way, an entire hierarchy of marginal cdf ’s with an ever smaller number
of variables, until we get n univariate cdf ’s. It is natural to ask then if this path
can also be trodden on the reverse: given a few (either univariate or multivariate)
cdf ’s, is it possible to unambiguously find a multivariate cdf such that the initial cdf ’s
are its marginals? The answer is, in general, surprisingly negative, at least for what
concerns unicity, and deserves a short discussion. Take first n arbitrary univariate
cdf ’s F1(x), . . . , Fn(x): it is easy to see that

F (x) = F1(x1) · . . . · Fn(xn)

is again a multivariate cdf (see the end of the Section 2.3.1) whose univariate marginals
are the Fk(x). From the previous marginalization rules we indeed have for instance

F (2,...,n)(x1) = F1(x1)F2(+∞) . . . Fn(+∞) = F1(x1)

If moreover the given cdf ’s are also ac with pdf ’s fk(x), the product multivariate F
will also be ac with pdf

f(x) = f1(x1) · . . . · fn(xn)
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Figure 2.12: Uniform pdf on different domains

while its marginal pdf ’s are exactly the fk(x). It is easy ti check, however, by means of
a few elementary counterexamples that the previous product cdf is far from the unique
multivariate cdf allowing the Fk as its marginals

Exemple 2.30. Multivariate distributions and their marginals: Take the fol-
lowing pair of bivariate pdf ’s which are uniform on the domains 9 represented in the
Figure 2.12

f(x, y) =

{
1, if (x, y) ∈ Q,
0, if (x, y) ̸∈ Q,

Q = [0, 1]× [0, 1]

g(x, y) =

{
2, if (x, y) ∈ Q1 ∪Q2,
0, if (x, y) ̸∈ Q1 ∪Q2,

Q1 =
[
0, 1/2

]
×
[
0, 1/2

]
Q2 =

[
1/2, 1

]
×
[
1/2, 1

]
It is easy to show now by elementary integrations that first of all the two univariate
marginals of f are uniform U (0, 1) respectively with the pdf’s

f1(x) = f (2)(x) =

∫ +∞

−∞
f(x, y) dy =

{
1, if x ∈ [0, 1],
0, if x ̸∈ [0, 1],

f2(y) = f (1)(y) =

∫ +∞

−∞
f(x, y) dx =

{
1, if y ∈ [0, 1],
0, if y ̸∈ [0, 1],

and then that they also exactly coincide with the corresponding marginals g1 and g2 of
g, so that

f1(x) = g1(x) f2(y) = g2(y)

This apparently shows that different, multivariate pdf ’s can have the same marginals
pdf ’s, and hence that if we just have the marginals we can not in a unique way

9Since the laws with the pdf ’s f and g are ac, the boundaries of the chosen domains have zero
measure, and hence we can always take such domains as closed without risk of errors

47



N. Cufaro Petroni: Probability and Processes

retrace back the multivariate pdf engendering them. It is also easy to see, moreover,
that in our example

f(x, y) = f1(x)f2(y) g(x, y) ̸= g1(x)g2(y) (2.30)

namely that, as already remarked, the product turns out to be a possible bivariate pdf
with the given marginals, but also that this is not the only possibility

Exemple 2.31. Marginals of multivariate Gaussian laws: An elementary, but
tiresome integration of the type (2.29) – that we will neglect – explicitly gives the uni-
variate marginals pdf ’s of a multivariate Gaussian N(b,A) (2.22): it turns out tha
such marginals are again all Gaussian N (bk, a

2
k) as in (2.15), with a2k = akk and that

their pdf ’s are

fk(xk) =
1

ak
√
2π

e−(xk−bk)
2/2a2k (2.31)

It is easy to understand, however, that in general the product of these pdf ’s – which
still is a multivariate normal pdf – does not coincide with the initial multivariate
pdf (2.22), unless A is a diagonal matrix: in the simple product, indeed, we would not
find the off-diagonal terms of the quadratic form at the exponent of (2.22). Remark in
particular that, from the discussion in the Example 2.29, it turns out that the matrix
A of a bivariate normal is diagonal iff r = 0: this point will be resumed in the
discussion of the forthcoming Example 3.34

2.3.4 Copulas

The previous remarks prompt a discussion of the following two interrelated problems:

1. what is the general relation between an n-variata cdf F (x1, . . . , xn) and its n
univariate marginals Fk(x)?

2. given n univariate cdf ’s Fk(x), do they exist (one or more) n-variate cdf ’s F (x1, . . . , xn)
having the Fk as their marginals? And, if yes, how and in how many ways could
we retrieve them?

Definition 2.32. We say that a function C(u, v) defined on [0, 1] × [0, 1] and taking
values in [0, 1] is a copula when it has the following properties:

1. C(u, 0) = C(0, v) = 0, ∀ u, v ∈ [0, 1]

2. C(u, 1) = u, C(1, v) = v, ∀ u, v ∈ [0, 1]

3. C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0, ∀ u1 ≤ u2, v1 ≤ v2
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In short a copula is the restriction to [0, 1] × [0, 1] of a cdf with uniform marginals
U (0, 1). Typical examples are

CM(u, v) = u ∧ v = min{u, v}
Cm(u, v) = (u+ v − 1)+ = max{u+ v − 1, 0}
C0(u, v) = uv

Cθ(u, v) = (u−θ + v−θ − 1)−
1
θ θ > 0 (Clayton)

while many others exist in the literature along with their combinations10. It is also
known that every copula C(u, v) falls between the Frchet-Höffding bounds

Cm(u, v) ≤ C(u, v) ≤ CM(u, v)

Theorem 2.33. Sklar theorem (bivariate):

• If H(x, y) is a bivariate cdf and F (x) = H(x,+∞), G(y) = H(+∞, y) are its
marginals, there is always a copula C(u, v) such that

H(x, y) = C [F (x), G(y)] (2.32)

this copula is unique if F and G are continuous; otherwise C is unique only on
the points (u, v) which are possible values of (F (x), G(y));

• if F (x) and G(y) are two cdf , and C(u, v) is a copula, then H(x, y) defined as
in (2.32) always is a bivariate cdf having F and G as its marginals

Proof: Omitted11 �

In short the Sklar theorem states that every bivariate cdf comes from the application
of a suitable copula to its marginals, and that viceversa the application of an arbitrary
copula to any pair of univariate cdf ’s always results in a bivariate cdf with the given
distributions as marginals. In particular the product bivariate of two univariate cdf ’s
comes from the application of the copula C0, and hence is just one among many other
available possibilities. Remark finally that in general the bivariate cdf resulting from
the application of a copula may be not ac even when the two univariate cdf are ac

Exemple 2.34. Cauchy bivariate distributions: Take two Cauchy distributions
C(0, 1) respectively with cdf and pdf

F (x) =
1

2
+

1

π
arctanx f(x) =

1

π

1

1 + x2

G(y) =
1

2
+

1

π
arctan y g(y) =

1

π

1

1 + y2

10R.B. Nelsen, An Introduction to Copulas, Springer (New York, 1999)
11R.B. Nelsen, An Introduction to Copulas, Springer (New York, 1999)
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The product copula C0 gives the bivariate cdf

H0(x, y) =

(
1

2
+

1

π
arctanx

)(
1

2
+

1

π
arctan y

)
which is again ac with pdf

h0(x, y) =
1

π

1

1 + x2
· 1
π

1

1 + y2
= f(x)g(y)

while the simplest Clayton copula, that with θ = 1

C1(u, v) = (u−1 + v−1 − 1)−1 =
uv

u+ v − uv

would give a different cdf H1(x, y) (we neglect it for brevity) which is still ac with the
pdf

h1(x, y) =
32π2(π + 2arctan x)(π + 2arctan y)

(1 + x2)(1 + y2)[2 arctanx(π − 2 arctan y) + π(3π + 2arctan y)]3

On the other hand an application of the extremal Fréchet-Höffding copulas CM and Cm

would give rise to different cdf which no longer are ac, but we will not make explicit
reference to them

The Sklar theorem 2.33 can be generalized to all the multivariate cdf ’s H(x) =
H(x1, . . . , xn) that turn out to be deducible from the application of suitable multi-
variate copulas C(u) = C(u1, . . . , un) to univariate cdf ’s F1(x1), . . . , Fn(xn). It is also
possible to show that even in this case n arbitrary univariate cdf ’s can always – and in
several, different ways, according to the chosen copula – be combined in multivariate
cdf ’s

A radically different problem arises instead when we try to combine multivariate
marginals into higher order multivariate cdf ’s. We will not indulge into details, and
we will just restrict us to remark that, given for instance a trivariate cdf F (x, y, z), we
can always find its three bivariate marginals

F (1)(y, z) = F (+∞, y, z), F (2)(x, z) = F (x,+∞, z), F (3)(x, y) = F (x, y,+∞)

and that it would be possible – albeit not trivial – to find a way of reassembling F
from these marginals by means of suitable copulas. The reverse problem, however,
at variance with the case of the Sklar theorem, not always has a solution, because
we can not always hope to find a cdf F (x, y, z) endowed with three arbitrarily given
bivariate marginals cdf F1(y, z), F2(x, z) and F3(x, y). At variance with the case of
the univariate marginals, indeed, first of all a problem of compatibility among the given
cdf ’s arises. For instance it is apparent that – in order to be deducible as marginals
of the same trivariate F (x, y, z) – they must at least agree on the univariate marginals
deduced from them, namely we should have

F1(+∞, z) = F2(+∞, z), F1(y,+∞) = F3(+∞, y), F2(x,+∞) = F3(x,+∞)
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while even this (only necessary) condition can not be ensured if F1, F2 e F3 are to-
tally arbitrary. In short, the choice of the multivariate marginal cdf ’s must be made
according to some suitable consistency criterion, arguably not even restricted just to
the simplest one previously suggested: a short discussion on this point can be found in
the Appendix A

2.4 Probability on R∞ and RT

The extension of the previous results to the case of the space (R∞, B(R∞)) of the
real sequences is however less straightforward because, while on a (Rn, B(Rn)) we
can always give a probability by means of an n-variables cdf, this is not possible for
(R∞, B(R∞)) because it would be meaningless to have a cdf with an infinite number
of variables. To give a probability on (R∞, B(R∞)) we must hence use different tools

To this end remark first that if a probability P is given on (R∞, B(R∞)), we could
inductively deduce a whole family of probabilities on the finite dimensional spaces that
we get by selecting an arbitrary, but finite, number of sequence components. As a
matter of fact n arbitrary components of the sequences in (R∞, B(R∞)) always are
a point in a space (Rn, B(Rn)): to give a probability on this (Rn, B(Rn)) from the
given P it would be enough to take B ∈ B(Rn) as the basis of a cylinder in B(R∞)
(see Example 1.7), and then give to B the probability that P gives to the cylinder.
We get in this way an entire family of finite probability spaces which are consistent
(see also Appendix A), in the sense that the cdf ’s in a

(
Rk, B(Rk)

)
which is subspace

of an (Rn, B(Rn)) with k ≤ n are derived by marginalization of the extra components
through the usual relations (2.25) and (2.26)

This prompt the idea of defining a probability on (R∞, B(R∞)) through the reverse
procedure: give first a family of probabilities on all the finite subspaces (Rn, B(Rn)),
and then extend them to all (R∞, B(R∞)). In order to get a successful procedure,
however, these finite probabilities can not be given in a totally arbitrary way: they
must indeed be a consistent family of probabilities, in the sense of the previously
discussed consistenza. The subsequent theorem encodes this important result

Theorem 2.35. Kolmogorov theorem on R∞: Given a consistent family of fi-
nite probability spaces (Rn, B(Rn), Pn) there is always a unique probability P on
(R∞, B(R∞)) which is an extension of the given family

Proof: Omitted12 �

Exemple 2.36. Bernoulli sequences: The simplest way to meet the conditions of
the Theorem 2.35 is to take a sequence of univariate cdf ’s Gk(x), k ∈ N and to define
then another sequence of multivariate cdf ’s as

Fn(x1, . . . , xn) = G1(x1) · . . . ·Gn(xn) n ∈ N

12A.N. Shiryaev, Probability, Springer (New York, 1996)
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According to the Theorem 2.27 we can then define on (Rn, B(Rn)) the probabilities Pn

associated to Fn, and we can check that these Pn are a consistent family of probabilities:
according to the Kolmogorov theorem 2.35 it exists then a unique probability P on
(R∞, B(R∞)) such that

P {x ∈ R∞ : (x1, . . . , xn) ∈ B} = Pn{B} ∀B ∈ B(Rn)

and in particular

P {x ∈ R∞ : x1 ≤ a1, . . . , xn ≤ an} = Fn(a1, . . . , an) = G1(a1) · . . . ·Gn(an)

If for example all the Gn(x) are identical Bernoulli distributions B (1; p) so that

Gn(x) =


0, se x < 0;
1− p, se 0 ≤ x < 1;
1, se 1 ≤ x,

we can define P of xj sequences taking values aj = 0, 1, so that for every k = 0, 1, . . . , n

P

{
x ∈ R∞ : x1 = a1, . . . , xn = an, con

n∑
j=1

aj = k

}
= pk qn−k

Such a P extends to the (uncountable) space of infinite sequences of draws (Bernoulli
sequences) the binomial distributions defined by (2.6) and (2.7) on the finite spaces
of n-tuples of draws, as shown in the Section 2.1.2: this extension is crucial in order
to be able to define limits for an infinite number of drawings as will be seen in the
Appendix F.

Take finally the space
(
RT , B(RT )

)
and suppose first, as for (R∞, B(R∞)), to have

a probability P on it. This allows again (by adopting the usual cylinder procedure
of the Example 1.7) to get an entire family of probabilities on the finite dimensional
subspaces which are consistent as in the case of R∞. We ask then if, by starting back-
ward from a consistent family of probability spaces, we can extend it again to a P
on
(
RT , B(RT )

)
: this would ensure the definition of a probability on the (uncount-

ably) infinite dimensional space
(
RT , B(RT )

)
by giving an infinite consistent family

of probabilities on finite dimensional spaces. The positive answer to this question is
in the following theorem

Theorem 2.37. Kolmogorov theorem on RT : Take S = {t1, . . . , tn} arbitrary
finite subset of T , and a consistent family of probability spaces (Rn, B(Rn), PS): then
there always exists a unique probability P on

(
RT , B(RT )

)
which turns out to be an

extension of the given family

Proof: Omitted13 �

13A.N. Shiryaev, Probability, Springer (New York, 1996)
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2.4 Probability on R∞ and RT

Exemple 2.38. Wiener measure: Consider T = [0,+∞), so that RT will turn out
to be the set of the functions (xt)t≥0, and take the following family of Gaussian N (0, t)
pdf ’s

φt(x) =
e−x2/2t

√
2πt

t > 0

Given then S = {t1, . . . , tn} with 0 < t1 < . . . < tn, and a Borelian in Rn, for instance
B = A1 × . . .× An ∈ B(Rn), define PS by giving to B the probability

PS{B} =

∫
An

. . .

∫
A1

φtn−tn−1(xn − xn−1) . . . φt2−t1(x2 − x1)φt1(x1) dx1 . . . dxn

It is possible to check then that, with every possible S, the family (Rn, B(Rn), PS) is
consistent, and hence according to the Theorem 2.37 there exists a unique probability
P defined on

(
RT ,B(RT )

)
as an extension of the given family. This probability is

also called Wiener measure and plays a crucial role in the theory of the stochastic
processes. Its meaning could be intuitively clarified as follows: if (xt)t≥0 is the generic
trajectory of a point particle, the cylinder of basis B = A1×. . .×An will be the bundle of
the trajectories starting from x = 0, and passing through the windows A1, . . . , An at the
times t1 < . . . < tn. The φtk−tk−1

(xk −xk−1) dxk are moreover the (Gaussian) probabil-
ities that the particle, starting from xk−1 at the time tk−1, will be in [xk, xk + dxk] after
a delay tk − tk−1, while the product of these pdf ’s appearing in the definition indicates
the displacements independence in the time intervals [0, t1], [t1, t2], . . . , [tn−1, tn]. The
multiple integral of the definition, finally, allows to calculate the probability attributed
to the bundle of trajectories that, at the times t1 < . . . < tn, go through the windows
A1, . . . , An.
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Chapter 3

Random variables

3.1 Random variables

3.1.1 Measurability

Definition 3.1. Given the probabilizable spaces (Ω,F) e (R, B(R)), a function X :
Ω → R is said to be F-measurable – or simply measurable when there is no ambi-
guity – if (see also Figure 3.1)

X−1(B) = {X ∈ B} =
{
ω ∈ Ω : X(ω) ∈ B

}
∈ F , ∀B ∈ B(R) .

while to mention the involved σ-algebras we often write

X : (Ω,F) → (R, B(R))

In probability a measurable X is also called random variable ( rv), and when (Ω,F)
coincides with (Rn, B(Rn)) it is called Borel function.

Remark that in the previous definition no role whatsoever is played by the probability
measures: X is a rv as a result of its measurability only. On the other hand it is
indispensable to single out the two involved σ-algebras without which our definition
would be meaningless

Exemple 3.2. Indicators, and degenerate and simple rv ’s: The simplest rv’s
are the indicators IA(ω) of an event A ∈ F defined as

IA(ω) =

{
1, if ω ∈ A,
0, if ω /∈ A,

which apparently are measurable w.r.t. F since A ∈ F . The indicators have several
properties: for instance it is easy to check that ∀ω ∈ Ω

I∅(ω) = 0 IΩ(ω) = 1 IA(ω) + IĀ(ω) = 1

IAB(ω) = IA(ω) IB(ω) IA∪B(ω) = IA(ω) + IB(ω)− IA(ω) IB(ω)
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B
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X-1HBL

W

X

Figure 3.1: Graphic depiction of the random variable definition

Aside from the indicators, a relevant role is played by the simple rv’s, namely those
taking just a finite number of values xk, k = 1, . . . , n according to

X(ω) =
n∑

k=1

xkIDk
(ω)

where the Dk ∈ F are a finite decomposition of Ω: in short the simple rv X takes
the value xk on the ω ∈ Dk with k = 1, . . . , n. It is not excluded finally the case of a
degenerate (constant) rv which takes just one value b on Ω

In short every measurable function X : Ω → R is a rv and can be considered first
as a simple way to ascribe numerical values in R to every ω ∈ Ω. Every procedure
that for example awards money winnings to the sides of a dice (the measurability is
trivially met in these simple cases) can be considered as a rv. The rationale to require
the measurability in the general case will be made clear in the next section

3.1.2 Laws and distributions

The measurability comes into play when we take a probability P on (Ω,F): the fact
that {X ∈ B} ∈ F , ∀B ∈ B(R) enables indeed the rv X to induce on (R, B(R)) a
new probability as explained in the following definition

Definition 3.3. Given a probability space (Ω,F ,P ) and a rv X : (Ω,F) → (R, B(R)),
the law or distribution of X is the new probability PX induced by X on (R, B(R))
through the relation

PX{B} = P {X ∈ B} , B ∈ B(R)

while the cdf FX(x) of PX , namely

FX(x) = PX{(−∞, x]} = P {X ≤ x} = P {ω ∈ Ω : X(ω) ≤ x} , x ∈ R
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3.1 Random variables

is called distribution function (cdf ) of X, and coincides with the probability that
rv X be smaller than, or equal to x. We will finally adopt the shorthand notation

X ∼ PX

to indicate that PX is the distribution of the rv X

It is apparent that two rv ’s X and Y , different in the sense of the Definition 3.1, in
general have differen laws PX e PY , but we must remark at once that it is not impossible
for them to have the same law and hence to be identically distributed. For instance,
on the probability space of a fair dice, we can define the following two rv ’s: X taking
value 1 on the first four sides of the dice (and 0 on the other two), and Y taking value
0 on the first two sides (and 1 on the remaining four). Albeit different as functions
of ω, X and Y take the same values (0 e 1) with the same probabilities (respectively
1/3 and 2/3), and hence they have the same distribution. On the other hand, a given
rv X can have several different laws according to the different probabilities P that
we may define on (Ω,F): remember for instance that every conditioning modifies the
probability on (Ω,F). These remarks show that the law – even though that only is
practically accessible to our observations – does not define the rv, but it only gives
its statistical behavior. It is relevant then to add a few words about what it possibly
means to be equal for two or more rv ’s

Definition 3.4. Two rv’s X and Y defined on the same (Ω,F ,P ) are

• indistinguishable, and we simply write X = Y , when

X(ω) = Y (ω) ∀ω ∈ Ω

• identical P -a.s., and we also write X
as
= Y , when

P {X ̸= Y } = P {ω ∈ Ω : X(ω) ̸= Y (ω)} = 0

• identically distributed (id), and we also write X
d
= Y , when their laws coin-

cide namely if PX = PY so that

FX(x) = FY (x) ∀x ∈ R

It is apparent that indistinguishable rv ’s also are identical P -a.s., and that rv ’s identical
P -a.s. also are id : the reverse instead does not hold in general as could be shown with
a few counterexamples that we will neglect. We will give now a classification of the
rv ’s according to their laws
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Discrete rv ’s

The discrete rv ’s are of the type

X(ω) =
∑
k

xkIDk
(ω)

where k ranges on a finite or countable set of integers, while the events Dk = {X = xk}
are a decomposition of Ω. It is easy to see that the distribution PX is in this case a
discrete probability on the – at most countable – set of numbers xk ∈ R, so that its
cdf is discrete in the sense discussed in the Section 2.2.1. If then we take

pk = PX{xk} = P {X = xk} = FX(xk)− FX(x
−
k )

we also have

PX{B} =
∑

k :xk∈B

pk , B ∈ B(R)

Apparently the simple rv ’s previously introduced are discrete rv ’s taking just a finite
number of values, and so are also the P -a.s. degenerate rv ’s taking just the value b
with probability 1, namely with PX{b} = 1. The discrete rv ’s are identified according
to their laws, namely we will have for example degenerate rv ’s δb, Bernoulli B (1; p),
binomial B (n; p) and Poisson P(α) whose distributions have already been discussed
in the Section 2.2.2

Continuous and ac rv ’s

A rv is said continuous if its cdf FX(x) is a continuous function of x, and in particular
it is said absolutely continuous (ac) if its FX is ac, namely if there exists a non negative
probability density (pdf ) fX(x), normalized and such that

FX(x) =

∫ x

−∞
fX(y) dy

Remember that not every continuous rv also is ac: there are indeed continuous, but
singular rv ’s (see Section 2.2.4). These rv ’s are however devoid of any practical value,
so that often in the applied literature the ac rv ’s are just called continuous. All the
remark and examples of the Section 2.2.3 can of course be extended to the ac rv ’s that
will be classified again according to their laws: we will have then uniform rv ’s U (a, b),
Gaussian (normal) N (b, a2), exponential E(a), Laplace L(a), Cauchy C(b, a) and so on.
We finally remember here – but this will be reconsidered in further detail later – how
to calculate PX(B) from a pdf fX(x): for B = (−∞, x] from the given definitions we
get first

PX{(−∞, x]} = P {X ≤ x} = FX(x) =

∫ x

−∞
fX(t) dt =

∫
(−∞,x]

fX(t) dt
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3.1 Random variables

so that for B = (a, b] we have

PX{(a, b]} = P {a < X ≤ b} = FX(b)− FX(a) =

∫ b

a

fX(t) dt =

∫
(a,b]

fX(t) dt

With an intuitive generalization we can extend by analogy this result to an arbitrary
B ∈ B(R) so that

PX{B} =

∫
B

dFX(x) =

∫
B

fX(x) dx

Its precise meaning will be presented however in the discussion of the Corollary 3.23.

3.1.3 Generating new rv ’s

We have shown that a rv X on (Ω,F ,P ) is always equipped with a distribution given
by means of a cdf FX(x), but in fact also the reverse holds. If we have indeed just a
cdf F (x), but neither a rv or a probability space, we can always consider Ω = R as
sample space, and the rv X defined as the identical map X : R → R that to every
x = ω ∈ Ω associates the same number x ∈ R. If then on (Ω,F) = (R, B(R)) we
define a P by means of the given cdf F (x), it is easy to acknowledge that the cdf of
X exactly coincides with F (x)

Definition 3.5. If on (Ω,F) = (R, B(R)) we take the probability P defined through
a given cdf F (x), the identical map X from (R, B(R), P ) to (R, B(R)) will be called
canonical rv , and its cdf will coincide with the given F (x)

Functions of rv ’s

Proposition 3.6. Given a rv X(ω) (ω ∈ Ω) and a Borel function ϕ(x) (x ∈ R)
defined (at least) on the range of X, the compound function

ϕ
[
X(ω)

]
= Y (ω)

is measurable again and hence is a rv

Proof: Omitted1 �

According to the previous proposition, every Y = ϕ(X) is a rv if X is a rv and ϕ a
Borel function: for instance Xn, |X|, cosX, eX and so on are all rv ’s. On the other
hand it is important to remark that, given two rv ’s X and Y , does not necessarily exist
a Borel function ϕ such that Y coincides with ϕ(X): this could be shown by means of
simple examples that we will neglect. To further discuss this point let us introduce a
new notion: if X : (Ω,F) → (R, B(R)) is a rv it is possible to show that the following
family of subsets of Ω

FX =
(
X−1(B)

)
B∈B(R)

⊆ F

1A.N. Shiryaev, Probability, Springer (New York, 1996)
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again is a σ-algebra taking the name of σ-algebra generated by X. Apparently FX

is also the smallest σ-algebra of Ω subsets w.r.t. which X turns out to be measurable.
Remark that given two rv ’s X and Y their respective σ-algebras FX and FY in general
neither coincide, nor are are included in one another. The following result is then
particularly relevant

Theorem 3.7. Given two rv’s X and Y , if Y turns out to be FX-measurable (namely
if FY ⊆ FX) then there exists a Borel function ϕ such that Y (ω) = ϕ

[
X(ω)

]
∀ω ∈ Ω.

Proof: Omitted2 �

In short, the rv Y happens to be a function of another rv X if (and only if) all the
events in its σ-algebra FY also are events in FX , namely when every statement about
Y (the events in FY ) can be reformulated as an equivalent statement about X (namely
are also events in FX)

Limits of sequences of rv ’s

An alternative procedure to generate rv ’s consists in taking limits of sequences of
rv ’s (Xn)n∈N . To this end we will preliminarily introduce a suitable definition of
convergence, even if this point will be subsequently considered in more detail in
the Section 4.1. Remark first that in the following the qualification convergent will
be attributed to both the sequences convergent to finite limits, and that divergent
either to +∞ or to −∞; the wording non convergent will be instead reserved for the
sequences that do not admit a limit whatsoever. Remember moreover that the notion
of convergence that we define here is just the first among the several (non equivalent)
that will be introduced later

A sequence of rv ’s (Xn)n∈N is a sequence not of numbers, but of functions of
ω ∈ Ω. Only when we fix an ω the elements Xn of the sequence will take the particular
values xn and we get the numerical sequence (xn)n∈N as the sample trajectory of our
sequence of rv ’s. By choosing on the other hand a different ω′ we will get a different
numerical sequence (x′

n)n∈N , and so on with ω′′... We can then think of the sequence
of rv ’s (Xn)n∈N as the set of all its possible samples (xn)n∈N obtained according to
the chosen ω ∈ Ω

Definition 3.8. We say that a sequence of rv’s (Xn)n∈N pointwise convergent
when all the numerical sequences xn = Xn(ω) converge for every ω ∈ Ω

Of course, when our sequence (Xn)n∈N is pointwise convergent every different sample
(xn)n∈N either converges toward a different number x, or diverges toward ±∞. As
a consequence the limit is a new function X(ω) of ω ∈ Ω, and the following results
state indeed that such a function again is a rv, while in the reverse every rv X can be
recovered as a limit of suitable simple rv ’s

2A.N. Shiryaev, Probability, Springer (New York, 1996))
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3.2 Random vectors and stochastic processes

Proposition 3.9. If the sequence of rv’s (Xn)n∈N is pointwise convergent toward
X(ω), then X too is measurable, namely is a rv

Proof: Omitted3 �

Theorem 3.10. Lebesgue theorem: If X is a non negative rv (X ≥ 0), we can
always find a sequence (Xn)n∈N of simple, non decreasing rv’s

0 ≤ Xn ≤ Xn+1 ≤ X , ∀ω ∈ Ω , ∀n ∈ N

which is pointwise convergent (from below) toward X, and we will also write Xn ↑ X.
If instead X is an arbitrary rv we can always find a sequence (Xn)n∈N of simple rv’s
with

|Xn| ≤ |X| , ∀ω ∈ Ω , ∀n ∈ N

which is pointwise convergent toward X

Proof: Omitted4 �

From the previous results we can prove that, if X and Y are rv ’s, then also X ± Y ,
XY , X/Y ... are rv ’s, provided that they do not take one of the indeterminate forms
∞−∞, ∞/∞, 0/0. Remark finally that sometimes, in order to take into account the
possible ±∞ limits for some ω, we will suppose that our rv ’s can also take the values
+∞ and −∞. In this case we speak of extended rv ’s which however, with some
caution, have the same properties of the usual rv ’s

3.2 Random vectors and stochastic processes

3.2.1 Random elements

The notion of a rv as a measurable functionX : (Ω,F) → (R, B(R)) can be generalized
by allowing values in spaces different from (R, B(R)). The sole property of (R, B(R))
which is relevant for the definition is indeed to be a probabilizable space: we can then
suppose that our functions take values in more general spaces, and we will speak of
random elements that, when not reduced to a simple rv, will be denoted as X

Definition 3.11. Take two probabilizable spaces (Ω,F) and (E, E): we say that a
function X : (Ω,F) → (E, E) is a random element when it is F/E-measurable,
namely when (see also Figura 3.2)

X−1(B) ∈ F , ∀B ∈ E

3A.N. Shiryaev, Probability, Springer (New York, 1996)
4A.N. Shiryaev, Probability, Springer (New York, 1996)

61



N. Cufaro Petroni: Probability and Processes

B
E

Ω

= HΩL

-1HBL

W

X

X

Xx

Figure 3.2: Graphic depiction of the random element definition

Random vectors

Suppose first that (E, E) = (Rn, B(Rn)) with Rn = R1 × · · · ×Rn Cartesian product
of n replicas of the real line: the values taken by the random element X are then the
n-tuples of real numbers

x = (x1, . . . , xn) = (xk)k=1,...,n ∈ Rn

and in this case we say that X is a random vector (r-vec) taking values in Rn. It
would be easy to see that it can be equivalently represented as an n-tuple (Xk)k=1,...,n

of rv ’s Xk each taking values in
(
Rk,B(Rk)

)
and called components of the r-vec: in

short to take a r-vec X = (Xk)k=1,...,n is equivalent to take n rv ’s as its components.
In particulare consider the case (E, E) =

(
C,B(C)

)
where C is the set of the complex

numbers z = x + iy: since C and R2 are isomorphic, a complex rv Z will be
nothing else than a r-vec with n = 2 whose components are its real and imaginary
parts according to Z(ω) = X(ω) + iY (ω), where X and Y are real rv ’s

Random sequences

When instead (E, E) = (R∞, B(R∞)) the values of the random element are sequences
of real number

x = (x1, . . . , xn, . . .) = (xn)n∈N ∈ R∞

and X is called random sequence (r-seq). In this case we can equivalently say that
X coincides with a sequence of rv ’s (Xn)n∈N , a notion already introduced in the
previous section while discussing of convergence

Stochastic processes

If finally (E, E) =
(
RT , B(RT )

)
, with T a (neither necessarily finite nor countable)

subset ofR, the random elementX – now called stochastic process (sp) – associates
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3.2 Random vectors and stochastic processes

to every ω ∈ Ω a function (xt)t∈T , also denoted as x(t) and called trajectory. Even
here it could be shown that a sp can be considered as a family (Xt)t∈T of rv ’s Xt,
also denoted as X(t). A sp X can then be considered either as a map associating to
ω ∈ Ω a whole function (trajectory) (xt)t∈T ∈ RT , or as a map associating to every
t ∈ T a rv Xt : (Ω,F) → (R, B(R)). In short the components Xt(ω) = X(ω; t) of
a sp are functions of two variables t and ω, and the different notations are adopted
in order to emphasize one or both these variables. Further details about the sp’s will
be provided in the Second Part of these lectures. Remark finally that if in particular
T = {1, 2, . . . } = N is the set of the natural numbers then the sp boils down to a
sequence of rv ’s (Xn)n∈N and is also called discrete time stochastic process.

3.2.2 Joint and marginal distributions and densities

When on (Ω,F) we take a probability P , the usual procedures will allow to induce
probabilities also on the spaces (E, E) in order to define laws and distributions of the
random elements

Laws of random vectors

Given a r-vec X = (Xk)k=1,...,n, we call joint law (or joint distribution) of its
components Xk, the PX defined on (Rn, B(Rn)) through

PX{B} = P
{
X−1(B)

}
= P {X ∈ B} = P {(X1, . . . , Xn) ∈ B}

whereB is an arbitrary element of B(Rn); we call insteadmarginal laws (or marginal
distributions) of the components Xk, the PXk

defined on
(
Rk,B(Rk)

)
through

PXk
{A} = P

{
X−1

k (A)
}
= P {Xk ∈ A}

where A is an arbitrary element of B(Rk). We consequently call joint distribution
function (joint cdf ) of the r-vec X the cdf of PX , namely

FX(x) = FX(x1, . . . , xn) = PX{(−∞, x1]× · · · × (−∞, xn]}
= P {X1 ≤ x1, . . . , Xn ≤ xn}

with x = (x1, . . . , xn) ∈ Rn, and marginal distribution function (marginal cdf ) of
its components Xk the cdf ’s of the PXk

, namely

FXk
(xk) = P {Xk ≤ xk} = PXk

{(−∞, xk]} = PX{R1 × · · · × (−∞, xk]× · · · ×Rn}

with xk ∈ Rk and k = 1, . . . , n.
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Laws of random sequences

The notions about the r-vec’s can be easily extended to the r-seq ’s X = (Xn)n∈N by
selecting a finite subset of components constituting a r-vec: taken indeed a finite subset
of indices {k1, . . . , km}, we consider the finite-dimensional, joint law or distribution of
the r-vec (Xk1 , . . . , Xkm). By choosing the indices {k1, . . . , km} in all the possible
ways we will have then a (consistent, see Section 2.4) family of finite-dimensional
distributions with their finite-dimensional cdf ’s

F (x1, k1; . . . ; xm, km) = P {Xk1 ≤ x1; . . . ;Xkm ≤ xm}

These finite-dimensional distributions (and their cdf ’s) of the components Xk are also
called joint, marginal laws or distributions. We must just remember at this
point that, according to the Theorem 2.35, to have this consistent family of finite-
dimensional distributions is tantamount to define the probability PX on the whole
space (R∞, B(R∞)) of our r-seq samples

Laws of stochastic processes

In a similar way we can manage the case of a sp X = (Xt)t∈T : given indeed a finite set
{t1, . . . , tm} of instants in T we take the finite-dimensional, joint law or distribution of
the r-vec (Xt1 , . . . , Xtm) and the corresponding finite-dimensional, joint cdf

F (x1, t1; . . . ; xm, tm) = P {Xt1 ≤ x1; . . . ;Xtm ≤ xm}

These finite-dimensional distributions (and their cdf ’s) of the components Xt are again
called joint, marginal laws or distributions. By choosing now in every possible
way the points {t1, . . . , tm} we get then a consistent family of cdf ’s, and we remember
again that, according to the Theorem 2.37, to have this consistent family is tantamount
to define a PX on the whole

(
RT , B(RT )

)
Marginalization

The remarks about joint and marginal distributions discussed in the Section 2.3.3 turn
out to be instrumental also here. In particular, given the joint cdf FX(x) of a r-vec
X, we will always be able to find in a unique way the marginal cdf ’s by adopting the
usual procedure, for example

FXk
(xk) = FX(+∞, . . . , xk, . . . ,+∞)

It is easy to see indeed that

FXk
(xk) = P {Xk ≤ xk} = P {X1 < +∞, . . . , Xk ≤ xk, . . . , Xn < +∞}

= FX(+∞, . . . , xk, . . . ,+∞)

As it has been shown again in the Section 2.3.3, in general it is not possible instead to
recover in a unique way a joint cdf FX from given marginal cdf ’s FXk
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3.2 Random vectors and stochastic processes

Densities

When the joint cdf FX(x) of a r-vec X is also ac we also have a joint density (joint
pdf ) fX(x) ≥ 0 such that

FX(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
fX(y1, . . . , yn) dy1 . . . dyn

Of course it is also

fX(x1, . . . , xn) =
∂nFX(x1, . . . , xn)

∂x1 . . . ∂xn

It is possible to show that in this event also the single componentsXk have ac marginals
cdf ’s FXk

(xk) with pdf ’s fXk
(xk) differentiable from the joint pdf fX(x) by means of

the usual marginalization procedure

fXk
(xk) =

∫ +∞

−∞
. . .

∫ +∞

−∞
fX(x1, . . . , xk, . . . , xn) dx1 . . . dxk−1dxk+1 . . . dxn

with n− 1 integrations on all the variables except the kth. Apparently it is also

fXk
(xk) = F ′

Xk
(xk)

These fXk
(xk) are called marginal densities and here too, while from the joint pdf

fX(x) we can always deduce – by integration – the marginals fXk
(xk), a retrieval of

the joint pdf from the marginals is not in general unique. From the joint pdf we can
finally calculate PX{B} with B ∈ B(Rn): if for instance B = (a1, b1] × . . . × (an, bn]
in analogy with the univariate case we have

PX{B} = P {X ∈ B} = P {a1 < X1 ≤ b1, . . . , an < Xn ≤ bn}

=

∫ b1

a1

. . .

∫ bn

an

fX(x1, . . . , xn) dx1 . . . dxn

Exemple 3.12. Discrete r-vec’s: Take a r-vec with discrete components: since
FX is now discrete it will be enough to give the the joint discrete distributions to
know the law. Consider for example a multinomial r-vec X = (X1, . . . , Xr) with
r = 1, 2, . . . , and law B (n; p1, . . . , pr) defined in the Example 2.6. We remember that
this is the case of a random experiment with r + 1 possible outcomes: the individual
components Xj – representing how many times we find the jth outcome among n trials
– take values from 0 to n with a joint multinomial law, while it is understood that rv
X0 comes from X0 +X1 + . . .+Xr = n. From (2.9) we then have

PX{k} = P {X1 = k1, . . . , Xr = kr} =

(
n

k1, . . . , kr

)
pk00 pk11 · . . . · pkrr (3.1)

with k0 + k1 + . . . + kr = n, and p0 + p1 + . . . + pr = 1. In the case r = 1, X reduces
to just one component X1 with binomial law B (n; p1)
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Resuming then the discussion of the Section 2.1.2, a second example can be the r-
vec X = (X1, . . . , Xn) with the components Xk representing the outcomes of n coin
flips: they take now just the values 0 and 1. As a consequence the X samples are
the ordered n-tuples (2.5) that in the Bernoulli model occur with a probability (2.6), so
that the joint distribution of the r-vec X is now

PX{a1, . . . , an} = P {X1 = a1, . . . , Xn = an} = pkqn−k aj = 0, 1 (3.2)

with k =
∑

j aj and q = 1 − p. A simple calculation would show finally that the
marginals of the components Xk are all id with a Bernoulli law B (1; p). For the sake
of simplicity we will neglect to display the explicit form of the joint cdf FX for these
two examples

Exemple 3.13. Gaussian r-vec’s X ∼ N(b,A): A relevant example of ac r-vec
is that of the Gaussian (normal) r-vec’s X = (X1, . . . , Xn) with a multivariate,
normal pdf N(b,A) of the type (2.22) presented in the Section 2.3.2. The marginal pdf
of a Gaussian r-vec are of course the Gaussian univariate N (bk, a

2
k) of the type (2.31)

as it could be seen with a direct calculation by marginalizing N(b,A). We must re-
member however that a r-vec with univariate Gaussian marginals is not forcibly also a
Gaussian r-vec: the joint pdf , indeed, is not uniquely defined by such marginals, and
hence the joint pdf of our r-vec could differ from a N(b,A), even if its marginals are
all N (bk, a

2
k)

3.2.3 Independence of rv ’s

Definition 3.14. Take a probability space (Ω,F ,P ) and a family X = (Xs)s∈S of
rv’s with an arbitrary (finite, countable or uncountable) set of indices S: we say that
the components Xs of X are independent rv’s if, however taken m components of
indices s1, . . . , sm, and however taken the subsets Bk ∈ B(R) with k = 1, . . . ,m, it is

P {Xs1 ∈ B1, . . . , Xsm ∈ Bm} = P {Xs1 ∈ B1} · . . . · P {Xsm ∈ Bm}

In short, the independence of the rv ’s in X boils down to the independence (in the
usual sense of the Section 1.5) of all the events that we can define by means of an
arbitrary, finite collection of rv ’s of X, and in principle this amounts to a very large
number of relations. The simplest case is that of S = {1, . . . , n} when X is a r-
vec with n components, but the definition fits also the case of r-seq ’s and sp’s. As
already remarked in the Section 3.1.2, we finally recall that it is possible to have rv ’s
identically distributed, but different and also independent: in this case we will speak
of independent and identically distributed rv ’s (iid).

Theorem 3.15. Take a r-vec X = (Xk)k=1,...,n on (Ω,F ,P ): the following two state-
ments are equivalent

(a) the components Xk are independent;
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D

x

y

1

1-1 0

D'

x'

y'

1

1-1 0

Figure 3.3: Domains D and D′ in the Example 3.16

(b) FX(x1, . . . , xn) = FX1(x1) · . . . · FXn(xn);

If moreover FX(x) is ac, then the previous statements are also equivalent to

(c) fX(x1, . . . , xn) = fX1(x1) · . . . · fXn(xn).

Proof: Omitted5 �

Exemple 3.16. In a first application of the Theorem 3.15 remark that the r-vec X
defined in the Exemple 3.12 with distribution (3.2), and describing the outcome of
n coin flips in the Bernoulli model, is apparently composed of iid rv’s. The joint
distribution (3.2) (and hence also the joint cdf ) turns out indeed to be the product of
n identical Bernoulli laws B (1; p) representing the marginal laws of the Xk. We can
say then that X, with the prescribed law (3.2), is a r-vec of n iid Bernoulli rv’s,
and we will also symbolically write X ∼ [B (1; p)]n

Resuming then the Example 2.30 with the Figure 2.12, suppose that f and g respec-
tively are two, different joint pdf ’s for the bivariate r-vec’s U and V . We have shown
that their marginals coincide, but their relations (2.30) with the joint distribution are
different: the joint pdf of U is the product of its marginals, while this is not true for V .
We can then conclude from the Theorem 3.15 that U and V , with identical marginals,
substantially differ because the components of U are independent, and that of V are
not

In a third example we will suppose again to take two r-vec’s U = (X,Y ) and
V = (X ′, Y ′) with constant pdf (uniform laws) in two different domains of R2:

fU (x, y) =

{
2
π
, if (x, y) ∈ D,

0, if (x, y) ̸∈ D,
fV (x

′, y′) =

{
1
2
, if (x′, y′) ∈ D′,

0, if (x′, y′) ̸∈ D′,

where the domains D and D′ depicted in Figure 3.3 are

D = {(x, y) ∈ R2 : −1 ≤ x ≤ +1, 0 ≤ y ≤
√
1− x2}

D′ = {(x′, y′) ∈ R2 : −1 ≤ x′ ≤ +1, 0 ≤ y′ ≤ 1}
5A.N. Shiryaev, Probability, Springer (New York, 1996)
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An elementary integration will show that the marginal pdf ’s of U are

fX(x) =

{
2
π

√
1− x2, if (x ∈ [−1, 1]

0, if x ̸∈ [−1, 1]
fY (y) =

{
4
π

√
1− y2, if y ∈ [0, 1]

0, if y ̸∈ [0, 1]

while the marginals of V are

fX′(x′) =

{
1
2
, if x′ ∈ [−1, 1]

0, if x′ ̸∈ [−1, 1]
fY ′(y′) =

{
1, if y′ ∈ [0, 1]
0, if y′ ̸∈ [0, 1]

so that
fU (x, y) ̸= fX(x)fY (y) fV (x

′, y′) = fX′(x′)fY ′(y′)

and hence the components of V are independent rv’s, while that of U are not

3.2.4 Decomposition of binomial rv ’s

The sums of rv ’s and their laws play an extremely important role and will be extensively
discussed in the Section 3.5.2: we will give here just a short preliminary analysis
for particular, discrete rv ’s that will enable us to get an important result about the
binomial laws

Consider a r-vec U = (X,Y ) whose components take just integer values, and let
their joint and marginal distributions be denoted as

PU{j, k} = P {X = j, Y = k} PX{j} = P {X = j} PY {k} = P {Y = k}

In the following discussion it will be enough to consider X and Y taking just a finite
number of values

X = j ∈ {0, 1, . . . ,m} Y = k ∈ {0, 1, . . . , n} (3.3)

but in order to simplify our notations we will suppose that these values are indeed all
the relative numbers Z (positive, negative and zero integers), but that only (3.3) have
non zero probabilities. Define then the rv W = X + Y taking the values

W = ℓ ∈ {0, 1, . . . , n+m}

and look for its distribution PW based on the available distributions PU ,PX and PY .
In order to do that we will give first a provisional definition of the discrete convolution
between two discrete distributions with integer values, by remarking also that a more
general one will be provided later in the Definition 3.48

Definition 3.17. Take two discrete laws with integer values P and Q and let p(j) and
q(k) be their distributions: we say that the law R is their (discrete) convolution
P ∗Q when its distribution r(ℓ) is

r(ℓ) =
∑
k∈Z

p(ℓ− k)q(k) (3.4)
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Proposition 3.18. Within the given notations it is

PW{ℓ} =
∑
k∈Z

PU{ℓ− k, k}

If moreover X and Y are also independent we get

PW{ℓ} =
∑
k∈Z

PX{ℓ− k}PY {k} = (PX ∗ PY ){ℓ} (3.5)

so that PW turns out to be the (discrete) convolution of PX and PY

Proof: We have indeed

PW{ℓ} = P {W = ℓ} = P {X + Y = ℓ} =
∑
j+k=ℓ

P {X = j, Y = k}

=
∑
j+k=ℓ

PU{j, k} =
∑
k∈Z

PU{ℓ− k, k}

When moreover X and Y are also independent, from the Theorem 3.15 we have
PU{j, k} = PX{j}PY {k} and hence (3.5) is easily deduced �

In the Bernoulli model of the Section 2.1.2 the sample space Ω was the set of the
n-tuples of results ω = (a1 , . . . an) as in (2.5), where aj = 0, 1 is the outcome of the
jth draw, and k =

∑
j aj is the number of white balls in an n-tuple of draws. We then

defined the events

Aj = {ω ∈ Ω : aj = 1} j = 1, . . . , n

Dk =

{
ω ∈ Ω :

n∑
j=0

aj = k

}
k = 0, 1, . . . , n

and, taken on Ω the probability (2.6), we have shown that P {Dk} are a binomial
distribution B (n; p), while the Aj are independent with P {Aj} = p. We are able now
to revise this model in terms of rv ’s: consider first the r-vec X = (X1, . . . , Xn) (as
already defined in the Sections 3.2.2 and 3.2.3) whose independent components are the
rv ’s (indicators)

Xj = IAj

namely the outcomes of every draw, and then the (simple) rv

Sn =
n∑

k=0

kIDk

namely the number of white balls in n draws. Apparently it is Dk = {Sn = k} and
Aj = {Xj = 1}, while among our rv ’s the following relation holds

Sn =
n∑

j=1

Xj (3.6)
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because, by definition, for every ω ∈ Ω the value of Sn (number of white balls) is the
sum of all the Xj, and hence the rv ’s in (3.6) are indistinguishable (see Definition 3.4)
and also idIn the Section 2.1.2 we have also seen by direct calculation that

Xj ∼ B (1; p) Sn ∼ B (n; p)

namely that the sum of n independent Bernoulli rv ’s Xj ∼ B (1; p) is a binomial rv
Sn ∼ B (n; p). We will now revise these results in the light of the Proposition 3.18

Proposition 3.19. A binomial law B (n; p) is the convolution of n Bernoulli laws
B (1; p) according to

B (n; p) = [B (1; p)]∗n = B (1; p) ∗ . . . ∗B (1; p)︸ ︷︷ ︸
n times

(3.7)

As for the rv’s we can then say that:

• if we take n iid Bernoulli rv ’s Xk ∼ B (1; p), their sum Sn = X1 + . . .+Xn will
follow the binomial law B (n; p)

• if we take a binomial rv Sn ∼ B (n; p), there exist n iid Bernoulli rv ’s Xk ∼
B (1; p) such that Sn is decomposed (in distribution) into their sum, namely

Sn
d
= X1 + . . .+Xn (3.8)

Proof: The Bernoulli law B (1; p) has the distribution

p1(k) =

(
1

k

)
pkq1−k =

{
p se k = 1
q se k = 0

so that from (3.4) the law B (1; p) ∗ B (1; p) will give only to 0, 1, 2 the non zero
probabilities

r(0) = p1(0)p1(0) = q2

r(1) = p1(0)p1(1) + p1(1)p1(0) = 2pq
r(2) = p1(1)p1(1) = p2

which coincide with the distribution

p2(k) =

(
2

k

)
pkq2−k

of the binomial law B (2; p). The complete result (3.7) follows by induction, but we
will neglect to check it. As for the rv ’s, if X1 . . . , Xn are n iid Bernoulli rv ’s B (1; p)
iid, from the Proposition 3.18 the distribution of their sum Sn will be the convolution
of their laws, which according to (3.7) will be the binomial B (n; p). If conversely
Sn ∼ B (n; p) we know from (3.7) that its law is convolution of n Bernoulli B (1; p).
From the Definition 3.5 on the other hand we know that to these n distributions we
can always associate n iid Bernoulli rv ’s X1, . . . , Xn so that from the Proposition 3.18

results Sn
d
= X1 + . . .+Xn �
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3.3 Expectation

3.3 Expectation

3.3.1 Integration and expectation

The expectation of a rv X is a numerical indicator specifying the location of the
barycenter of a distribution PX , and takes origin from the notion of weighed average.
For simple rv ’s

X =
n∑

k=1

xkIDk

where Dk = {X = xk} ∈ F is a decomposition, the expectation is just the weighed
average of its values

E [X] =
n∑

k=1

xkPX{xk} =
n∑

k=1

xkP {X = xk} =
n∑

k=1

xkP {Dk} (3.9)

a definition extended in a natural way also to the general discrete rv ’s (including the
case of countably many values) as

E [X] =
∞∑
k=1

xkPX{xk}

provided that the series converges. Remark that in particular for every A ∈ F we
always have

E [IA] = P {A} (3.10)

a simple result that however highlights a relation between the notions of probability
and expectation that will be instrumental for later purposes

When however X is an arbitrary rv we can no longer adopt these elementary def-
initions. In this case we first remark that when X is a non negative rv the Theo-
rem 3.10 points to the existence of a non decreasing sequence of non negative, simple
rv ’s (Xn)n∈N such that Xn(ω) ↑ X(ω) for every ω ∈ Ω. From the previous elementary
definitions we can then define the non negative, monotonic non decreasing numerical
sequence (E [Xn])n∈N always admitting a limit (possibly +∞) that we can consider
as the definition of the expectation of X. To extend then this procedure to a totally
arbitrary rv X we remember that this is always representable as a difference between
non negative rv ’s in the form

X = X+ −X−

where X+ = max{X, 0} and X− = −min{X, 0} are respectively called positive and
negative parts of X. As a consequence we can separately take the two non negative rv ’s
X+ and X−, define their expectation and finally piece together that of X by difference.
Neglecting the technical details, we can then sum up these remarks in the following
definition
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Definition 3.20. To define the expectation of a rv X we adopt the following proce-
dure:

• if X is a non negative rv we call expectation the limit (possibly +∞)

E [X] ≡ lim
n

E [Xn]

where (Xn)n∈N is a monotonic non decreasing sequence of simple rv’s such that
Xn ↑ X for every ω ∈ Ω, and E [Xn] are defined in an elementary way; the
existence of such sequences (Xn)n∈N follows from the Theorem 3.10, and it is
possible to prove that the result is independent from the choice of the particular
sequence;

• if X ia an arbitrary rv we will say that its expectation exists when at least one
of the two non negative numbers E [X+] , E [X−] is finite, and in that case we
take

E [X] ≡ E
[
X+
]
−E

[
X−]

if instead both E [X+] and E [X−] are +∞ we will say that the expectation of X
does not exist;

• when both the numbers E [X+] , E [X−] are finite, also E [X] is finite and X is
said integrable, namely to have a finite expectation

E [X] < +∞

since moreover |X| = X+ +X−, if X is integrable, it turns out to be also abso-
lutely integrable, namely

E [|X| ] < +∞

and it is apparent that also the reverse holds, so that we can say that a rv is
integrable iff it is absolutely integrable

Since the procedure outlined in the previous definition closely resembles that used to
define the Lebesgue integral we will also adopt in the following the notation

E [X] =

∫
Ω

X dP =

∫
Ω

X(ω)P {dω}

More generally, if g is a measurable function from (Ω,F) to (R, B(R)), and µ is
a measure (possibly not a probability) on (Ω,F), the Lebesgue integral is defined
retracing the procedure of the Definition 3.20 and is denoted as∫

Ω

g dµ =

∫
Ω

g(ω)µ{dω}

When µ is not a probability however such an integral is not an expectation
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It is also possible to restrict our integrals to the subsets of Ω: if A ∈ F is a subset
of Ω, we call Lebesgue integral over the set A the integrals∫

A

X dP =

∫
Ω

XIA dP = E [XIA]

∫
A

g dµ =

∫
Ω

gIA dµ

respectively for a probability P and for a general measure µ. Remark that (3.10) takes
now the more evocative form

P {A} = E [IA] =

∫
Ω

IA dP =

∫
A

dP (3.11)

apparently stressing that the probability of an event A is nothing else than the the
integral of P on A

Definition 3.21. We will call moment of order k of a rv X the expectation (if it
exists)

E
[
Xk
]
=

∫
Ω

Xk dP k = 0, 1, 2, . . .

and absolute moment of order r the expectation (if it exists)

E [|X|r] =
∫
Ω

|X|r dP r ≥ 0

It is important finally to recall the notations usually adopted for the integrals when in
particular (Ω,F) = (Rn, B(Rn)), g is a Borel function, and G(x) is the generalized cdf
of a Lebesgue-Stieltjes measure µ: in this case we will speak of a Lebesgue-Stieltjes
integral and we will write∫

Ω

g dµ =

∫
Rn

g dG =

∫
Rn

g(x)G(dx) =

∫
Rn

g(x1, . . . , xn)G(dx1, . . . , dxn)

For n = 1 on the other hand we also write∫
R

g dG =

∫
R

g(x)G(dx) =

∫ +∞

−∞
g(x)G(dx)

while the integral on an interval (a, b] will be∫
(a,b]

g(x)G(dx) =

∫
R

I(a,b](x)g(x)G(dx) =

∫ b

a

g(x)G(dx)

If µ is the Lebesgue measure, G(dx) is replaced by dx and, for n = 1, G(dx) is replaced
by dx. When finally µ is a probability P , G is replaced by a cdf F and the integral
on the whole Rn will take the meaning of an expectation
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Figure 3.4: Graphical depiction of the Theorem 3.22.

3.3.2 Change of variables

Theorem 3.22. (Change of variables): Take the r-vec X = (X1, . . . , Xn) on
(Ω,F ,P ) with joint distribution PX , and the Borel function g : (Rn, B(Rn)) →
(R, B(R)); if Y = g(X) (see Figure 3.4), we have

E [Y ] =

∫
Ω

Y (ω) dP (ω) = E [g(X)] =

∫
Ω

g(X(ω)) dP (ω)

=

∫
Rn

g(x)PX{dx} =

∫
Rn

g(x1, . . . , xn)PX{dx1, . . . , dxn}

Proof: Omitted6. Remark from Figure 3.4 that in general, with n ≥ 2, X is a r-vec
and g(x) = g(x1, . . . , xn) an n variables function according to the diagram

(Ω,F)
X−→ (Rn, B(Rn))

g−→ (R, B(R))

while Y = g(X) is a rv In the simplest case n = 1 the r-vec X has just one component
X, and the diagram of the Theorem 3.22 boils down to

(Ω,F)
X−→ (R, B(R))

g−→ (R, B(R))

with Y = g(X) �

Since the Definition 3.20 of expectation is rather abstract the previous result and its
aftermaths, that basically resort just to the ordinary real integration, are of great

6A.N. Shiryaev, Probability, Springer (New York, 1996)
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practical importance. According to the Theorem 3.22 we can indeed calculate the
expectation of Y = g(X) (in the sense of the abstract integral of a function from
Ω to R) as an integral of Borel functions g(x) from Rn to R. Since moreover the
distribution PX on (Rn, B(Rn)) has a cdf F – and possibly a pdf f – we can deduce a
few familiar rules of integration. To this end remember that if FX and fX respectively
are the cdf and the pdf of PX , it is possible to prove (but we will neglect the details)
that ∫

A

g(x)FX(dx) =

∫
A

g(x)fX(x) dx ∀A ∈ B(R) (3.12)

so that, if a pdf exists, we can replace FX(dx) by fX(x) dx in in all the following
integrations

Corollary 3.23. For n = 1, when the r-vec X has just one component X, if PX has
a discrete cdf FX(x) from Theorem 3.22 we get

E [Y ] = E [g(X)] =

∫ +∞

−∞
g(x)FX(dx) =

∑
k

g(xk)PX{xk} (3.13)

and if in particular g(x) = x (namely Y = X) we have

E [X] =
∑
k

xkPX{xk} (3.14)

so that we can also write

E [Y ] =
∑
ℓ

yℓPY {yℓ} =
∑
k

g(xk)PX{xk} (3.15)

When instead FX(x) is ac with pdf fX(x), it will be

E [Y ] = E [g(X)] =

∫ +∞

−∞
g(x)FX(dx) =

∫ +∞

−∞
g(x)fX(x) dx (3.16)

and if in particular g(x) = x we get the usual formula

E [X] =

∫ +∞

−∞
xFX(dx) =

∫ +∞

−∞
xfX(x) dx (3.17)

so that we can also write

E [Y ] =

∫ +∞

−∞
yfY (y) dy =

∫ +∞

−∞
g(x)fX(x) dx (3.18)

When n > 1, if FX(x) and fX(x) are the joint cdf and pdf of X, and FY (y), fY (y)
the cdf and pdf of Y = g(X), the equations (3.16) and (3.18) become

E [Y ] = E [g(X)] =

∫
R

yfY (y) dy =

∫
Rn

g(x)fX(x) dnx

=

∫ +∞

−∞
. . .

∫ +∞

−∞
g(x1, . . . , xn)fX(x1, . . . , xn) dx1 . . . dxn (3.19)
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Finally probabilities and cdf ’s can be calculated respectively as

PX

{
[a1, b1]× · · · × [an, bn]

}
=

∫ b1

a1

. . .

∫ bn

an

fX(x) dnx (3.20)

FX(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
fX(y) dny (3.21)

and we also find the marginalization rules

fXk
(xk) =

∫ +∞

−∞
. . .

∫ +∞

−∞
fX(x1, . . . , xn) dx1 . . . dxk−1dxk+1 . . . dxn (3.22)

Proof: Neglecting a complete check of these results, we will just point out that for
n = 1 with FX(x) ac and pdf fX(x) the Theorem 3.22 becomes

E [Y ] = E [g(X)] =

∫
Ω

Y dP =

∫
Ω

g(X)P {dω} =

∫
R

g(x)PX{dx}

=

∫
R

g(x)FX(dx) =

∫
R

g(x)fX(x) dx

and immediately gives (3.16) and (3.17). Since moreover the (3.17) holds for every rv,
by means of the pdf fY of Y , we can also write

E [Y ] =

∫ +∞

−∞
yFY (dy) =

∫ +∞

−∞
yfY (y) dy (3.23)

and taking (3.16) along with (3.23) we get (3.18): in short the expectation of Y = g(X)
can be calculated in two equivalent ways according to the used pdf, either fX or fY ,
and the equation (3.18) is the usual rule for the change of integration variable y = g(x)

As for the probability formulas (always with n = 1) take in particular as g(x) the
following indicator on (R, B(R))

g(x) = χB(x) =

{
1, if x ∈ B
0, elsewhere

B ∈ B(R)

which is a Borel function related to the corresponding indicator on (Ω,F) by

χB(X(ω)) = IX−1(B)(ω) ∀ω ∈ Ω

since ω ∈ X−1(B) is equivalent to X(ω) ∈ B. From the Theorem 3.22 we then have

P {X ∈ B} = PX{B} = P
{
X−1(B)

}
= E

[
IX−1(B)

]
=

∫
Ω

IX−1(B) dP

=

∫
Ω

χB(X) dP =

∫
R

χB(x)PX{dx} =

∫
R

χB(x)FX(dx)

=

∫
B

FX(dx) =

∫
B

fX(x) dx
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a result already disclosed at the end of the Section 3.1.2. When in particular B = [a, b]
we write

PX{[a, b]} = P {a ≤ X ≤ b} =

∫ b

a

fX(x) dx (3.24)

while for B = (−∞, x] it is

PX{(−∞, x]} = P {X ≤ x} = FX(x) =

∫ x

−∞
fX(t) dt (3.25)

Remark finally that when a pdf f exists the cdf apparently is ac and hence continuous:
as a consequence the probability allotted to the single points is strictly zero, and hence
it is immaterial to include or not the endpoints of the intervals. This explains, for
instance, why in (3.24) the intervals are closed �

Exemple 3.24. If X ∼ δb is a degenerate rv its expectation trivially is

E [X] = b · 1 = b (3.26)

while if X ∼ B (1; p) is a Bernoulli rv we will have

E [X] = 1 · p+ 0 · (1− p) = p (3.27)

When on the other hand X ∼ B (n; p) ia a binomial rv with a simple index rescaling
we get

E [X] =
n∑

k=1

k

(
n

k

)
pkqn−k = np

n∑
k=1

(
n− 1

k − 1

)
pk−1qn−k

= np

n−1∑
k=0

(
n− 1

k

)
pkqn−1−k = np (3.28)

and finally if X ∼ P(α) is a Poisson rv it is

E [X] = e−α

∞∑
k=0

k
αk

k!
= e−α

∞∑
k=1

αk

(k − 1)!
= αe−α

∞∑
k=0

αk

k!
= α (3.29)

Exemple 3.25. Formula (3.17) enables us to calculate the expectation when a pdf fX
exists: for a uniform rv X ∼ U (a, b) with a pdf (2.14) we have

E [X] =

∫ b

a

x

b− a
dx =

1

b− a

[
x2

2

]b
a

=
a+ b

2
(3.30)

while if X is a Gaussian rv X ∼ N (b, a2) with pdf (2.15), taking y = (x − b)/a,
and remembering the well known results∫ ∞

−∞
e−y2/2 dy =

√
2π

∫ ∞

−∞
ye−y2/2 dy = 0

∫ ∞

−∞
y2e−y2/2 dy =

√
2π (3.31)
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we have

E [X] =
1

a
√
2π

∫ ∞

−∞
x e−(x−b)2/2a2 dx =

1√
2π

∫ ∞

−∞
(ay + b)e−y2/2 dy

=
b√
2π

∫ ∞

−∞
e−y2/2 dy = b (3.32)

If then X is an exponential rv X ∼ E(a) with pdf (2.17) the expectation is

E [X] =

∫ +∞

0

ax e−ax =
1

a

[
−(1 + ax)e−ax

]+∞
0

=
1

a
(3.33)

and if it is a Laplace rv X ∼ L(a) with pdf (2.18) the expectation is

E [X] =

∫ +∞

−∞

a

2
x e−a|x| = 0 (3.34)

It is important to remark, instead, that if X is a Cauchy rv X ∼ C(a, b) with
pdf (2.19) the expectation does not exist according to the Definition 3.20, namely it
does neither converge, nor diverge. By using indeed the Heaviside function (2.13), it
is easy to see that X+ = Xϑ(X) and X− = −Xϑ(−X): taking then for simplicity the
Cauchy law C(a, 0) with b = 0 (so that its pdf (2.19) turns out to be symmetric with
fX(−x) = fX(x)) we find

E
[
X+
]
= E

[
X−] = a

π

∫ +∞

0

x

a2 + x2
dx =

a

π

[
1

2
ln(a2 + x2)

]+∞

0

= +∞

and hence E [X] takes the form ∞ − ∞, namely the expectation is not defined as a
Lebesgue integral. That its principal value

lim
M→+∞

a

π

∫ +M

−M

x

a2 + x2
dx = 0

does instead exist is in fact immaterial: the expectation is a Lebesgue integral, not
the principal value of a Riemann integral. We will see later in the Section 4.6 that
this difference is not just a mathematical nicety and has instead a few far reaching
implications

Proposition 3.26. Take the integrable rv’s X and Y defined on (Ω,F ,P ):

1. E [aX + bY ] = aE [X] + bE [Y ] with a, b ∈ R

2.
∣∣E [X]

∣∣ ≤ E [|X|]

3. if X = 0, P -a.s., then E [X] = 0; if moreover X is an arbitrary rv and A an
event

E [XIA] =

∫
A

X dP = 0 if P {A} = 0
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3.3 Expectation

4. if X ≤ Y , P -a.s. then E [X] ≤ E [Y ], and if X = Y P -a.s., then E [X] = E [Y ]

5. if X ≥ 0 and E [X] = 0, then X = 0, P -a.s., namely X is degenerate δ0

6. if E [XIA] ≤ E [Y IA] , ∀A ∈ F , then X ≤ Y , P -a.s., and in particular if
E [XIA] = E [Y IA] , ∀A ∈ F , then X = Y , P -a.s.

7. if X and Y are independent, then also XY is integrable and

E [XY ] = E [X] ·E [Y ]

Proof: Omitted7. These results, in their peculiar notation, are indeed well known
properties of the Lebesgue integral �

Exemple 3.27. As a particular application of these results, remark that from the prop-
erty 1. the expectation E [ · ] turns out to be a linear functional giving rise to a few
simplifications: remember for instance that to calculate the expectation (3.28) of a bino-
mial rv Sn ∼ B (n; p) in the Example 3.24 we adopted the elementary definition (3.9):
this result however comes even faster by recalling that according to the equation (3.8)
every binomial rv coincides in distribution with the sum of n iid Bernoulli B (1; p)
rv’s X1, . . . , Xn. Since the expectation depends only on the distribution of a rv, and
since from (3.27) we know that E [Xj] = p, from the expectation linearity we then
immediately have that

E [Sn] = E

[
n∑

j=1

Xj

]
=

n∑
j=1

E [Xj] = np (3.35)

in an apparent agreement with (3.28)

Of course the expectations comply also with a few important inequalities that are
typical of the integrals: they are summarized in their probabilistic setting in the Ap-
pendix B. In the next Section 3.3.3 we will however separately introduce the Chebyshev
Inequality (Proposition 3.41) because of its relevance in the subsequent discussion of
the Law of Large Numbers

3.3.3 Variance and covariance

The expectation of a rv X is a number specifying its distribution barycenter. As
a centrality indicator, however, it is not unique, and on the other hand it does not
convey all the information carried by the law of X. The expectation , for instance,
could even fail to be one of the possible values of X: the expectation p of a Bernoulli
rv B (1; p) (taking just the values 0 and 1) is in general neither 0, nor 1. There are on

7A.N. Shiryaev, Probability, Springer (New York, 1996)
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the other hand several other indicators able to represent the center of a distribution:
one is the mode which, when a pdf exists, is just the value (or the values) of x where
fX(x) has a local maximum. It is also easy to see that in general the expectation does
not coincide with the mode: when in particular the distribution is not symmetric the
mode and the expectation are different

Beside these centrality indicators, however, it would be important to find also other
numerical parameters showing other features of the law of a rv X. It would be relevant
in particular to be able to give a measure of the dispersion of the rv values around its
expectation. The deviations of the X values w.r.t. E [X] can be given as X−E [X] and
we could imagine to concoct a meaningful parameter just by calculating its expectation
E [X −E [X]]. But we immediately see that this number identically vanishes

E [X −E [X]] = E [X]−E [X] = 0

and hence that it can not be a measure of theX dispersion. Since however it is apparent
that this vanishing essentially results from X − E [X] taking positive and negative
values, it is customary to consider rather the quadratic deviations (X −E [X])2 that
are never negative and that as a consequence will have in general a non zero expectation

Definition 3.28. If X, Y are rv’s and X = (X1, . . . , Xn) is a r-vec, and all the items
are square integrable, then

• we call variance of X the non negative number (finite or infinite)

V [X] = E
[
(X −E [X])2

]
= σ2

X

and standard deviation its positive square root σX = +
√

V [X]

• we call covariance of X and Y the number

cov [X,Y ] = E [ (X −E [X])(Y −E [Y ]) ]
(
cov [X,X] = V [X]

)
and (if V [X] ̸= 0, V [Y ] ̸= 0) correlation coefficient the number

ρ [X, Y ] =
cov [X,Y ]√
V [X]

√
V [Y ]

• when cov [X, Y ] = 0, namely ρ [X,Y ] = 0, we will say that X and Y are un-
correlated rv’s

• we finally call covariance matrix (respectively correlation matrix) of the
r-vec X the n × n matrix R = ∥rij∥ (respectively P = ∥ρij∥) with elements
rij = cov [Xi, Xj] (respectively ρij = ρ [Xi, Xj])

Proposition 3.29. If X,Y are square integrable rv’s, and a, b are numbers, then

1. cov [X,Y ] = E [XY ]−E [X]E [Y ]; in particular V [X] = E [X2]−E [X]2
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3.3 Expectation

2. if V [X] = 0, then X = E [X], P -a.s.

3. V [a+ bX] = b2 V [X]

4. V [X + Y ] = V [X] + V [Y ] + 2 cov [X, Y ]

5. if X, Y are independent, then they are also uncorrelated

Proof:

1. The result follows by calculating the product in the definition

cov [X,Y ] = E [XY ]− 2E [X]E [Y ] +E [X]E [Y ] = E [XY ]−E [X]E [Y ]

Taking then X = Y we also get the result about the variance

2. Since (X−E [X])2 ≥ 0, the outcome results from 5 in Proposition 3.26: if indeed
V [X] = 0, then X −E [X] = 0, P -a.s. (namely X is a degenerate δ0) and hence
X = E [X], P -a.s.

3. From the expectation linearity we have E [a+ bX] = a+ bE [X], and hence

V [a+ bX] = E
[
(a+ bX − a− bE [X])2

]
= b2E

[
(X −E [X])2

]
= b2V [X]

4. We indeed have

V [X + Y ] = E
[
(X + Y −E [X + Y ])2

]
= E

[
(X −E [X] + Y −E [Y ])2

]
= V [X] + V [Y ] + 2E [(X −E [X]) (Y −E [Y ])]

= V [X] + V [Y ] + 2 cov [X, Y ]

Remark that (at variance with the expectation E ) V is not a linear functional.
In particular we have just shown that in general V [X + Y ] is not the sum V [X]+
V [Y ]; this happens only when the rv ’s X, Y are uncorrelated because in theis
event we have

V [X + Y ] = V [X] + V [Y ] if cov [X, Y ] = 0

5. Because of the X, Y independence, we have from the definition

cov [X,Y ] = E [X −E [X]] E [Y −E [Y ]] = 0

namely X and Y are also uncorrelated �

Proposition 3.30. Given two rv’s X and Y , we always have

|ρ [X,Y ] | ≤ 1

Moreover it is |ρ [X, Y ] | = 1 iff there are two numbers a ̸= 0 and b such that Y =
aX + b, P -a.s.; in particular a > 0 if ρ [X, Y ] = +1, and a < 0 if ρ [X, Y ] = −1
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Proof: Omitted8. These properties of the correlation coefficient ρ do not hold for the
covariance which instead takes arbitrary positive and negative real values. The present
proposition shows that ρ is a measure of the linear dependence between X and Y :
when indeed ρ takes its extremal values ±1, Y is a linear function of X �

Exemple 3.31. Independence vs non-correlation: Point 5 in Proposition 3.29
states that two independent rv’s are also uncorrelates. In general however the reverse
does not hold: two uncorrelated rv’s can be dependent (not independent). Consider
for instance a rv α taking the three values 0, π

2
, π with equal probabilities 1

3
, and define

then the rv’s X = sinα and Y = cosα. It is easy to see that X and Y are uncorrelated
because

E [X] =
1

3
· 0 + 1

3
· 1 + 1

3
· 0 =

1

3
E [Y ] =

1

3
· 1 + 1

3
· 0 + 1

3
· (−1) = 0

E [XY ] =
1

3
· (1 · 0) + 1

3
· (0 · 1) + 1

3
· (−1 · 0) = 0

so that

E [X]E [Y ] = 0 = E [XY ]

On the other hand they are also not independent because

P {X = 1} =
1

3
P {Y = 1} =

1

3
P {X = 1, Y = 1} = 0

so that

P {X = 1, Y = 1} = 0 ̸= 1

9
= P {X = 1}P {Y = 1}

Proposition 3.32. Necessary and sufficient condition for a matrix n × n, R to be
covariance matrix of a r-vec X = (X1, . . . , Xn), is to be symmetric and non negative
definite; or equivalently, that it exists a matrix n×n, C such that R = CCT, where CT

is the transposed matrix of C

Proof: It follows from the definition that the covariance matrix R of a r-vec X is
always symmetric (rij = rji), and it is easy to check that it is also non negative
definite: if indeed we take n real numbers λ1, . . . , λn we find

n∑
i,j=1

rijλiλj =
n∑

i,j=1

λiλjE [(Xi −E [Xi])(Xj −E [Xj])]

= E

( n∑
i=1

λi(Xi −E [Xi])

)2
 ≥ 0

8P.L. Meyer, Introductory Probability and Statistical Applications, Addison-Wesley
(Reading, 1980)
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The present proposition states in fact that these properties are characteristic of the
covariance matrices, in the sense that also the reverse holds: every symmetric and non
negative definite matrix is a legitimate covariance matrix of some r-vec X. We neglect
the proof9 of this statement and of the remainder of the proposition �

Exemple 3.33. We consider first some discrete laws: if X ∼ δb is a degenerate rv
we apparently have V [X] = 0; if on the other hand X ∼ B (1; p) is a Bernoulli rv
since E [X] = p we have at once

V [X] = E
[
(X −E [X])2

]
= (1− p)2 p+ (0− p)2 (1− p) = p (1− p)

If then Sn ∼ B (n; p) is a binomial rv , which according to (3.8) is in distribution the
sum of n iid Bernoulli B (1; p) rv’s X1, . . . , Xn, from the Xj independence we have

V [Sn] = V

[
n∑

j=1

Xj

]
=

n∑
j=1

V [Xj] =
n∑

j=1

p(1− p) = np(1− p) (3.36)

If finally X ∼ P(α) is a Poisson rv , with E [X] = α according to (6.11), it is
expedient to start by calculating

E [X(X − 1)] =
∞∑
k=0

k(k − 1)
e−ααk

k!
= e−α

∞∑
k=2

αk

(k − 2)!
= α2e−α

∞∑
k=0

αk

k!
= α2

so that
E
[
X2
]
= α2 +E [X] = α2 + α

and hence
V [X] = E

[
X2
]
−E [X]2 = α2 + α− α2 = α

Remark that for the Poisson laws it is E [X] = V [X] = α. Going then to the laws
with a pdf , for a uniform rv X ∼ U (a, b) it is

E
[
X2
]
=

∫ b

a

x2

b− a
dx =

1

b− a

[
x3

3

]b
a

=
b3 − a3

3(b− a)

so that from (3.30) we get

V [X] = E
[
X2
]
−E [X]2 =

b3 − a3

3(b− a)
− (a+ b)2

4
=

(b− a)2

12
(3.37)

For an exponential rv X ∼ E(a) with the change of variable y = ax we find

E
[
X2
]
=

∫ +∞

0

x2ae−axdx =
1

a2

∫ +∞

0

y2e−ydy =
1

a2
[
−(2 + 2y + y2)e−y

]+∞
0

=
2

a2

9A.N. Shiryaev, Probability, Springer (New York, 1996)
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and hence from (3.33)

V [X] = E
[
X2
]
−E [X]2 =

2

a2
− 1

a2
=

1

a2
(3.38)

In a similar way for a Laplace rv X ∼ L(a) we get

V [X] =
2

a2
(3.39)

If finally X ∼ N (b, a2) is a Gaussian rv , by taking into account the Gaussian inte-
grals (3.31), with the change of variable y = (x− b)/a we have

E
[
X2
]
=

∫ +∞

−∞
x2 e

−(x−b)2/2a2

a
√
2π

dx =
1√
2π

∫ +∞

−∞
(ay + b)2e−y2/2dy = a2 + b2

and hence from (3.32)

V [X] = E
[
X2
]
−E [X]2 = (a2 + b2)− b2 = a2 (3.40)

For a Cauchy rv X ∼ C(a, b), however, a variance can not be defined first because its
expectation does not exist as remarked at the end of the Section 3.3.2, and then because
in any case its second momentum diverges as can be seen for example for b = 0 with
the change of variable y = x/a

E
[
X2
]
=

a

π

∫ +∞

−∞

x2

a2 + x2
dx =

a2

π

∫ +∞

−∞

y2

1 + y2
dy =

a2

π
[y − arctan y]+∞

−∞ = +∞

Exemple 3.34. Bivariate Gaussian vectors: If X = (X, Y ) ∼ N(b,A) is a bivari-
ate Gaussian (normal) r-vec we know that in its joint pdf (2.24) there are five free
parameters: the two components of b = (b1, b2) ∈ R2, and the three numbers a1 > 0,
a2 > 0, |r| ≤ 1 derived from the elements of the symmetric, positive defined matrix A
as

ak =
√
akk r =

a12√
a11a22

=
a21√
a11a22

We have pointed out in the Exemple 2.31 that also the univariate marginals are normal
N (bk, a

2
k) with pdf

fX(x) =

∫ ∞

−∞
fX(x, y) dy =

1

a1
√
2π

e−(x−b1)2/2a21

fY (y) =

∫ ∞

−∞
fX(x, y) dx =

1

a2
√
2π

e−(y−b2)2/2a22

A direct calculus would show that the probabilistic meaning of the five parameters ap-
pearing in a bivariate N(b,A) is

b1 = E [X] b2 = E [Y ]

a21 = a11 = V [X] a22 = a22 = V [Y ] r =
a12√
a11a22

=
a21√
a11a22

= ρ [X,Y ]
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so that the vector of the means b and the covariance matrix A are

b =

(
b1
b2

)
=

(
E [X]
E [Y ]

)
A =

(
a11 a12
a21 a22

)
=

(
V [X] cov [X, Y ]

cov [X,Y ] V [Y ]

)
=

(
a21 a1a2r

a1a2r a22

)
We emphasized above that two independent rv’s X, Y are also uncorrelated, but that in
general the reverse does not hold. It is then relevant to remark that in a joint Gaussian
r-vec X the uncorrelated components Xk are also independent. In other words: the
components of a multivariate Gaussian r-vec X ∼ N(b,A) are independent
iff they are uncorrelated. This follows – for instance in the bivariate case – from
the fact that if the components X, Y are uncorrelates we have r = ρ [X, Y ] = 0, and
hence the joint pdf (2.24) boils down to

fX(x, y) =
1

2πa1a2
e−(x−b1)2/a21 e−(y−b2)2/a22

so that fX(x, y) = fX(x) · fY (y), and hence according to the Theorem 3.15 X,Y are
also independent

Proposition 3.35. Chebyshev inequality: If X is a non-negative, integrable rv we
have

P {X ≥ ϵ} ≤ E [X]

ϵ
∀ϵ > 0 (3.41)

Proof: The result follows immediately from

E [X] ≥ E
[
XI{X≥ϵ}

]
≥ ϵE

[
I{X≥ϵ}

]
= ϵP {X ≥ ϵ}

where ϵ > 0 is of course arbitrary �

Corollary 3.36. If X is a square integrable rv, then for every per ogni ϵ > 0 it is

P {|X| ≥ ϵ} = P
{
X2 ≥ ϵ2

}
≤ E [X2]

ϵ2

P
{∣∣X −E [X]

∣∣ ≥ ϵ
}

≤
E
[
(X −E [X])2

]
ϵ2

=
V [X]

ϵ2
(3.42)

Proof: Just apply the inequality (3.41) to the proposed rv ’s �

3.4 Conditioning

3.4.1 Conditional distributions

In the Section 1.4 we defined the conditional probability for two events only when the
probability of the conditioning event does not vanish. This restriction, however, is not
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satisfied for instance by the negligible events as {Y = y} when Y is an ac rv : we know
indeed that in this case P {Y = y} = 0. We need then to extend our definitions and
notations in order to account even for these, not irrelevant cases

Definition 3.37. If X, Y are two rv’s with a joint cdf FXY (x, y) which is y-differentiable,
and if Y is ac with pdf fY (y), we will call cdf of X conditioned by the event
{Y = y} the function

FX|Y (x|y) = FX(x|Y = y) ≡ ∂yFXY (x, y)

fY (y)
(3.43)

for every y such that fY (y) ̸= 0 (namely PY -a.s.), while for the y such that fY (y) = 0
(a PY -negligible set) FX(x|Y = y) takes arbitrary values, possibly zero. If moreover
also X is ac and the joint pdf is fXY (x, y), then the pdf of X conditioned by the
event {Y = y} is

fX|Y (x|y) = fX(x|Y = y) ≡ fXY (x, y)

fY (y)
(3.44)

for the y such that fY (y) ̸= 0, and zero for the y such that fY (y) = 0

In order to intuitively account for these definitions consider the joint and marginal cdf ’s
FXY (x, y), FX(x) and FY (y) of X,Y , and the pdf fY (y) = F ′

Y (y) of Y . By supposing
then that FXY (x, y) is y-derivabile, take first the modified conditioning event {y < Y ≤
y+∆y} which presumably has a non vanishing probability: the Definition 3.37 is then
recovered in the limit for ∆y → 0. From the elementary definition of conditioning we
have indeed that

FX(x|y < Y ≤ y +∆y) = P {X ≤ x|y < Y ≤ y +∆y}

=
P {X ≤ x , y < Y ≤ y +∆y}

P {y < Y ≤ y +∆y}

=
FXY (x, y +∆y)− FXY (x, y)

FY (y +∆y)− FY (y)
=

FXY (x,y+∆y)−FXY (x,y)
∆y

FY (y+∆y)−FY (y)
∆y

so that in the limit for ∆y → 0 we find (3.43)

FX(x | Y = y) ≡ lim
∆y→0

FX(x | y < Y ≤ y +∆y) =
∂yFXY (x, y)

F ′
Y (y)

=
∂yFXY (x, y)

fY (y)

If we finally suppose that also X has a pdf fX(x), and that fXY (x, y) is the joint
pdf, a further x-derivation of (3.43) gives rise to the conditional pdf (3.44). The formu-
las (3.43) and (3.44) define the conditional distributions for every y such that fY (y) > 0,
namely PY -qo. Where instead fY (y) = 0 the value of FX(x | Y = y) (or of the cor-
responding pdf ) is arbitrary (for instance zero) since this choice does not affect the
results of the calculations. Remark moreover that if X, Y are independent, from the
Theorem 3.15 it follows at once that

fX|Y (x|y) = fX(x) (3.45)
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Similar results hold apparently also for discrete rv ’s, but for the fact that in this case
the conditional pdf ’s are replaced by the conditional probabilities according to the
definitions of the Section 1.4.

Proposition 3.38. If X,Y are two rv’s with joint pdf fXY (x, y), then

PX{A|Y = y} =

∫
A

fX|Y (x|y) dx =
1

fY (y)

∫
A

fXY (x, y) dx (3.46)

PXY {A×B} =

∫
B

PX{A|Y = y}fY (y) dy (3.47)

PX{A} =

∫ +∞

−∞
PX{A|Y = y}fY (y) dy (3.48)

Proof: From (3.44) we have first (3.46)

PX{A|Y = y} = P {X ∈ A|Y = y} =

∫
A

fX|Y (x|y) dx =
1

fY (y)

∫
A

fXY (x, y) dx

and thence also (3.47) and (3.48) result:

PXY {A×B} = P {X ∈ A, Y ∈ B} =

∫
A×B

fXY (x, y) dxdy

=

∫
A

dx

∫
B

dy fX|Y (x|y)fY (y)

=

∫
B

PX{A|Y = y}fY (y) dy

PX{A} = P {X ∈ A} =

∫ +∞

−∞
PX{A|Y = y}fY (y) dy

In particular the (3.48) shows how to calculate PX from the conditional distribu-
tion (3.46) �

Proposition 3.39. If X,Y are two rv’s with joint pdf fXY (x, y), then

fXY (x, y|a ≤ Y ≤ b) =
fXY (x, y)∫ b

a
fY (y′) dy′

χ[a,b](y) (3.49)

fX(x|a ≤ Y ≤ b) =

∫ b

a
fXY (x, y

′) dy′∫ b

a
fY (y′) dy′

(3.50)

fY (y|a ≤ Y ≤ b) =
fY (y)∫ b

a
fY (y′) dy′

χ[a,b](y) (3.51)

where the indicator of the subset B in (R, B(R)) is

χB(x) =

{
1, if x ∈ B
0, else

B ∈ B(R)
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Proof: From the definitions we have first

FXY (x, y|a ≤ Y ≤ b) =
P {X ≤ x, Y ≤ y, a ≤ Y ≤ b}

P {a ≤ Y ≤ b}

=


0 se y ≤ a
P{X≤x, a≤Y≤y}

P{a≤Y≤b} = FXY (x,y)−FXY (x,a)
FY (b)−FY (a)

se a ≤ y ≤ b
P{X≤x, a≤Y≤b}

P{a≤Y≤b} = FXY (x,b)−FXY (x,a)
FY (b)−FY (a)

se b ≤ y

and then (3.49) follows by remembering that

fXY (x, y|a ≤ Y ≤ b) = ∂x∂yFXY (x, y|a ≤ Y ≤ b)

FY (b)− FY (a) =

∫ b

a

fY (y
′) dy′

From (3.49) we then derive (3.50) and (3.51) by marginalization �

Proposition 3.40. If X = (X1, X2) ∼ N (b,A) is a bivariate, Gaussian r-vec with
pdf (2.24), the conditional law of X2 w.r.t. X1 = x1 is again Gaussian with parameters

N

(
b2 + r(x1 − b1)

a2
a1

, (1− r2)a22

)
(3.52)

Proof: We know that the bivariate pdf of X is (2.24), and that its two marginals are
N (bk, a

2
k) with pdf (2.31). A direct application of (3.44) brings then to the following

conditional pdf

fX2|X1(x2|x1) =
e
− 1

2(1−r2)

[
(x1−b1)

2

a21
−2r

(x1−b1)(x2−b2)
a1a2

+
(x2−b2)

2

a22

]

2πa1a2
√
1− r2

a1
√
2π e

(x1−b1)
2

2a21

=
e
− 1

2(1−r2)

[
r2

(x1−b1)
2

a21
−2r

(x1−b1)(x2−b2)
a1a2

+
(x2−b2)

2

a22

]
√
2πa22(1− r2)

=
e
− 1

2a22(1−r2)

[
(x2−b2)−r(x1−b1)

a2
a1

]2
√

2πa22(1− r2)

and hence to the result (3.52) �

So far we have considered just the reciprocal conditioning between two rv ’s, but this
was required only to simplify the notation. We will remember then that given two
r-vec’s X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) with a joint pdf

fXY (x1, . . . , xn, y1, . . . , ym)

a procedure identical to that adopted in the case of two rv ’s gives rise to the definition
of the conditional pdf of X w.r.t. the event {Y1 = y1, . . . , Ym = ym}

fX|Y (x1, . . . , xn | y1, . . . , ym) ≡
fXY (x1, . . . , xn, y1, . . . , ym)

fY (y1, . . . , ym)
(3.53)
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3.4.2 Conditional expectation

We already know that if B is a non-zero probability event, then the conditional prob-
ability P { · | B} can be defined in an elementary way (Section 1.4) and constitutes
a new probability on (Ω,F). As a consequence a rv X in a natural way will have a
conditional distribution PX{ · | B}, the conditional cdf FX( · | B) and pdf fX( · | B)
and a conditional expectation E [X|B]. And even when the conditioning event is neg-
ligible as {Y = y} with Y an ac rv, we have shown in the previous section how to
define PX{ · | Y = y}, FX( · | Y = y) and fX( · | Y = y). We can then follow the
same procedure presented in the Section 3.3.1 to define the conditional expectations
by means of these new conditional measures. We will suppose in the following that our
rv ’s are always endowed with a pdf

Definition 3.41. Given the rv’s X,Y and a Borel function g(x), we will call condi-
tional expectation of g(X) w.r.t. {Y = y} the y-function

m(y) ≡ E [g(X)|Y = y] =

∫ +∞

−∞
g(x)fX|Y (x|y) dx (3.54)

We will call instead conditional expectation of g(X) w.r.t. the rv Y the rv

E [g(X)|Y ] ≡ m (Y ) (3.55)

It is important to stress that to define the rv (3.55) we must first notice that the expec-
tation (3.54) is a function m(y) of the value y of the conditioning rv Y , and only then
we can introduce – based on the Theorem 3.6 – the rv m(Y ) usually denoted by the new
symbol E [g(X)|Y ]. Remark again that the expectation m(Y (ω)) = E [g(X)|Y ] (ω) is
a rv, and no longer a number or a function as usually an expectation is: this kind of
rv ’s will play a relevant role in the following sections

Proposition 3.42. Given two rv’s X,Y on (Ω,F ,P ), the following properties of the
conditional expectations always hold:

1. E [E [X|Y ]] = E [X]

2. E [X|Y ] = E [X] P -a.s. if X and Y are independent

3. E [φ(X,Y )|Y = y] = E [φ(X, y)|Y = y] PY -as

4. E [φ(X,Y )|Y = y] = E [φ(X, y)] PY -as if X and Y are independent

5. E [X g(Y )|Y ] = g(Y )E [X|Y ] P -a.s.

Proof:
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1. From (3.54) and (3.44) it is

E [E [X|Y ]] = E [m(Y )] =

∫
R

m(y)fY (y) dy =

∫
R

E [X|Y = y] fY (y) dy

=

∫
R

[∫
R

xfX|Y (x | y) dx
]
fY (y) dy

=

∫
R

[∫
R

x
fXY (x, y)

fY (y)
dx

]
fY (y) dy

=

∫
R

x

[∫
R

fXY (x, y) dy

]
dx =

∫
R

xfX(x) dx = E [X]

2. From the independence and from (3.45) it follows

m(y) = E [X|Y = y] =

∫
R

x fX|Y (x|y) dx =

∫
R

x fX(x) dx = E [X]

so that E [X|Y ] = m(Y ) = E [X]

3. From (3.49) we can write

E [φ(X,Y )|y ≤ Y ≤ y +∆y]

=

∫
R

dx

∫
R

dz φ(x, z)fXY (x, z|y ≤ Y ≤ y +∆y)

=

∫ +∞

−∞
dx

∫ y+∆y

y

dz φ(x, z)
fXY (x, z)

FY (y +∆y)− FY (y)

Since on the other hand

FY (y +∆y)− FY (y) = F ′
Y (y)∆y + o(∆y) = fY (y)∆y + o(∆y)

we also have

lim
∆y→0

∫ y+∆y

y

dz φ(x, z)
fXY (x, z)

FY (y +∆y)− FY (y)
= φ(x, y)

fXY (x, y)

fY (y)

= φ(x, y)fX|Y (x | y)

and finally

E [φ(X, Y )|Y = y] = lim
∆y→0

E [φ(X, Y )|y ≤ Y ≤ y +∆y]

=

∫ +∞

−∞
φ(x, y)fX|Y (x | y) dx = E [φ(X, y)|Y = y]

4. Since X and Y are independent, the result follows from the previous one and
from (3.45)
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5. From 3. of the present Proposition it follows in particular that

E [X g(Y )|Y = y] = E [X g(y)|Y = y] = g(y)E [X|Y = y]

and the last statement ensues by plugging Y as argument in this function �

By using the conditional pdf ’s (3.53) we can also define the conditional expectations
w.r.t. negligible events of the type {Y1 = y1, . . . , Ym = ym}, namely

m(y1, . . . , ym) = E [X|Y1 = y1, . . . , Ym = ym]

=

∫
R

xfX|Y (x|y1, . . . , ym) dx ,

and hence theconditional expectations w.r.t. a r-vec

E [X|Y ] = E [X|Y1, . . . , Ym] = m(Y1, . . . , Ym) = m(Y ) (3.56)

The properties of these rv ’s are similar to those of the conditional expectations w.r.t.
a single rv introduced earlier in the present section: we will not list them here

Exemple 3.43. Lifetime: Let us suppose that the operating time without failures
(lifetime) of the components in a device is a rv Y with pdf fY (y): if the device starts
working at the time y = 0, fY (y) will vanish for y < 0. We want to calculate

fY−y0(y|Y ≥ y0) e E [Y − y0|Y ≥ y0]

namely the pdf and the expectation (mean lifetime) of the residual lifetime of a com-
ponent, supposing that it is still working at the time y0 > 0. Taking then P {Y ≥ y0} >
0, from (3.51) with a = y0 and b = +∞ we have first

E [Y − y0|Y ≥ y0] =

∫
R

(y − y0)fY (y|Y ≥ y0) dy =

∫ +∞
y0

(y − y0)fY (y) dy∫ +∞
y0

fY (y) dy
(3.57)

On the other hand, to find the pdf of the residual lifetime Y − y0, we remark that

FY−y0(y|Y ≥ y0) = P {Y − y0 ≤ y|Y ≥ y0}
= P {Y ≤ y + y0|Y ≥ y0} = FY (y + y0|Y ≥ y0)

so that from (3.51) we have

fY−y0(y|Y ≥ y0) = ∂yFY−y0(y|Y ≥ y0) = ∂yFY (y0 + y|Y ≥ y0)

= fY (y0 + y|Y ≥ y0) =
fY (y0 + y)χ(y0,+∞)(y0 + y)∫ +∞

y0
fY (y′) dy′

=
fY (y0 + y)χ(0,+∞)(y)∫ +∞

y0
fY (y′) dy′

(3.58)
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Apparently the result (3.57) could also be deduced from (3.58) by direct calculation:

E [Y − y0|Y ≥ y0] =

∫ +∞

−∞
yfY−y0(y|Y ≥ y0) dy =

∫ +∞
0

yfY (y0 + y) dy∫ +∞
y0

fY (y′) dy′

=

∫ +∞
y0

(y − y0)fY (y) dy∫ +∞
y0

fY (y) dy

It is interesting now to see what happens when the lifetime Y ∼ E(a) is an exponential
rv . In this case we know from (2.17) and (3.33) that

fY (y) = ae−ayϑ(y) E [Y ] =
1

a

and since for z = y − y0 we have∫ +∞

y0

fY (y) dy =

∫ +∞

y0

ae−ay dy = e−ay0∫ +∞

y0

(y − y0)fY (y) dy =

∫ +∞

0

zfY (z + y0) dz =

∫ +∞

0

za e−a(z+y0) dz =
e−ay0

a

fY (y0 + y)χ(0,+∞)(y) = a e−a(y0+y) χ(0,+∞)(y) = e−ay0fY (y)

we also see from (3.57) and (3.58) that

E [Y − y0|Y ≥ y0] =
1

a
= E [Y ] fY−y0(y|Y ≥ y0) = fY (y)

In other words: not only the mean lifetime of a component (under the condition that
it worked properly up to the time y = y0) does not depend on y0 and always coincides
with E [Y ], but also the pdf of Y − y0 (conditioned by Y ≥ y0) does not depend on
y0 and coincides with the un-conditional pdf . This behavior is characteristic of the
exponential rv ’s (we also say that they are memoryless, or that they show no aging)
in the sense that there are no other distributions enjoying this property

Exemple 3.44. Buffon’s needle: A needle of unit length is thrown at random on
a table where a few parallel lines are drawn at a unit distance: what is the probability
that the needle will lie across one of these lines? Since the lines are drawn periodically
on the table, it will be enough to study the problem with only two lines by supposing
that the needle center does fall between them. The position of the said center along the
direction of the parallel lines is also immaterial: to keep this into account we could also
add another independent rv to our problem, but in the end we would simply marginalize
it without changing the result. The needle position will then be given just by two rv’s:
the distance X of its center from the left line, and the angle Θ between the needle and
a perpendicular to the parallel lines (see Figure 3.5). That the needle is thrown at

92



3.4 Conditioning

X Q

Figure 3.5: Buffon’s needle.

random here means that the pair of rv’s X,Θ is uniform in [0, 1]× [−π
2
, π
2
], namely

that

fXΘ(x, θ) =
1

π
χ[0,1](x)χ[−π

2
,π
2
](θ)

It is easy to see then that the marginal pdf ’s are

fX(x) = χ[0,1](x) fΘ(θ) =
1

π
χ[−π

2
,π
2
](θ)

and hence that X and Θ are independent. Take now

B =
{
(x, θ) : either x ≤ 1

2
cos θ, or x ≥ 1− 1

2
cos θ, with −π

2
≤ θ ≤ π

2

}
so that our event will be

A = {the needle lies across a line} =
{
ω ∈ Ω : (X,Θ) ∈ B

}
while IA = χB(X,Θ), where χB(x, θ) is the indicator of B in R2. The result can now
be found in several equivalent ways: we will use in sequence (3.10), the point 1 of the
Proposition 3.42, the uniformity of Θ, and finally the point 4 of the Proposition 3.42,
namely

P {A} = E [IA] = E [χB(X,Θ)] = E [E [χB(X,Θ)|Θ] ]

=

∫ π/2

−π/2

E [χB(X,Θ)|Θ = θ]
dθ

π
=

1

π

∫ π/2

−π/2

E [χB(X, θ)] dθ

Now we should just recall that X is uniform to get

E [χB(X, θ)] = P
{
{X ≤ 1

2
cos θ} ∪ {X ≥ 1− 1

2
cos θ}

}
=

1

2
cos θ +

1

2
cos θ = cos θ
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and hence

P {A} =
1

π

∫ π/2

−π/2

cos θ dθ =
2

π

This result has been used to give an empirical estimate of the number π: throw the
needle n times and define n iid Bernoulli rv ’s Yk (with k = 1, . . . , n), such that Yk = 1
if the needle lies across a line in the kth toss, and Yk = 0 if not: if p is the probability
that the needle will fall across a line in every single toss, and if νn = Y1+ · · ·+Yn is the
rv counting the number of times the needle does that in n tosses, then it is spontaneous
(and the Law of Large Numbers that will be discussed in the subsequent Section 4.3
will make this a precise statement) to think that, with a sufficiently large n, the value
of the relative frequency νn/n will be a good estimate of the probability p. Since then
from the previous discussion we know that p = 2/π, a good estimate of the value of
π will be given by an empirical value of the rv 2n/νn with an n large enough. This
procedure to approximate π has been used several times in history10 and constitutes the
first known instance of the application of the statistical regularities to numerical calculus
problems: a method subsequently called Monte Carlo that we will speak about again
in the following chapters

3.4.3 Optimal mean square estimation

In order to stress the relations among the three rv ’s X, Y and E [X|Y ] as defined
in (3.54) and (3.55), we must recall first that in general the statistical dependence of X
and Y does not necessarily require the existence of a Borel function h(y) such that X =
h(Y ): in other words, the statistical dependence does not imply a functional dependence
(see also Section 3.1.3). On the other hand, given two statistically dependent rv ’s X,Y ,
we could wish to use some Y measurement to get information on (to have an estimate
of) the values of X. In statistical practice this is achieved by using the rv h(Y ) (for
some suitable function h) as an estimator of X. Since however, as previously remarked,
we can not hope in general to find an h such that X = h(Y ), our estimate will always
be affected by errors so that we will need a criterion to choose an optimal estimator of
X: the most known is to search for the best estimator in mean square (ms). We first
define the mean square error (mse) made by estimating X by means of an estimator
h(Y )

E
[
(X − h(Y ))2

]
and then we choose as the best estimator h∗(Y ) that which minimizes the mse:

E
[
(X − h∗(Y ))2

]
= inf

h
E
[
(X − h(Y ))2

]
To find such an optimal estimator, namely the Borel function h∗ that minimizes the
mse, is a typical variational problem which in any case admit an exact formal solu-

10The estimate has been done first in 1850 by the Swiss astronomer R. Wolf (1816 - 1893): by
tossing the needle 5 000 times he got 3.1596 as the approximation for π
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tion (as stated in the next proposition): the Borel function h∗(y) restituting the best
estimator in mean square coincides with the m(y) = E [X|Y = y] defined in (3.54)

Proposition 3.45. The best estimator in ms of X through Y is E [X|Y ], namely
it is given by the Borel function

h∗(y) = m(y) = E [X|Y = y]

as defined in (3.54)

Proof: If h(Y ) is an arbitrary estimator and h∗(Y ) = E [X|Y ], we have

E
[
(X − h(Y ))2

]
= E

[
(X − h∗(Y ) + h∗(Y )− h(Y ))2

]
= E

[
(X − h∗(Y ))2

]
+E

[
(h∗(Y )− h(Y ))2

]
+2E [(X − h∗(Y ))(h∗(Y )− h(Y ))]

On the other hand from the points 1 and 5 of the Proposizione 3.42 it is

E [(X − h∗(Y ))(h∗(Y )− h(Y ))] = E
[
E
[
(X − h∗(Y ))(h∗(Y )− h(Y ))

∣∣Y ]]
= E

[
(h∗(Y )− h(Y ))E

[
(X − h∗(Y ))

∣∣Y ]]
and since

E
[
(X − h∗(Y ))

∣∣Y ] = E [X|Y ]−E [h∗(Y )|Y ] = E [X|Y ]− h∗(Y ) = 0

we finally have

E
[
(X − h(Y ))2

]
= E

[
(X − h∗(Y ))2

]
+E

[
(h∗(Y )− h(Y ))2

]
But apparently it is E [(h∗(Y )− h(Y ))2] ≥ 0, and hence

E
[
(X − h(Y ))2

]
≥ E

[
(X − h∗(Y ))2

]
for every Borel function h �

The function m(y) = E [X|Y = y] is also known as regression curve of X on Y : this
name comes from the studies of sir F. Galton (1822 - 1911) about the heights of
the human generations (parents and children) in a given populations. In terms of
conditional expectations his results indicated that when the parents are taller than
the average population, then the children tend to be shorter than the parents; when
instead the parents are shorter than the mean, then the children tend to be taller than
them. In both cases the children height is said to regress toward the mean value
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3.5 Combinations of rv ’s

3.5.1 Functions of rv ’s

Proposition 3.46. Take a rv X with pdf fX(x): if y = φ(x) is a continuous,
regular function whose definition interval includes the values of X, and can be de-
composed in n disjoint intervals [ak, bk] where φ is differentiable and strictly mono-
tonic, with nowhere vanishing derivative; then the pdf fY (y) of the rv Y = φ(X)
is

fY (y) =
n∑

k=1

fX
(
xk(y)

)∣∣φ′
(
xk(y)

)∣∣ χ[αk,βk](y) (3.59)

where [αk, βk] are the intervals of the values taken by φ for x ∈ [ak, bk], and for
every given y the xk(y) are the (at most n) solutions of the equation φ(x) = y

Proof: Let us suppose first that X takes values in [a, b] (namely that fX(x) vanishes
outside this interval), and that φ(x) is defined, differentiable and strictly increasing
(φ′(x) > 0) in [a, b]. If [α, β] is the interval of the values taken by φ(x), let us denote
with x1(y) = φ−1(y) the unique solution of the equation φ(x) = y which exists (and is
monotonic asa a function of y) when y ∈ [α, β]. It is then apparent that

FY (y) = P {Y ≤ y} =

{
0 for y < α
1 for y > β

while for y ∈ [α, β], by taking as integration variable z = φ(x), x = φ−1(z) = x1(z),
we get

FY (y) = P {Y ≤ y} = P {φ(X) ≤ y} = P
{
X ≤ φ−1(y)

}
= P {X ≤ x1(y)}

=

∫ x1(y)

a

fX(x) dx =

∫ y

α

fX
(
x1(z)

)
x′
1(z) dz =

∫ y

α

fY (z) dz

As a consequence we will have

fY (y) = fX
(
x1(y)

)
x′
1(y)χ[α,β](y) =

{
fX
(
x1(y)

)
x′
1(y) for α ≤ y ≤ β

0 elsewhere

If instead φ is strictly decreasing a siilar calculation would lead to

fY (y) = −fX
(
x1(y)

)
x′
1(y)χ[α,β](y)

so that on every case, when φ is strictly monotonic on [a, b], we can write

fY (y) = fX
(
x1(y)

)
|x′

1(y)|χ[α,β](y) (3.60)
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3.5 Combinations of rv’s

Since on the other hand from a well known result of the elementary analysis

x′
1(y) =

1

φ′
(
x1(y)

)
our transformation for a monotonic function φ will be

fY (y) =
fX
(
x1(y)

)∣∣φ′
(
x1(y)

)∣∣ χ[α,β](y) (3.61)

namely (3.59) when the sum is reduced to one term. When instead φ is not strictly
monotonic on the set of the X values, in many cases of interest its definition interval
can be decomposed in the union of n disjoint intervals [ak, bk] in whose interior φ
is differentiable and strictly monotonic, with nowhere vanishing derivatives. If now
[αk, βk] are the intervals of the values taken by φ for x ∈ [ak, bk], and if for s given y we
denote as xk(y) the (at most n) solutions of the equation φ(x) = y, the result (3.59) is
deduced as in the monotonic case11. �

It is important to stress that the number of terms of the sum (3.59) depends on y,
because for every y we will find only the m ≤ n summands corresponding to the
solutions of φ(x) = y such that χ[αk,βk](y) = 1. When on the other hand φ(x) = y has
no solution there are no summands at all and fY (y) = 0.

In a more general setting Y = φ(X) transforms a r-vec X with n components Xj

into a r-vec Y with the m ̸= n components

Yk = φk(X1, . . . , Xn) , k = 1, . . . ,m

Without a loss of generality we can however always suppose n = m because:

• if m < n, we can always add to Y n − m auxiliary components coincident
with Xm+1, . . . , Xn; after solving the problem in this form by determining the
joint pdf fY (y1, . . . , yn), we will eliminate the excess variables ym+1, . . . , yn by
marginalization;

11Remark that the result (3.59) can be reformulated as

fY (y) =

∫ +∞

−∞
fX(x) δ

[
y − φ(x)

]
dx (3.62)

by using the Dirac distribution δ(x) that in our notations satisfies the relation

δ
[
y − φ(x)

]
=

n∑
k=1

δ
[
x− xk(y)

]∣∣φ′
(
xk(y)

)∣∣ χ[αk,βk](y)

See for instance V.S. Vladimirov, Methods of the Theory of Generalized Functions,
Taylor&Francis (London, 2002) p. 22
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• ifm > n, m−n among the Yk apparently will turn out to be functions of the other
n components; we then solve the problem for the first n rv ’s Yk, and then the
distribution of the remaining m− n rv ’s is deduced as functions of the previous
ones

Taking then n = m, we will just state without proof the main result. For a given y
let xj(y) be the (at most n) solutions of the n equations system yk = φk(x1, . . . , xn):
then the joint pdf of the r-vec Y is

fY (y) =
n∑

j=1

fX(xj(y))

|J(xj(y))|
χj(y) (3.63)

where J(x) is the Jacobian determinant of the transformation with elements ∂φk/∂xl,
while the χj(y) take value 1 if the jth solution exists in y, and 0 otherwise. This
apparently generalizes (3.59) with the same provisions about the number (possibly
vanishing) of the terms in the sum.

Exemple 3.47. Linear functions: When Y = aX + b, namely φ(x) = ax+ b, with
a ̸= 0, the equation y = φ(x) always has a unique solution x1(y) = (y − b)/a. As a
consequence

faX+b(y) =
1

|a|
fX

(
y − b

a

)
In particular, if X ∼ N (0, 1) is a standard normal rv, then Y = aX + b ∼ N(b, a2);
and conversely, if X ∼ N(b, a2), then Y = (X − b)/a ∼ N (0, 1) is a standard normal.
Quadratic functions: If Y = X2, namely φ(x) = x2, the equation y = φ(x) has two
solutions x1(y) = −√

y and x2(y) = +
√
y for y > 0 (they coincide for y = 0). taking

then ϑ(y) the Heaviside funcrtion (2.13) we will have

fX2(y) =
1

2
√
y

[
fX(

√
y) + fX(−

√
y)
]
ϑ(y)

When in particular X ∼ N (0, 1) we get

fX2(y) =
e−y/2

√
2πy

ϑ(y) (3.64)

and we will see in the next section that this is called a χ2
1 law with 1 degree of freedom

Exponential functions: When Y = eX and X ∼ N(b, a2) from (3.59) we find

feX (y) =
e−(ln y−b)2/2a2

ay
√
2π

ϑ(y)

a law called log-normal and denoted by lnN(b, a2). To show that the expectation and
variance of Y ∼ lnN (b, a2) are

E [Y ] = eb+a2/2 V [Y ] = e2b+a2(ea
2 − 1) (3.65)
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remark that by taking z = x−a2−b
a

we get

E [Y ] = E
[
eX
]
=

∫ +∞

−∞
ex
e−

(x−b)2

2a2

a
√
2π

dx = eb+a2/2

∫ +∞

−∞

e−
z2

2

√
2π

dz = eb+a2/2

and since 2X ∼ N (2b, 4a2), from the previous result it also follows that

E
[
Y 2
]
= E

[
e2X
]
= e2b+2a2

and hence

V [Y ] = E
[
Y 2
]
−E [Y ]2 = e2b+2a2 − e2b+a2 = e2b+a2(ea

2 − 1)

A last example of application of (3.59) known as Bertrand’s paradox is discussed
in the Appendix C

3.5.2 Sums of independent rv ’s

Definition 3.48. We call convolution of two pdf ’s f and g the function

(f ∗ g)(x) = (g ∗ f)(x)

=

∫ ∞

−∞
f(x− y)g(y) dy =

∫ ∞

−∞
g(x− y)f(y) dy

It is easy to see that the convolution of two pdf ’s again is a pdf

Proposition 3.49. Given two independent rv’s X and Y with pdf ’s fX(x) and
fY (y), the pdf of their sum Z = X + Y is

fZ(x) = (fX ∗ fY )(x) = (fY ∗ fX)(x)

namely is the convolution of the respective pdf ’s

Proof: If two rv ’s X and Y have the joint pdf fXY (x, y) and we take Z = φ(X,Y )
with z = φ(x, y) a Borel function, by adopting the shorthand notation

{φ ≤ z} = {(x, y) ∈ R2 : φ(x, y) ≤ z}

it is easy to see that the cdf of Z is

FZ(z) = P {Z ≤ z} = P {φ(X, Y ) ≤ z} =

∫
{φ≤z}

fXY (x, y) dxdy

When in particular φ(x, y) = x + y, and X,Y are independent, namely fXY (x, y) =
fX(x)fY (y), with the change of variable u = x+ y we get

FZ(z) =

∫
{x+y≤z}

fX(x)fY (y) dx dy =

∫ ∞

−∞

[∫ z−x

−∞
fY (y) dy

]
fX(x) dx
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=

∫ ∞

−∞

[∫ z

−∞
fY (u− x) du

]
fX(x) dx =

∫ z

−∞

[∫ ∞

−∞
fY (u− x)fX(x) dx

]
du

or also, by inverting the integration order,

FZ(z) =

∫ z

−∞

[∫ ∞

−∞
fX(u− y)fY (y) dy

]
du

We can then say that the pdf of Z = X + Y is

fZ(z) =

∫ ∞

−∞
fY (z − x)fX(x) dx =

∫ ∞

−∞
fX(z − y)fY (y) dy

namely that fZ = fX ∗ fY = fY ∗ fX �

The previous results can also be extended to more than two rv ’s: given n independent
rv ’s X1, . . . , Xn admitting pdf ’s, then the pdf of their sum Z = X1 + · · · +Xn is the
n-convolution

fZ(x) = (fX1 ∗ . . . ∗ fXn)(x) (3.66)

Exemple 3.50. Sums of uniform rv’s: When X1, . . . , Xn are iid U (−1, 1) rv’s
their pdf can be given for instance by means of the Heaviside ϑ(x) (2.13)

fXk
(x) = f(x) =

1

2
ϑ(1− |x|) k = 1, . . . , n

A direct calculation then shows that

fX1+X2(x) =
2− |x|

4
ϑ(2− |x|) ,

fX1+X2+X3(x) =

[
ϑ(1− |x|)3− x2

8
+ ϑ(|x| − 1)

(3− |x|)2

16

]
ϑ(3− |x|)

while for Y = X1 + · · ·+Xn we inductively get

fY (x) =
ϑ(n− |x|)
2n(n− 1)!

⌊(n+x)/2⌋∑
k=0

(−1)k
(
n

k

)
(n+ x− 2k)n−1

where ⌊α⌋ is the integer part (floor) of the real number α. As a consequence we find
that sums of iid uniform rv’s are not at all uniform: for instance fX1+X2 is triangular
on [−2, 2], while fX1+X2+X3 consists of three parabolic segments continuously connected
on [−3, 3]
Sums of Gaussian rv’s: The previous example shows that not every law convolute
with a law of the same type produces a law in the same family. It is interesting then
to remark that, if X ∼ N (b1, a

2
1) and Y ∼ N (b2, a

2
2) are independent Gaussian rv’s, a

direct calculation would show that X + Y ∼ N (b1 + b2 , a
2
1 + a22), and symbolically

N (b1, a
2
1) ∗N (b2, a

2
2) = N (b1 + b2 , a

2
1 + a22) (3.67)
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This important result, that can be extended to an arbitrary number ov rv’s, is known
as reproductive property of the Gaussian family of laws: we will prove it later
(together with similar results for other families of laws) in the Section 4.2.3 by means
of the characteristic functions
χ2

n distributions: If X1, . . . , Xn are iid N (0, 1) rv’s, from (3.64) and by iterated
convolutions of fX2

k
(x), we get for Z = X2

1 + . . .+X2
n the pdf

fZ(x) =
xn/2−1e−x/2

2n/2Γ(n/2)
ϑ(x)

which is known as χ2 distribution with n degrees of freedom and denoted with the symbol
χ2

n. Here Γ(x) is the gamma function defined as

Γ(x) =

∫ +∞

0

zx−1e−z dz (3.68)

with the well known properties

Γ(x) = (x− 1)Γ(x− 1) Γ(1) = 1 Γ

(
1

2

)
=

√
π

so that in particular

Γ
(n
2

)
=

{
(n− 2)!! 2−n/2 for even n
(n− 2)!! 2−(n−1)/2 for odd n

It is possible to prove that the expectation and the variance of a χ2
n rv Z are

E [Z] = n V [Z] = 2n

Student Tn distributions: With X0, X1, . . . , Xn iid N (0, a2) rv’s, take

T =
X0√

(X2
1 + · · ·+X2

n)/n
=

X0/a√
(X2

1 + · · ·+X2
n)/na

2
=

X0/a√
Z/n

From the previous examples we know that the Xk/a are N (0, 1), while Z = (X2
1 + · · ·+

X2
n)/a

2 is χ2
n. It is possible then to prove that the pdf of T is

fT (t) =
1√
πn

Γ
(
n+1
2

)
Γ
(
n
2

) (
1 +

t2

n

)−(n+1)/2

which is called Student-T distribution and is denoted with the symbol Tn. With n = 1
the Student distribution coincides with the Cauchy C(1, 0). It i possible to prove that
expectation and variance of a Student T with law Tn are

E [T ] = 0 for n ≥ 2 V [T ] =
n

n− 2
for n ≥ 3

and do not exist for different values of n.
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Chapter 4

Limit theorems

4.1 Convergence

The Limit Theorems are statements about limits of sequences of sums of rv ’s when the
number of addenda grows to infinity. The convergence of a sequence of rv ’s (Xn)n∈N
can however have many non equivalent meanings, and hence we must first of all list
the more usual kinds of convergence and their mutual relations

Definition 4.1. Given a sequence of rv’s (Xn)n∈N on (Ω,F ,P ), we say that

• it converges in probability to the rv X, and we will write Xn
P−→ X, when

P {|Xn −X| > ϵ} n−→ 0 , ∀ ϵ > 0

• it converges almost surely (P -a.s.), or with probability 1 to the rv X,
and we will write Xn

as−→ X, or even Xn
n−→ X P -a.s., when either

P {Xn → X} = 1 or P {Xn ̸→ X} = 0

where {Xn ̸→ X} is the set of ω such that (Xn)n∈N does not converge to X

• it converges in Lp (with 0 < p < +∞) to the rv X and we will write Xn
Lp

−→ X,
when

E [|Xn −X|p ] n−→ 0

If in particular p = 2 we also say that (Xn)n∈N converges in mean square
(ms) and we adopt the notation Xn

ms−→ X. The exact meaning of the symbols
Lp = Lp(Ω,F ,P ) is discussed in the Appendix D

• it converges in distribution, and we will write Xn
d−→ X, when

E [f(Xn)]
n−→ E [f(X)] , ∀ f ∈ C(R)

where C(R) is the set of the functions that are bounded and continuous on R

103



N. Cufaro Petroni: Probability and Processes

Figure 4.1: Relations among the four types of convergence according to the Theorem 4.4

Definition 4.2. Given a sequence of cdf ’s
(
Fn(x)

)
n∈N

• it converges weakly to the cdf F (x), and we will write Fn
w−→ F , when∫

R

f(x)Fn(dx)
n−→
∫
R

f(x)F (dx) , ∀ f ∈ C(R)

where C(R) is the set of the bounded and continuous functions

• it converges in general to the cdf F (x), and we will write Fn
g−→ F , when

Fn(x)
n−→ F (x) , ∀x ∈ PC(F )

where PC(F ) is the set of points x ∈ R where F (x) è continuous

Proposition 4.3. A sequence of cdf ’s
(
Fn(x)

)
n∈N converges weakly to the cdf F (x)

iff it converges in general

Proof: Omitted1 �

Given now a sequence of rv ’s (Xn)n∈N with their cdf ’s FXn , it is apparent that (Xn)n∈N
converges in distribution to the rv X with cdf FX iff FXn

w−→ FX , or equivalently

iff FXn

g−→ FX . Practically – with a few clarifications about their meaning – the
convergences in distribution, weak and in general are equivalent. This entails that
the convergence in distribution of a sequence of rv ’s can be proved by looking just
to their cdf ’s, namely to their laws: in particular it will be enough to prove that
FXn(x)

n−→ FX(x) wherever the limit cdf FX(x) is continuous
The four types of convergence of the Definition 4.1, however, are not equivalent

and their mutual relationships are listed in the following theorem and are graphically
summarized in the Figure 4.1

1A.N. Shiryaev, Probability, Springer (New York, 1996)
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4.1 Convergence

Theorem 4.4. Given a sequence of rvs (Xn)n∈N and the rv X, we have

1. Xn
as−→ X =⇒ Xn

P−→ X

2. Xn
Lp

−→ X =⇒ Xn
P−→ X , p > 0

3. Xn
P−→ X =⇒ Xn

d−→ X

4. Xn
d−→ c =⇒ Xn

P−→ c , if c is a number (degenerate convergence)

Proof: Omitted2 �

Inferences different form the previous ones are not instead generally guaranteed as could
be seen from a few simple counterexamples. That notwithstanding it is possible to find
supplementary hypotheses to have other inferences beyond those of the Theorem 4.4:
a few well known supplementary conditons are collected in the subsequent theorem

Theorem 4.5. Given a sequence of rv’s (Xn)n∈N and a rv X

1. if Xn
P−→ X, then it exists a subsequence (Xnk

)k∈N such that Xnk

as−→ X;

2. if Xn
Lp

−→ X, then it exists a subsequence (Xnk
)k∈N such that Xnk

as−→ X;

3. if Xn
as−→ X, and if it exists a rv Y ≥ 0 with E [|Y |] < +∞ and such that

|Xn −X| < Y , then we also have Xn
Lp

−→ X.

Proof: Omitted3 �

Theorem 4.6. Degenerate convergence in ms: A sequence of rv’s (Xn)n∈N con-
verges in ms to the number m (degenerate convergence) iff

E [Xn]
n−→ m V [Xn]

n−→ 0 (4.1)

Proof: We have indeed

(Xn −m)2 = [(Xn −E [Xn]) + (E [Xn]−m)]2

= (Xn −E [Xn])
2 + (E [Xn]−m)2 + 2(Xn −E [Xn])(E [Xn]−m)

and since apparently

E [(Xn −E [Xn])(E [Xn]−m)] = (E [Xn]−m)E [Xn −E [Xn]] = 0

we also get
E
[
(Xn −m)2

]
= V [Xn] + (E [Xn]−m)2

so that the degenerate convergence in ms is equivalent to the conditions (4.1) �

2N. Cufaro Petroni, Calcolo delle Probabilità, Edizioni dal Sud (Bari, 1996)
3A.N. Shiryaev, Probability, Springer (New York, 1996)
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4.2 Characteristic functions

4.2.1 Definition and properties

Definition 4.7. We will call characteristic function (chf ) of the r-vec X =
(X1, . . . , Xn) the function

φX(u) = φX(u1, . . . , un) = E
[
eiu·X

]
u ∈ Rn (4.2)

where u ·X =
∑

k ukXk. If there is a pdf of Xthen the chf φX(u) takes the form

φX(u) =

∫
Rn

eiu·xfX(x) dnx =

∫ +∞

−∞
. . .

∫ +∞

−∞
eiu·xfX(x1 . . . xn) dx1 . . . dxn

and if the r-vec X has just one component X the chf becomes

φX(u) =

∫ +∞

−∞
eiuxfX(x) dx u ∈ R

namely the Fourier transform of the pdf

Proposition 4.8. If φX(u) is the chf of the rv X, for every u ∈ R we have

φX(u) = φX(−u) |φX(u)| ≤ φX(0) = 1

where z is the complex conjugate of the complex number z. Moreover φX(u) is uniformly
continuous on R, and is even and real iff fX(x) is even

Proof: The first result immediately ensues from the definition, while for the second it
is enough to remark that

|φX(u)| =
∣∣∣∣∫ +∞

−∞
eiuxf(x) dx

∣∣∣∣ ≤ ∫ +∞

−∞
f(x) dx = φX(0) = 1

If moreover fX(x) is even the imaginary part of φX(u) vanishes for symmetry, while
the real part is apparently even. We omit4 the proof of the uniform continuity �

Proposition 4.9. If φX(u) is the chf of a rv X, and if Y = aX + b with a, b two
numbers, then

φY (u) = eibuφX(au) (4.3)

If X = (X1, . . . , Xn) is a r-vec, denoted respectively as φX(u1, . . . , un) and φXk
(uk)

the joint and marginal chf ’s, then

φXk
(uk) = φX(0, . . . , uk, . . . , 0) (4.4)

If finally the components Xk are independent and Sn = X1 + . . .+Xn, then

φSn(u) = φX1(u) · . . . · φXn(u) (4.5)

4N. Cufaro Petroni, Calcolo delle Probabilità, Edizioni dal Sud (Bari, 1996)
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Proof: If Y = aX + b, the equation (4.3) results form the definition (4.2) because

φY (u) = E
[
eiuY

]
= eiubE

[
ei(au)X

]
= eibuφX(au)

Also the equation (4.4) immediately results form the definition (4.2); finally, if the Xk

are also independent, we find (4.5) because

φSn(u) = E
[
eiuSn

]
= E

[
eiuX1 · . . . · eiuXn

]
= E

[
eiuX1

]
· . . . ·E

[
eiuXn

]
= φX1(u) · . . . · φXn(u)

This last property is particularly relevant in the discussion of the Limit Theorems and
of the reproductive properties: while indeed from (3.66) the pdf fSn(x) of the sum of
n independent rv ’s is the convolution product (fX1 ∗ . . . ∗ fXn)(x) of the pdf ’s, its chf
φSn(u) is instead the ordinary product φX1(u) · . . . · φXn(u) of the corresponding chf ’s
�

Exemple 4.10. To find the chf of the discrete laws we just calculate the expectation
(4.2) as a sum: first the chf of a degenerate rv X ∼ δb is

φX(u) = eibu (4.6)

then for a Bernoulli rv X ∼ B (1; p) we have

φX(u) = p eiu + q (4.7)

For a binomial rv Sn ∼ B (n; p) it is expedient to recall that from (3.8) we have

Sn
d
= X1 + . . .+Xn with Xk Bernoulli iid and hence from (4.5) and (4.7) we get

φX(u) = (p eiu + q)n (4.8)

Finally for a Poisson rv X ∼ P(α) the chf is

φX(u) =
∞∑
k=0

eiuke−αα
k

k!
= e−α

∞∑
k=0

(
αeiu

)k
k!

= eα(e
iu−1) (4.9)

When instead there is a pdf , the chf is found by performing an appropriate inte-
gration: for a uniform rv X ∼ U (a, b) we have

φX(u) =

∫ b

a

eiux

b− a
dx =

eibu − eiau

i(b− a)u
(4.10)

and in particular for X ∼ U (−1, 1) it is

φX(u) =
sinu

u
(4.11)
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For a Gaussian rv X ∼ N(b, a2) we recall from the Example 3.47 that Y = (X −
b)/a ∼ N (0, 1) while from (4.3) we have

φX(u) = eibuφY (au)

so that it will be enough to calculate the chf φY of a standard Gaussian N(0, 1). From
the convergence properties of the power expansion of exponentials we then have

φY (u) = E
[
eiuY

]
=

1√
2π

∫ +∞

−∞
eiuxe−x2/2 dx

=
1√
2π

∫ +∞

−∞
e−x2/2

∞∑
n=0

(iux)n

n!
dx =

∞∑
n=0

(iu)n

n!

1√
2π

∫ +∞

−∞
xne−x2/2 dx

and since

1√
2π

∫ +∞

−∞
xne−x2/2 dx =

{
0 for n = 2k + 1
(2k − 1)!! for n = 2k

we get

φY (u) =
∞∑
k=0

(iu)2k

(2k)!
(2k − 1)!! =

∞∑
k=0

(
−u2

2

)k
1

k!
= e−u2/2 (4.12)

and finally
φX(u) = eibu−a2u2/2 (4.13)

In particular when X ∼ N (0, a2) the pdf and the chf respectively are

fX(x) =
1

a
√
2π

e−x2/2a2 φX(u) = e−a2u2/2

and hence we plainly see first that the chf of a Gaussian pdf is again a Gaussian
function, and second the inverse relation between the width (variance) a2 of the pdf
and the width 1/a2 of the chf . Some elementary integration shows then that the chf
of an exponential rv X ∼ E(a) is

φX(u) =

∫ +∞

0

ae−axeixu dx =
a

a− iu
=

a2 + iau

a2 + u2
(4.14)

while that of a Laplace rv X ∼ L(a) is

φX(u) =

∫ +∞

−∞

a

2
e−a|x|eixu dx =

a2

a2 + u2
(4.15)

For a Cauchy rv X ∼ C(a, b) the chf

φX(u) =

∫ +∞

−∞

a

π

eixu

a2 + (x− b)2
dx = e−a|u|+ibu (4.16)

is finally derived in the complex field from the residue theorem
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Theorem 4.11. If X is a rv with chf φ(u), if E [|X|n] < +∞, ∀n ∈ N , and if

lim
n

E [|X|n]1/n

n
=

1

R
< +∞

then φ(u) is derivable at every order n ∈ N with

φ(n)(u) = E
[
(iX)neiuX

]
φ(n)(0) = in E [Xn] (4.17)

Moreover for |u| < R/3 the Taylor expansion holds

φ(u) =
∞∑
n=0

(iu)n

n!
E [Xn] =

∞∑
n=0

un

n!
φ(n)(0) (4.18)

If instead E
[
|X|k

]
< +∞ only for a finite number n of exponents k = 1, . . . , n, then

φ(u) is derivable only up to the order n, and the Taylor formula holds

φ(u) =
n∑

k=0

(iu)k

k!
E
[
Xk
]
+ o(un) =

n∑
k=0

uk

k!
φ(k)(0) + o(un) (4.19)

with an infinitesimal (for u → 0) remainder of order larger than n

Proof: Omitted5. Remark that – after checking the conditions to perform the limit
under the integral – the equation (4.17) is nothing else than a derivation under the
integral. As for the expansion (4.18), this too heuristically derives from the Taylor
series expansion of an exponential according to

φ(u) = E
[
eiuX

]
= E

[
∞∑
n=0

(iu)n

n!
Xn

]
=

∞∑
n=0

(iu)n

n!
E [Xn] =

∞∑
n=0

un

n!
φ(n)(0)

These results elucidate the important relation between a chf φ(u) and the moments
E [Xn] of a rv X: further details about the so-called problem of moments and about
the cumulants can be found in the Appendix E �

With a similar proof the previous theorem can be extended to expansions around a
point u = v, instead of u = 0, and in this case – with a suitable convergence radius –
we will find the formula

φ(u) =
∞∑
n=0

in(u− v)n

n!
E
[
XneivX

]
Theorem 4.12. Uniqueness theorem: If f(x) and g(x) are two pdf ’s with the
samechf , namely if∫ +∞

−∞
eiuxf(x) dx =

∫ +∞

−∞
eiuxg(x) dx , ∀u ∈ R

then it is f(x) = g(x) for every x ∈ R, with the possible exception of a set of points of
vanishing Lebesgue measure

5N. Cufaro Petroni, Calcolo delle Probabilità, Edizioni dal Sud (Bari, 1996)
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Proof: Omitted6 �

Theorem 4.13. Inversion formula: If φ(u) is the chf of an ac law, then the corre-
sponding pdf is

f(x) =
1

2π
lim

T→+∞

∫ T

−T

e−iuxφ(u) du =
1

2π
VP

∫ +∞

−∞
e−iuxφ(u) du (4.20)

Proof: Omitted7 �

Theorem 4.14. Necessary and sufficient condition for the independence of the com-
ponents of a r-vec X = (X1, . . . , Xn) is the relation

φX(u1, . . . , un) = φX1(u1) · . . . · φXn(un)

namely that the joint chf φX(u) is the product of the marginal chf ’s φXk
(uk) of the

individual components

Proof: Omitted8 �

All these results point out that the law of a rv can equivalently be represented either
by its pdf (or by its cdf when this is not ac), or by its chf : the knowledge of one allows,
indeed, to get the other in an unique way, and vice-versa. Furthermore all the relevant
information (expectation and other moments) can be independently calculated either
from the pdf, of from the chf. Before accepting the idea that the law of a rv can be well
represented by its chf, we must however highlight a rather subtle point: it is not easy
sometimes to find if a given function φ(u) is an acceptable chf of some law. That a
function f(x) is a possible pdf it is rather easy to check: it is enough to be a real, non
negative normalized function. For a chf instead it is not enough, for instance, that φ(u)
admit an inverse Fourier transform according to the formula (4.20): we need to know
(without performing a direct, often difficult calculation) that the inverse transform is
a good pdf. In short we need an intrinsic profiling of φ(u) allowing us to be sure that
it is a good chf

Theorem 4.15. Bochner theorem: A continuous function φ(u) is a chf iff it is
non-negative definite 9, and φ(0) = 1

6A.N. Shiryaev, Probability, Springer (New York, 1996)
7A.N. Shiryaev, Probability, Springer (New York, 1996)
8N. Cufaro Petroni, Calcolo delle Probabilità, Edizioni dal Sud (Bari, 1996)
9A function φ(u) is non-negative definite when, however chosen n points u1, . . . , un, the matrix

∥φ(uj − uk)∥ turns out to be non-negative definite, namely when, however chose n complex numbers
z1, . . . , zn, we always have

n∑
j,k=1

zjzk φ(uj − uk) ≥ 0 (4.21)
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Proof: Omitted10, we will remark only that if φ(u) is the chf of a rv X we already
know that it is (uniformly) continuous and that φ(0) = 1. It is easy moreover to check
that, for every u1, . . . , un, and however taken n complex numbers z1, . . . , zn, it is

n∑
j,k=1

zjzk φ(uj − uk) =
n∑

j,k=1

zjzk E
[
ei(uj−uk)X

]
= E

[
n∑

j,k=1

zjzk e
iujXe−iukX

]

= E

[
n∑

j=1

zje
iujX

n∑
k=1

zkeiukX

]
= E

∣∣∣∣∣
n∑

j=1

zje
iujX

∣∣∣∣∣
2
 ≥ 0

namely φ(u) is non negative definite. The Bochner theorem states that also the reverse
holds: every function of a real variable with complex values φ(u), and with the said
three properties is a good chf �

The close relationship between the cdf F (x) (or its pdf f(x)) and the chf φ(t) of
a law suggests that the weak convergence of a sequence of cdf ’s

(
Fn(x)

)
n∈N can be

assessed by looking at the pointwise convergence of the corresponding sequence of
chf ’s

(
φn(u)

)
n∈N . The following theorem then itemizes under what conditions the

weak convergence Fn
w−→ F is equivalent to the pointwise convergence φn(u) → φ(u)

of the corresponding chf ’s

Theorem 4.16. Paul Lévy continuity theorem: Given a sequence of cdf ’s
(
Fn(x)

)
n∈N

and the corresponding sequence of chf ’s
(
φn(u)

)
n∈N

1. if Fn
w−→ F and if F (x) turns out to be a cdf , then also φn(u)

n−→ φ(u) for
every u ∈ R, and φ(u) turns out to be the chf of F (x);

2. if the limit φ(u) = limn φn(u) exists for every u ∈ R, and if φ(u) is continuous
in u = 0, then φ(u) is the chf of a cdf F (x) and it results that Fn

w−→ F

3. if in particular we a priori know that F (x) is a cdf and φ(u) is its chf , then
Fn

w−→ F iff φn(u)
n−→ φ(u) for every u ∈ R

Proof: Omitted11 �

4.2.2 Gaussian laws

The r-vec’s with joint Gaussian law N(b,A) play a very prominet role in probability
and statistics. First, as we will see in the Section 4.4, this follows from the so-called
Central Limit Theorem stating that sums of a large number of independent rv ’s, with
arbitrary laws under rather broad conditions, tend to become Gaussian. This is of

10A.N. Shiryaev, Probability, Springer (New York, 1996)
11A.N. Shiryaev, Probability, Springer (New York, 1996)
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course the conceptual basis for the error law stating that random errors in the empirical
measurements – errors resulting precisely from the sum of a large number of small,
independent and uncontrollable disturbances – are approximately Gaussian. Second,
the Gaussian rv ’s enjoy a few relevant properties, for instance:

• their laws N(b,A) are completely qualified by a small number of parameters

• they exhibit a total equivalence of independence and non correlation, a property
not shared with other rv ’s (see Section 3.3.3)

• they have finite momenta of every order and can then be analyzed with the
functional analysis tools discussed in the Appendix D

As a consequence it will be very useful to find an effective way to completely represent
the family N(b,A) of Gaussian laws, and here we will look at this problem from the
standpoint of their chf ’s

If there is only one component X ∼ N(b, a2) we know that for a > 0 the pdf is

fX(x) =
1

a
√
2π

e(x−b)2/2a2

Since a2 = V [X], when a ↓ 0 the law of X intuitively converges to that of a degenerate
rv taking only the value X = b , P -a.s.. We know on the other hand that a rv
degenerate in b follows a typically not continuous law δb that admit no pdf. As a
consequence – to the extent that we represent a law only with its pdf – we are obliged to
set apart the case a > 0 (whenX has a proper Gaussian pdf ) from the case a = 0 (when
X degenerates in b and no longer has a pdf ), and to accept that the two description
do not go smoothly one into the other when a ↓ 0. To bypass this awkwardness let us
recall therefore that a rv can be effectively described also through its chf, and that for
our rv ’s we find from (4.6) and (4.13)

φX(u) =

{
eibu if a = 0, law δb
eibu−u2a2/2 if a > 0, law N(b, a2)

It is apparent then that – at variance with its pdf – the chf with a = 0 smoothly results
form that with a > 0 in the limita ↓ 0, so that we can now speak of a unified family of
laws N(b, a2) for a ≥ 0, with N (b, 0) = δb, in the sense that all these distributions are
represented by the chf ’s

φX(u) = eibu−u2a2/2 a ≥ 0

where the degenerate case is nothing else (as intuitively expected) than the limit a ↓ 0
of the non degenerate case

There remarks can now be extended also to Gaussian r-vec’sX ∼ N(b,A): in terms
of pdf ’s we would be obliged to discriminate between singular (|A| = 0 non negative
definite), and non singular (|A| > 0, positive definite) covariance matrices. For r-vec’s
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with more than one component the difficulty is compounded by the possible dissimilar
behavior of the individual components: it is not ruled out, indeed, the circumstance
that only some components turn out to be degenerate giving rise to a distribution
which is neither discrete nor ac. The usage of the chf ’s allows instead to give again a
coherent, unified description

Definition 4.17. We will say that X = (X1, . . . , Xn) ∼ N(b,A) is a Gaussian (nor-
mal) r-vec with average vector b = (b1, . . . , bn) ∈ Rn and symmetric, non negative
definite covariance matrix A = ∥akl∥, if its chf is

φX(u) = φX(u1, . . . , un) = ei b ·u e−u·Au/2 u ∈ Rn (4.22)

where b · u =
∑

k bkuk is the Euclidean scalar product between vectors in Rn

The chf (4.22) is a generalization of the chf (4.13) that is recovered when b is a
number and the covariance matrix is reduced to a unique element a2. Remark that –
at variance with the pdf (2.22) – only the matrix A, and not its inverse A−1, appears in
the chf (4.22), that accordingly is not affected by a possible singularity. Since however
the singular case has been treated as an extension of the non singular Gaussian r-vec,
it is be expedient to check that the Definition 4.17 is indeed acceptable and coherent

Proposition 4.18. In the non singular case (|A| ̸= 0) the (4.22) is the chf of the
Gaussian pdf (2.22); in the singular case (|A| = 0) the same (4.22) turns out to be
the chf of a law N(b,A) that we will still call Gaussian in spite of the fact that there
is no pdf

Proof: If A is non singular (|A| ≠ 0) its inverse A−1 exists and it is possible to show by
a direct calculation of the inverse Fourier transform (here omitted) that the φX(u) of
definition 4.17 is precisely the chf of a r-vec X ∼ N(b,A) with a normal, multivariate
pdf (2.22)

fX(x) =

√
|A−1|
(2π)n

e−
1
2
(x−b) ·A−1(x−b)

When instead A is singular (|A| = 0), A−1 does not exist and (4.22) can no longer be
considered as the Fourier transform of some pdf. That notwithstanding it is possible
to show that (4.22) continues to be the chf of some r-vec, albeit lacking a pdf. For
n ∈ N take indeed the matrix An = A+ 1

n
I (I is the identity matrix) that turns out to

be symmetric, non negative definite and – at variance with A – non singular for every
n ∈ N . Then A−1

n exists for every n ∈ N and the function

φn(u) = ei b ·u e−u·Anu/2

is the chf of a r-vec distributed as N(b,An) with a suitable Gaussian pdf. Since
moreover for every u we of course find

lim
n

φn(u) = ei b·u e−u·Au/2 = φX(u)
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and the limit function (4.22) is continuous in u = (0, . . . , 0), the Continuity The-
orem 4.16 entails that φX(u) is the chf of a law, even if it does not admit a pdf.
The r-vec’s resulting from this limit procedure can then legitimately be considered as
Gaussian r-vec’s N(b,A) for the singular case |A| = 0 �

Proposition 4.19. Given a Gaussian r-vec X = (X1, . . . , Xn) ∼ N(b,A) it is

bk = E [Xk] ; akl = cov [Xk, Xl] akk = a2k = V [Xk]

and its components Xk ∼ N (bk, a
2
k) are independent iff they are uncorrelated

Proof: The probabilistic meaning of b and A = ∥akl∥ (already discussed in the Ex-
ample 3.34 for the bivariate, non degenerate case) are derivable from the chf (4.22)
with a direct calculation here omitted. It is easy instead to show that the individual
components Xk are Gaussian N (bk, a

2
k) (as previously stated without a proof in the

Example 3.13): from (4.4) we immediately get that the marginal chf ’s of our Gaussian
r-vec are in fact

φXk
(uk) = eibkuk e−u2

ka
2
k/2

and hence they too are Gaussian N (bk, a
2
k). The equivalence between independence

and non correlation of the components (already discussed in the Example 3.34 for the
non degenerate, bivariate case) can now be proved in general: first it is a foregone
conclusion that if the Xk are independent they also are uncorrelated. Viceversa, if the
component of a Gaussian r-vec N(b,A) are uncorrelated the covariance matrix A turns
out to be diagonal with akl = δkla

2
k and hence its chf is

φX(u1, . . . , un) = ei b·u e−
∑

k a2ku
2
k/2 =

n∏
k=1

(
eibkuk e−a2ku

2
k/2
)
=

n∏
k=1

φXk
(uk)

where φXk
(uk) are the chf of the individual components. As a consequence, from the

Theorem 4.14, the components of X are independent �

Proposition 4.20. Given the r-vec X = (X1, . . . , Xn), the following statements are
equivalent

1. X ∼ N(b,A)

2. c ·X ∼ N (c · b , c · Ac) for every c ∈ Rn

3. X = CY + b where Y ∼ N (0, I), C is non singular, and A = CCT

Proof: Omitted12. Remark in the point 3 that the r-vec Y is Gaussian with compo-
nents Yk that are standard N (0, 1) and independent because its covariance matrix is
δjk. As a consequence the components of an arbitrary, Gaussian r-vec X ∼ N(b,A)

12N. Cufaro Petroni, Calcolo delle Probabilità, Edizioni dal Sud (Bari, 1996)
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always are linear combinations of the independent, standard normal components of
the r-vec Y ∼ N (0, I); and viceversa, the components of an arbitrary Gaussian r-vec
X ∼ N(b,A) can always be made standard and independent by means of suitable
linear combinations �

4.2.3 Composition and decomposition of laws

The locution reproductive properties of a family of laws usually refers to a
family which is closed under convolution, in the sense that the composition through
convolution of the pdf ’s of two or more laws of the said family again produces a law
of the same family. We already met the reproductive properties (3.67) of the normal
rv ’s N(b, a2) in the section 3.5.2, but we postponed the proof in order to shirk lengthy
and uneasy integrations. The chf ’s allow instead even here a remarkable simplification
because, as we know from the Proposition 4.9, the convolution of the pdf ’s is replaced
by the simple product of the chf ’s

Exemple 4.21. The reproductive properties (3.67) of the Gaussian laws N(b, a2)

N (b1, a
2
1) ∗N (b2, a

2
2) = N (b1 + b2 , a

2
1 + a22)

are simply proved by recalling Proposition 4.9 and (4.13), and remarking that the prod-
uct of the chf ’s φ1(u) and φ2(u) of the lawsN (b1, a

2
1) and N (b2, a

2
2) is

φ(u) = φ1(u)φ2(u) = eib1u−a21u
2/2eib2u−a22u

2/2 = ei(b1+b2)u−(a21+a22)u
2/2

namely the chf of the law N (b1 + b2 , a
2
1 + a22). As a consequence the family of laws

N(b, a2) with parameters a and b is closed under convolution. As a particular case, for
a1 = a2 = 0, we also retrieve the reproductive properties of the degenerate laws δb

δb1 ∗ δb2 = δb1+b2 (4.23)

By the same token we can also prove that the Poisson laws P(α) enjoy the same
property in the sense that

P(α1) ∗P(α2) = P(α1 + α2) (4.24)

From (4.9) we indeed see that the product of the chf ’s of P(α1) and P(α2) is

φ(u) = eα1(eiu−1)eα2(eiu−1) = e(α1+α2)(eiu−1)

namely the chf of P(α1 + α2)

The parametric families δb, N(b, a2) e P(α) – whose relevance will be emphasized in the
subsequent discussion about the limit theorems – enjoy a further important property:
they are closed also under convolution decomposition. If for instance we decompose
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a Gaussian law N(b, a2) into the convolution of two other laws, the latter must also be
Gaussian laws from the family N(b, a2). In other words, not only the convolution of
two Gaussians always produces a Gaussian, but only by composing two Gaussians we
can get a Gaussian law. In this sense we say that the family N(b, a2) is closed under
convolution composition and decomposition. A similar result holds for the families δb
and P(α), but, at variance with the compositions, the theorems about decompositions
are rather difficult to prove13

Exemple 4.22. There are more parametric families of laws that are closed under
convolution: it is easy for instance to prove from (4.16) the reproductive properties of
the Cauchy laws C(a, b)

C(a1, b1) ∗ C(a2, b2) = C(a1 + a2, b1 + b2) (4.25)

We should however refrain from supposing a too wide generalization of this property:
for instance a convolution of exponential laws E(a) does not produce an exponential
law: it is easy to see from (4.14) that if φ1(u) and φ2(u) are chf ’s of E(a1) and E(a2),
their product

φ(u) = φ1(u)φ2(u) =
a1

a1 − iu

a2
a2 − iu

is not the chf of an exponential. If instead we combine exponential laws with the same
parameter a we find a new family of laws that will be useful in the following: the product
of the chf ’s φa(u) of n exponentials E(a) with the same a is indeed

φ(u) = φn
a(u) =

(
a

a− iu

)n

(4.26)

and it is possible to show with a direct calculation that the corresponding pdf is

fZ(x) =
(ax)n−1

(n− 1)!
ae−axϑ(x) n = 1, 2, . . . (4.27)

where ϑ(x) is the Heaviside function. These are known as Erlang laws En(a) =
E∗n(a), and we have just shown indeed that an Erlang En(a) rv always is decomposable
in the sum of n independent exponential E(a) rv’s. It is also easy to check from (3.33)
and (3.38) that if X ∼ En(a), then

E [X] =
n

a
V [X] =

n

a2
(4.28)

Remark the formal reciprocity between the Erlang (4.27) and the Poisson distributions:
the expression

xke−x

k!
ϑ(x) k = 0, 1, 2 . . .

represents indeed at the same time both a discrete Poisson distribution P(x) with values
k (and parameter x > 0), and an Erlang pdf Ek+1(1) of order k+1, with values x (and
parameter a = 1): this reciprocity will be further elucidated later on by the discussion
of the Poisson process in the Section 6.1

13M. Loève, Probability Theory - I, Springer (New York, 1977)
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4.3 Laws of large numbers

The classical limit theorems are statements about limits (for n → ∞) of sums Sn =
X1 + · · · +Xn of sequences (Xn)n∈N of rv ’s, where a prominent role is played by the
families of laws δb, N(b, a2) and P(α). We should at once remark, however, that the
limit theorems are not an aftermath of the composition and decomposition properties
of the Section 4.2.3. They are instead deep results that go beyond the boundaries of the
previous discussion. First of all, while the composition and decomposition properties
pertain to finite sums of rv ’s, the limit theorems touch to limits of sequences of sums
of rv ’s. Second, while for instance the composition and decomposition properties of a
Gaussian rv states that this law always is the sum of a finite number of independent
rv ’s the are again Gaussians, in the Central Limit Theorem the normal laws comes
out as the limit in distribution of sums of independent rv ’s with arbitrary laws, within
rather broad conditions. We will begin our treatment with the Law of Large Numbers
that, at variance with the Gaussian and Poisson theorems that will be discussed in the
subsequent sections, are a case of degenerate convergence: the sequence Sn does indeed
converge toward a number, namely toward a rv taking just one value P -a.s.. The oldest
version of this important result, the Bernulli Theorem (1713), is briefly recalled in the
Appendix F

Theorem 4.23. Weak Law of Large Numbers: Given a sequence (Xn)n∈N of rv’s
iid with E [|Xn|] < +∞, and taken Sn = X1 + · · ·+Xn and E [Xn] = m, it turns out
that

Sn

n

P−→ m

Proof: In the present formulation the Xk are not in general Bernoulli rv ’s as in the
original Bernoulli’s proof, and hence the Sn are not binomial, so that the proof can
not be given along the lines of Appendix F where the binomial laws play the central
role. To bypass the problem remark first that, from the point 4 of the Theorem 4.4, the
degenerate convergence in probability (for us towardm) is equivalent to the convergence
in distribution to the same constant and hence we can legitimately utilize the Lévy
Theorem 4.16. If φ(u) is the chf of the Xn, the chf ’s of the Sn/n will be

φn(u) = E
[
eiuSn/n

]
=

n∏
k=1

E
[
eiuXk/n

]
=
[
φ
(u
n

)]n
Our rv ’s are integrable by hypothesis, and hence from (4.19) we get

φ(u) = 1 + ium+ o(u) u → 0

so that, with fixed, arbitrary u,

φ
(u
n

)
= 1 + i

u

n
m+ o

(
1

n

)
n → ∞
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For every u ∈ R we then have

φn(u) =

[
1 + i

u

n
m+ o

(
1

n

)]n
n−→ eimu

and since eimu is the chf of a rv degenerate in m, the result follows from the Theo-
rem 4.16. �

There is a variant of this weak Law of Large Numbers that is fit also for sequences of
rv ’s that are independent, but not identically distributed. To this end it is expedient
to remark that the Theorem 4.23 can also be put in the form

Sn −E [Sn]

n

P−→ 0 (4.29)

that no longer refers to a common expectation value, and hence is suitable for indepen-
dent, but not identically distributed Xn. The next theorem shows that the identical
distribution hypothesis can be replaced by another about the variance V [Xn] that of
course must be now supposed to be finite

Theorem 4.24. If the rv’s in (Xn)n∈N are independent with E [|Xn|2] < +∞, taken
Sn = X1 + · · ·+Xn, if we can find a number C > 0 such that

V [Xn] < C ∀n ∈ N

then it is
Sn −E [Sn]

n

P−→ 0

Proof: From the Chebyshev inequality (3.42), and however chosen ϵ > 0

P

{∣∣∣∣Sn −E [Sn]

n

∣∣∣∣ ≥ ϵ

}
≤ 1

ϵ2
V

[
Sn −E [Sn]

n

]
=

1

n2ϵ2
V

[
n∑

k=1

(Xk −E [Xk])

]

=
1

n2ϵ2

n∑
k=1

V [Xk −E [Xk]] =
1

n2ϵ2

n∑
k=1

V [Xk] ≤
nC

n2ϵ2

=
C

nϵ2
n−→ 0

and the theorem if proved by definition of convergence in probability �

The Law of Large Numbers plays an extremely important role in Probability because
it allows to confidently estimate the expectation of a rv X by averaging on a large
number of independent observations. To this end we consider a sequence (Xn)n∈N of
independent measurements of X (so that the Xn are iid) and we calculate their average
Sn/n. According to the Theorem 4.23 we can then confidently say that the difference
between the empirical value of Sn/n and the theoretical E [X] is infinitesimal with

118



4.3 Laws of large numbers

n. For the time being, however, the locution confidently is problematic: our previous
formulations of the Law of Large Numbers guarantees indeed the convergence of Sn/n
to E [X] only in probability, and not P -a.s.. As a consequence, strictly speaking, the
probability that Sn/n does not converge to E [X] can be different from zero. If we
had not other results stronger than the Theorems 4.23 and 4.24, we could suspect
that, with non zero probability, the average of a sequence of measurements does not
actually converge to E [X], and this would be particularly alarming in all the empirical
applications. For this reason great efforts have been devoted to find a strong Law of
Large Numbers (namely in force P -a.s.) in order to guarantee the correctness of all
the empirical procedures with probability 1

Theorem 4.25. Strong Law of Large Numbers: Given a sequence (Xn)n∈N of
rv’s iid with E [|Xn|] < +∞, and taken Sn = X1 + · · ·+Xn and E [Xn] = m, it turns
out that

Sn

n

as−→ m

Proof: Omitted14. Remark that the hypotheses of the present theorem coincide with
that of the weak Theorem 4.23: the different result (P -a.s. convergence instead of con-
vergence in probability) is a produce only of the more advanced techniques of demon-
stration. It is also possible to show that here too we can dismiss the hypothesis of
identical distribution of the Xn replacing it with some constraint on the variances, and
that the result still holds if the expectation exists but it is not finite. We will refrain
however to enter into the technical details of these importand advances, and we will
show instead a few examples of practical application of the Law of Large Numbers �

Exemple 4.26. Consider a continuous function g(x) : [0, 1] → [0, 1] and suppose you
want to calculate in a numerical way (namely without finding a primitive) the integral

I =

∫ 1

0

g(x) dx (4.30)

We will show here that this is possible by taking advantage of the statistical regularities
highlighted by the Law of Large Numbers: a method known as Monte Carlo that we
will present in two possible variants

Take first the r-vec U = (X, Y ) with values in
(
R2,B(R2)

)
and independent com-

ponents uniformly distributed in [0, 1] so that

fU (x, y) =

{
1 (x, y) ∈ [0, 1]× [0, 1]
0 else

and U is uniformly distributed in [0, 1]× [0, 1]. If then

A =
{
(x, y) ∈ [0, 1]× [0, 1] : g(x) ≥ y

}
∈ B(R2) B =

{
(X,Y ) ∈ A

}
∈ F

χA(x, y) =

{
1 (x, y) ∈ A
0 else

IB(ω) =

{
1 ω ∈ B
0 else

14A.N. Shiryaev, Probability, Springer (New York, 1996)
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O 1

1

x

I

gHxL

y

Figure 4.2: Calculation of the integral (4.30) with the Monte Carlo method

the rv Z = IB = χA(X,Y ) is a Bernoulli B (1; p) with

p = E [Z] = P {B} = P {(X, Y ) ∈ A} = P {Y ≤ g(X)}

=

∫
A

fU (x, y) dx dy =

∫ 1

0

[∫ g(x)

0

dy

]
dx =

∫ 1

0

g(x) dx = I

In short the value of the integral I is the probability of the event Y ≤ g(X) for a point
of coordinates X, Y taken at random in [0, 1] × [0, 1], and this also coincides with the
expectation of Z. Hence I can be calculated by estimating E [Z] with the strong Law of
Large Numbers: take n points (Xk, Yk) , k = 1, . . . , n uniform in [0, 1]× [0, 1], let Zk =
χA(Xk, Yk) be the corresponding sequence of iid rv’s, and define Sn = Z1+. . .+Zn; the
value I = E [Z] is then well approximated by Sn/n for large values of n. In practice this
amounts to calculate I = p = P {Y ≤ g(X)} by first enumerating the random points
uniform in [0, 1]× [0, 1] that fall under the curve y = g(x) in the Figure 4.2, and then
dividing the result by the total number of drawn points

The numerical calculation of I can also be performed with an alternative procedure
by remarking that if X is a uniform U (0, 1) rv, and if Y = g(X), it turns out that

E Y = E
[
g(X)

]
=

∫ 1

0

g(x) dx = I

As a consequence we can calculate I by estimating the expectation of Y = g(X) as
an average of trials: if (Xn)n∈N is a sequence of uniform U (0, 1) iid rv’s, the Law of
Large Numbers states that with probability 1 we will have

1

n

n∑
k=1

g(Xk)
n−→ E [g(X)] = I

and hence with a fair number of measurements we can always approximate the value of
I with the required precision
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4.4 Gaussian theorems

4.4 Gaussian theorems

The Gaussian theorems are statements about convergence in distribution of the sums
Sn toward the standard normal law N(0, 1), and since we are interested rather in the
form of the limit distribution than in its expectation or its variance, it will be expedient
to preliminarily standardize the sequences at issue. Recalling that a rv is standardized
when E [X] = 0 and V [X] = 1 we will study in the following the standardized sums

S∗
n =

Sn −E [Sn]√
V [Sn]

(4.31)

In the oldest versions of these theorems the sums Sn were binomial rv ’s (see Ap-
pendix F), but the modern formulations are much more general and can be proved
under a wide selection of hypotheses

Theorem 4.27. Central Limit Theorem for iid rv’s: Take a sequence (Xn)n∈N
of iid rv’s with E [X2

n] < +∞ and V [Xn] > 0, and define Sn = X1 + . . .+Xn and S∗
n

as in (4.31): then it is

S∗
n

d−→ N(0, 1)

Proof: Since the convergence in distribution of a sequence of rv ’s is equivalent to the
convergence in genersl of the corresponding sequence of cdf ’s (see Section 4.1), our
theorem states that

P {S∗
n ≤ x} n−→ Φ(x) , ∀x ∈ R

where

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2 dz

is the standard error function (2.16) that it is continuous for every x. To prove the
statement we will then take advantage of the P. Lévy Theorem 4.16: since the Xn are
iid, take

m = E [Xn] σ2 = V [Xn] φ(u) = E
[
eiu(Xn−m)

]
and remark first that

E [Sn] = nm V [Sn] = nσ2 S∗
n =

1

σ
√
n

n∑
k=1

(Xk −m)

From the independence of the Xn’s we have then

φn(u) = E
[
eiuS

∗
n
]
= E

[
n∏

k=1

eiu(Xk−m)/σ
√
n

]
=

n∏
k=1

E
[
eiu(Xk−m)/σ

√
n
]
=

[
φ

(
u

σ
√
n

)]n
where φ(u) is the chf of Xn −m with finite moments at least up to the second order
and

E [Xn −m] = 0 E
[
(Xn −m)2

]
= σ2
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From the (4.19) we know that

φ(u) = 1− σ2u2

2
+ o(u2) u → 0

so that, with a fixed arbitrary u, and n → ∞, we have

φn(u) =

[
1− u2

2n
+ o

(
1

n

)]n
n−→ e−u2/2

Since we know from (4.13) that e−u2/2 is the chf of N (0, 1), the theorem is proved
according to the P. Lévy Theorem 4.16 �

Remark that from V [Sn] = nσ2, and taking advantage of the equivalence between the
degenerate convergences in probability and in distribution, we could reformulate the
result (4.29) of the Law of Large numbers as

Sn −E [Sn]

V [Sn]

d−→ δ0 = N (0, 0)

where the denominator grows as n, while the Central Limit Theorem 4.27 states that

S∗
n =

Sn −E [Sn]√
V [Sn]

d−→ N (0, 1)

A juxtaposition of these two assertions highlights analogies and differences between the
two results: in the Central Limit Theorem there is the square root of the variance, so
that the denominator grows only as

√
n, and this intuitively explains why in this case

the convergence is no longer degenerate. We will finally recall another variant of the
Central Limit Theorem that, by imposing further technical conditions, allows one to
jettison the hypothesis of identical distribution of the Xn’s

Theorem 4.28. Central Limit Theorem for independent rv’s: Take a sequence
(Xn)n∈N of independent rv’s with E [X2

n] < +∞ and V [Xn] > 0, define Sn = X1 +
. . .+Xn and S∗

n as in (4.31), and posit

mn = E [Xn] Vn =
√
σ2
1 + · · ·+ σ2

n

If it exists a δ > 0 such that (Lyapunov conditions)

1

V 2+δ
n

n∑
k=1

E
[
|Xk −mk|2+δ

] n−→ 0

then it is
S∗
n

d−→ N(0, 1)

Proof: Omitted15 �

15A.N. Shiryaev, Probability, Springer (New York, 1996)
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4.5 Poisson theorems

In the old binomial formulations of the Gaussian Theorems (see for instance the Local
Limit Theorem in the Appendix F) the proof of the convergence toward a normal law
resulted from the approximation of the values of a binomial distribution by means of
Gaussian functions, but – because of the structural differences between the discrete
and the ac’s laws – such an approximation was increasingly inaccurate as you moved
away from the center toward the tails of the distributions at issue. This predicament is
especially conspicuous when p is near either to 0, or to 1. A Gaussian function is indeed
perfectly symmetric around its center, while a binomial distribution shows the same
feature only when p = 1/2 : if instead p departs from 1/2 getting closer either to 0 or to
1 such a symmetry is lost. In these cases it is not reasonable to expect that a normal
curve be a good approximation of a binomial distribution, except in the immediate
vicinity of its maximum. These remarks suggest looking for a different asymptotic (for
n → ∞) approximation of the binomial distribution when p is close either to 0 or to 1.
To discuss particular problems, on the other hand, we will be often obliged to produce
probabilistic models rather different from that of Bernoulli: more precisely we could
be required to suppose that the probability p has nor the same value for every n, and
in particular that p(n) → 0 for n → ∞, as we will see in the subsequent example

Exemple 4.29. Random instants: Suppose that a call center receives, at random
times, phone calls with an average number proportional to the width of the time interval,
and that in particular an average number λ = 1.5 of calls arrive every minute: namely
an average of 90 calls per hour. If then S is the rv counting the random number of calls
in an interval T = 3 minutes, we ask what is the distribution of S. To this end remark
first that S takes unbounded integer values k = 0, 1, . . ., namely the set of its possible
values is N ∪ {0}. We then set up the following approximation procedure: since we
have an average of λ = 1.5 calls per minute, we start by dividing T in a number n of
equal sub-intervals small enough to find no more than 1 call in average. For example
with n = 9 the average number of calls in every sub-interval is

λT

n
= 1.5× 3

9
=

1

2

so that as a first approximation we can assume that there is no more than 1 random
call per sub-interval. We then have a first model with n = 9 independent trials checking
whether in every sub-interval a phone call is found or not: we can define 9 Bernoulli
rv ’s X

(9)
j (j = 1, . . . , 9) taking value 1 if there is a call in the jth sub-interval, and 0

if there is none. Since apparently X
(9)
j ∼ B (1; p) and E

[
X

(9)
j

]
= 1/2, from (3.27) we

also find that p = p(9) = 1/2. As a consequence the rv S9 = X
(9)
1 + . . . + X

(9)
9 – our

approximation for the number of calls in T – will be binomial B (9; 1/2), namely

P {S9 = k} =

(
9

k

)(
1

2

)k (
1

2

)9−k

=

(
9

k

)(
1

2

)9

k = 0, 1, . . . , 9
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The drawback of this first approximation is of course the hypothesis that in every sub-
interval no more than 1 call can be found: we indeed approximated a rv S taking infinite
values, with a rv S9 ∼ B (9; 1/2) taking only 10 values. This however also suggests how
to improve the approximation: if the number n of the sub-intervals grows, we have at
once rv’s Sn with a growing number of possible values, and – by making ever smaller
the width of the sub-intervals – a growing probability of finding no more than 1 call per
interval. By taking for instance n = 18 sub-intervals we get

p(18) =
λT

n
= 1.5× 3

18
=

1

4

so that S18 ∼ B (18; 1/4), that is

P {S18 = k} =

(
18

k

)(
1

4

)k (
3

4

)18−k

k = 0, 1, . . . , 18

We can then continue to improve the approximation taking ever larger n, so that

p(n) =
λT

n
= 1.5× 3

n

n−→ 0 np(n) = λT = α, ∀n ∈ N

and we must ask now to what limit distribution tends (for n → ∞) the sequence of
binomial laws B (n; p(n))

pn(k) = P {Sn = k} =

(
n

k

)
p(n)k

(
1− p(n)

)n−k
(4.32)

The answer is in the following theorem that we will give first in its classical, binomial
form16 before presenting it also its more up-to-date versions

Theorem 4.30. Poisson theorem for binomial rv’s: Take a sequence of binomial
rv’s binomiali Sn ∼ B (n; p(n)) as in in (4.32): if it exists a number α > 0 such that

p(n) → 0 q(n) = 1− p(n) → 1 np(n) → α n → ∞

then Sn converges in distribution to the Poisson law P(α), that is

Sn
d−→ P(α) namely lim

n
pn(k) =

αk e−α

k!
, k = 0, 1, . . .

Proof: Since for every α > 0, from a certain n onward we have α/n < 1, starting from
there our hypotheses empower us to write

p(n) =
α

n
+ o(n−1)

16S.D. Poisson, Recherches sur la Probabilité des Jugements en Matière Criminelle
et en Matière Civile, Bachelier (Paris, 1837)
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so that for k = 0, 1, . . . , n we will get

pn(k) =
n(n− 1) . . . (n− k + 1)

k!

[α
n
+ o(n−1)

]k [
1− α

n
+ o(n−1)

]n−k

From a well known limit result we then have

n(n− 1) . . . (n− k + 1)
[α
n
+ o(n−1)

]k
=

n(n− 1) . . . (n− k + 1)

nk
[α + o(1)]k

=

(
1− 1

n

)
. . .

(
1− k − 1

n

)
[α + o(1)]k

n−→ αk

[
1− α

n
+ o(n−1)

]n−k

=
[
1− α

n
+ o(n−1)

]n [
1− α

n
+ o(n−1)

]−k n−→ e−α

and hence we easily find the result �

Theorem 4.31. Poisson theorem for multinomial r-vec’s: Take a sequence of
multinomial r-vec’s Sn = (X1, . . . , Xr) ∼ B (n; p1, . . . , pr) with

P {X1 = k1, . . . , Xr = kr} =
n!

k0!k1! . . . kr!
pk00 pk11 . . . pkrr

{
p0 + p1 + . . .+ pr = 1
k0 + k1 + . . .+ kr = n

If for j = 1, . . . , r and n → ∞ there exist αj > 0 such that

pj = pj(n) → 0 p0 = p0(n) → 1 npj(n) → αj

then we have
Sn = (X1, . . . , Xr)

d−→ P(α1) · . . . ·P(αr).

Proof: Omitted: the proof is lengthier, bus similar to that of the Theorem 4.30 �

The Theorem 4.30 has been proved by making explicit use of the properties of the
binomial laws resulting from the sum of iid Bernoulli rv ’s. It can however be generalized
to the sums of Bernoulli rv ’s independent but not identically distributed : in this case
the sums are no longer binomial and the previous proof cannot be adopted. To fix the
ideas suppose to have a sequence of experiments, and for every n to have n independent

Bernoulli rv ’s X
(n)
1 , . . . , X

(n)
n with X

(n)
k ∼ B

(
1; p

(n)
k

)
, i.e.

P {X(n)
k = 1} = p

(n)
k P {X(n)

k = 0} = q
(n)
k p

(n)
k + q

(n)
k = 1 k = 1, . . . , n

The sum Sn = X
(n)
1 + · · ·+X

(n)
n will take then integer values from 0 to n, but in general

it will not be binomial because the summands are not identically distributed. We will
have indeed that

• for every fixed k: the p
(n)
k depend on n and hence the rv ’sX

(n)
k change distribution

according to n; in other words going from n to n + 1 the rv ’s at a place k are
updated
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• for every fixed n: the X
(n)
k are not identically distributed, so that Sn is not

binomial

In short we will have a triangular scheme of the type

X
(1)
1 p

(1)
1

X
(2)
1 , X

(2)
2 p

(2)
1 , p

(2)
2

...
...

X
(n)
1 , . . . , X

(n)
n p

(n)
1 , . . . , p

(n)
n

...
...

The X
(n)
k in every row are independent but not identically distributed; along the

columns instead the p
(n)
k (to wit the laws) change in general with n. The next theorem

fixes the conditions to allow the new Sn to converge again in distribution toward P(α)

Theorem 4.32. For every n ∈ N and k = 1, . . . , n take the independent rv’s X
(n)
k

with
P
{
X

(n)
k = 1

}
= p

(n)
k P

{
X

(n)
k = 0

}
= q

(n)
k p

(n)
k + q

(n)
k = 1

and posit Sn = X
(n)
1 + · · ·+X

(n)
n : if

max
1≤k≤n

p
(n)
k

n−→ 0
n∑

k=1

p
(n)
k

n−→ α > 0

then we have
Sn

d−→ P(α)

Proof: From the independence of the X
(n)
k , and recalling (4.7), we have

φSn(u) = E
[
eiuSn

]
=

n∏
k=1

[
p
(n)
k eiu + q

(n)
k

]
=

n∏
k=1

[
1 + p

(n)
k (eiu − 1)

]
Since by hypothesis p

(n)
k

n−→ 0, from the series expansion of the logarithm we have

lnφSn(u) =
n∑

k=1

ln
[
1 + p

(n)
k (eiu − 1)

]
=

n∑
k=1

[
p
(n)
k (eiu − 1) + o(p

(n)
k )
] n−→ α(eiu − 1)

and given the continuity of the logarithm

φSn(u)
n−→ eα(e

iu−1)

Recalling then (4.9), from the Theorem 4.16 we find Sn
d−→ P(α). �
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Theorem 4.33. If S ∼ P(α) is a Poisson rv, then

S∗ =
S − α√

α

d−→ N(0, 1) α → +∞

Proof: If φα is the chf of S∗, from (4.9) and from the series expansion of an exponential
we find for α → +∞

φα(u) = E
[
eiuS

∗]
= e−iu

√
αE
[
eiuS/

√
α
]

= exp
[
−iu

√
α+ α

(
eiu/

√
α − 1

)]
= exp

[
−iu

√
α− α + α

(
1 +

iu√
α
− u2

2α
+ o

(
1

α

))]
→ e−u2/2

The result follows then from the Theorem 4.16. �

4.6 Where the classical limit theorems fail

The results presented in this chapter are also known on the whole as the classical
limit theorems and are rather general statements about the limit behavior of sums of
independent rv ’s, but we must not misread them by supposing that they can be applied
in a totally indiscriminate manner. In particular we should be careful in checking their
hypotheses, chiefly that about the required momentsE [Xn] andE [X2

n]. To this end we
will briefly discuss an example showing that problems can arise even in fairly ordinary
contexts

Exemple 4.34. Let us suppose, as in the Figure 4.3, that a light beam from a source
in A hit a mirror in C at a distance a free to wobble around a stud. The mirror
position is taken at random in the sense that the reflection angle Θ is a uniform rv
with distribution U

(
−π

2
, π
2

)
. If now X = a tanΘ is the distance from A of the point B

where the reflected beam hit back the wall, it is easy to show that X follows a Cauchy
law C(a, 0): we have indeed

fΘ(θ) =

{
1/π if |θ| ≤ π/2
0 if |θ| > π/2

while X results from Θ through the function x = g(θ) = a tan θ monotonic on (−π/2,
π/2).

As a consequence, with

θ1(x) = g−1(x) = arctan
x

a
θ′1(x) =

a

a2 + x2

the transformation rule (3.60) entails that the law of X is the Cauchy C(a, 0) with pdf

fX(x) = fΘ
(
θ1(x)

)
|θ′1(x)| =

1

π

a

a2 + x2
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X

Q

a

A B

C

Figure 4.3: How to produce a Cauchy rv

because fΘ takes the constant value 1/π in
[
− π/2,

π/2
]
, while apparently θ1(x) ∈(

− π/2,
π/2
)
. This simple example shows that a Cauchy law can turn up in a natu-

ral way in realistic contexts, even if – as we are going to prove below – its behavior
stands apart from that expected according to the limit theorems

Let us suppose, indeed, to replicate a large number of independent measurements
of X to get a sequence (Xn)n∈N of iid Cauchy rv’s with law C(a, 0). From (4.16) we
know that their chf is

φ(u) = E
[
eiuXn

]
= e−a|u|

so that, with Sn = X1 + · · ·+Xn, the chf of the average Sn/n for every n is

φn(u) = E
[
eiu

Sn
n

]
= E

[
n∏

k=0

eiu
Xk
n

]
=
[
φ
(u
n

)]n
=
(
e−

a|u|
n

)n
= e−a|u| = φ(u)

We then (trivially) have that

φn(u)
n−→ φ(u) ∀u ∈ R

and hence from the Lévy Theorem 4.16 it follows that

Sn

n

d−→ X ∼ C(a, 0)

In other words we in no way find the degenerate convergence required by the Law of
Large Numbers, and we recover instead a convergence in distribution toward the initial
Cauchy law. It is easy to see, moreover, that for every numerical sequence λn we find
anyways λnSn ∼ C(nλna, 0), so that under no circumstances sums of iid Cauchy rv’s
seem to show a bent to converge toward Gaussian laws as required by the Gaussian
Theorems

128



4.6 Where the classical limit theorems fail

The previous discussion shows that our counterexample is indeed outside the jurisdic-
tion of the classical limit theorems: a comprehensive discussion of this point would
be beyond the boundaries of these lectures, and we will only briefly raise again this
point later (see Section 7.1.3) while trying to characterize the class of all the possible
limit laws of sums of independent rv ’s. We will conclude this section, however, by
just remarking that the seemingly anomalous behavior of the Cauchy rv ’s in the Ex-
ample 4.34 is essentially due to their non-compliance with the hypotheses of the
classical limit theorems. As already remarked in the Example 3.25, the expectation
of a Cauchy rv X ∼ C(a, 0) is not defined, while the existence of E [X] (in the sense
of the Lebesgue integral) is a mandatory requirement that plays a crucial role in the
proofs of both the Gaussian Theorems and the Laws of Large Numbers
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Stochastic Processes
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Chapter 5

Generalities

The notion of sp X(t) = X(ω; t) on a probability space (Ω,F ,P ) with t > 0 has already
been introduced in the Section 3.2 where we pointed out that it can be considered from
two complementary standpoints:

• as an application that to every given t > 0 associates a rv X(ω; t) = X(t) that
represent the state of the system at the time t; in this sense the sp is a family of
rv ’s parametrized by t;

• as an application that to every given ω ∈ Ω associates a whole trajectory (sample)
X(ω; t) = x(t) of the process; in this second sense the sp consists of the set of all
its possible trajectories

These two perspectives are essentially equivalent and are adopted according to the
needs. It will be expedient to remark immediately, however, that t is here considered as
a time just to fix ideas: every family of rv ’s X(α) classified by one or more parameters
α is a sp: the instinctual view that the parameter t is a time originates only from the
routine examples used to present this notion. As a rule our sp’s will be defined for
t ≥ 0, but the possibility of t ∈ R is not excluded. As we will see later, moreover, a sp
can have more than one component: X(t) =

(
X1(t), . . . , XM(t)

)
, but for simplicity’s

sake we will initially confine ourselves just to the case M = 1. In the following we will
also look at the increments X(s) − X(t) of X(t) on an interval [t, s], taking often
advantage of the notation ∆X(t) = X(t+∆t)−X(t) with ∆t = s− t > 0, and at the
increment process ∆X(t) with varying t and a fixed ∆t > 0

5.1 Identification and Law of a sp

As we know, to every sp it is possible to associate a hierarchy of finite dimensional
laws that – as stated in the Kolmogorov Theorem 2.37 – uniquely determine the global
law of the sp: given a finite number n of arbitrary instants t1, . . . , tn, consider all
the joint laws of the r-vec’s (X(t1), . . . , X(tn)) that can be represented through either

133



N. Cufaro Petroni: Probability and Processes

their cdf ’s or their chf ’s

F (x1, t1; . . . ; xn, tn) φ(u1, t1; . . . ;un, tn)

In the following, however, we will also use either their discrete distributions (usually
with integer values k, ℓ . . .), or – when ac– their pdf ’s respectively with the notations

p(k1, t1; . . . ; kn, tn) f(x1, t1; . . . ; xn, tn)

Taken then in the same way m other instants s1, . . . , sm, we can also introduce the
conditional cdf ’s, probabilities and pdf ’s according to the notations of Section 3.4.1

F (x1, t1; . . . ;xn, tn| y1, s1; . . . ; ym, sm) = P {X(t1) ≤ x1 . . . |X(s1) = y1 . . .}

p(k1, t1; . . . ; kn, tn| ℓ1, s1; . . . ; ℓm, sm) =
p(k1, t1; . . . ; kn, tn; ℓ1, s1; . . . ; ℓm, sm)

p(ℓ1, s1; . . . ; ℓm, sm)

f(x1, t1; . . . ;xn, tn| y1, s1; . . . ; ym, sm) =
f(x1, t1; . . . ;xn, tn; y1, s1; . . . ; ym, sm)

f(y1, s1; . . . ; ym, sm)

For the time being the ordering of the ti, sj is immaterial, but it is usually supposed
that

tn ≥ . . . ≥ t1 ≥ sm ≥ . . . ≥ s1 ≥ 0

In particular we will call transition pdf ’s and probabilities the two-instant condi-
tional pdf ’s and probabilities f(x, t|y, s) and p(k, t|ℓ, s)

We can now go on to define in what sense we can speak of equality of two sp’s
X(t) and Y (t):

1. X(t) and Y (t) are said to be indistinguishable (or even identical P -a.s.) if all the
trajectories coincide for every t, with the possible exception of a negligible set of
them, namely if

P {X(t) = Y (t), ∀t > 0} = 1

2. X(t) e Y (t) are said to be equivalent (and we also say that X(t) is a modification
of Y (t) and viceversa) if instead for every given t the states of the processes
coincide P -a.s., namely if

P {X(t) = Y (t)} = 1, ∀t > 0

3. X(t) and Y (t) are said to be wide sense equivalent, or even equal in distribution
if all their finite dimensional joint laws (and hence their global laws) coincide0

These three definitions are rather different: it is easy to see for instance that two
indistinguishable processes are also equivalent, but the reverse does not hold. Taken
indeed

Nt = {X(t) = Y (t)} t > 0

N = {X(t) = Y (t), ∀t > 0} =
∪
t>0

Nt
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the indistinguishability requires P {N} = 0, and hence entails P {Nt} = 0, ∀t >
0, namely leads to the equivalence. The simple equivalence, however, only requires
P {Nt} = 0, ∀t > 0, and that is not enough to have also P {N} = P {

∪
Nt} = 0

because the set of the instants t > 0 is uncountable. In the same way it is possible to
show that equivalent sp’s also have the same finite dimensional joint distributions, but
the reverse does not hold in general

As already mentioned, the Kolmogorov Theorem 2.37 guarantees that the knowl-
edge of the whole family of consistent finite dimensional pdf ’s (let us suppose that our
sp is ac) is enough to determine a probability measure on the whole space

(
RT , B(RT )

)
with T = [0,+∞). We however also remarked in the point 4 of the Example 1.7 that
B(RT ) is not large enough for our needs: statements as the process is continuous in
a given instant, for instance, require trajectories subsets that have no place in such a
σ-algebra. We need then an extension of this probability space: without going into
technical details, we will only recall here that this extension is always possible in an
unambiguous way if our sp enjoys a property called separability1, that we will refrain
here from defining exactly. In this case in fact the finite dimensional pdf ’s determine a
probability measure extendable to all the trajectory subsets of practical interest, and
what is more the required property is more a formal than a substantial limitation in
the light of the following general result

Theorem 5.1. It is always possible to find a separable modification of a given sp: in
other words, every sp is equivalent to some other separable sp

Proof: Omitted2 �

We will therefore always be able to behave as if all our sp’s are separable, and hence
to suppose that the knowledge of all the finite dimensional pdf ’s coherently determines
the probability measure on a suitable trajectory space encompassing all the required
events

By generalizing the notion of a canonical rv presented in the Section 3.1.3, we will
also say that, given – through a consistent family of joint finite dimensional laws – a
probability P on a set

(
RT , B(RT )

)
of trajectories, it will always be possible to find

a sp having exactly P as its global law

Definition 5.2. Given a probability P on the space
(
RT , B(RT )

)
of the trajecto-

ries, we will call canonical process the sp X(t) defined as the identical map from(
RT ,B(RT ),P

)
to
(
RT , B(RT )

)
, whose distribution will coincide with the given P

These remarks explain why the sp’s (as for the rv ’s) are essentially classified through
their laws, even if to a given distribution can be associated many different sp’s sharing
only their global law: here you are an important class of sp’s

1J.L. Doob, Stochastic Processes, Wiley (New York, 1953)
2J.L. Doob, Stochastic Processes, Wiley (New York, 1953)
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Definition 5.3. We will say that X(t) is a Gaussian process when, however taken
t1, t2, . . . , tn with n = 0, 1, . . ., it is (X(t1), . . . , X(tn)) ∼ N (b,A) where b and A are
mean vectors and covariance matrices dependent on t1, t2, . . . , tn

5.2 Expectations and correlations

A great deal of information about a sp X(t) (with only one component for the time
being) can be retrieved looking just to the expectations (when they exist) in one or
more time instants, without providing all the details about the finite dimensional dis-
tributions. First it is expedient to introduce the expectation and the variance of a
sp in every t:

m(t) = E [X(t)] σ2(t) = V [X(t)] (5.1)

Then the second order moments accounting for the correlations among the values of a
sp in several time instants: to this end we define first the autocorrelation of the sp
X(t) as the function (symmetric in its two arguments)

R(s, t) = R(t, s) = E [X(s)X(t)] (5.2)

We must remark at once, however, that the word correlation is used here with a
slightly different meaning w.r.t. what was done for two rv ’s. We will in fact define also
an autocovariance and a correlation coefficient of X(t) respectively as

C(s, t) = cov [X(s), X(t)] = R(s, t)−m(s)m(t) (5.3)

ρ(s, t) = ρ [X(s), X(t)] =
C(s, t)

σ(s)σ(t)
(5.4)

also noting that the autocovariance C(s, t) includes the variance of the process because
apparently

V [X(t)] = σ2(t) = C(t, t) (5.5)

We will finally say that a sp is centered when

m(t) = 0 R(s, t) = C(s, t)

It is easy to see then that, given an arbitrary sp X(t), the process

X̃(t) = X(t)−m(t) = X(t)−E [X(t)]

always turns out to be centered. The knowledge of the one- and two-times functions
m(t), R(s, t), C(s, t) and ρ(s, t), albeit in general not exhaustive of the information
pertaining to a sp, allows nonetheless to retrieve a fairly precise idea of its behavior,
and in particular cases even a complete account of the process distribution
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5.3 Convergence and continuity

The types of convergence for sequences of rv ’s (Xn)n∈N presented in the Definition 4.1
can now be immediately extended to the sp’s in order to define the convergence of X(t)
toward some rv X0 for t → t0. For instance the mean square convergence (ms)

X(t)
ms−→ X0 t → t0 or else lim

t→t0
-ms X(t) = X0

will be defined as
lim
t→t0

E
[
|X(t)−X0|2

]
= 0 (5.6)

In the same way we can introduce the convergences P -a.s., in probability, in Lp and in
distribution with the same mutual relations listed in the Theorem 4.4 for the sequences,
and it is moreover possible to prove that the respective Cauchy convergence tests
hold. It will be expedient finally to introduce a further notion: the convergence of a
whole sequence of processes toward another process

Definition 5.4. We will say that a sequence of processes {Xn(t)}n∈N converges
in distribution toward the process X(t) when, with k = 1, 2, . . ., all the k-dimensional,
joint distributions of the r-vec’s (Xn(t1), . . . , Xn(tk)) weakly converge toward the cor-
responding distributions of the r-vec’s (X(t1), . . . , X(tk))

We are able now to introduce several notions of process continuity according to the
adopted kind of convergence. It is important to make clear however that in this case
we will be also obliged to discriminate between the continuity in a given, arbitrary
instant t, and the global continuity of the process trajectories in every t

Definition 5.5. Given a sp X(t) with t ≥ 0 on (Ω,F ,P ) we will say that it is

• continuous P -a.s., in probability, in Lp or in distribution when in every
arbitrary, fixed t ≥ 0, and for s → t it turns out that X(s) → X(t) P -a.s., in
probability, in Lp or in distribution respectively; a sp continuous in probability is
also said stochastically continuous;

• sample continuous when almost every trajectory is continuous in every t ≥ 0,
that is if

P {ω ∈ Ω : x(t) = X(t;ω) is continuous ∀t ≥ 0} = 1

The sample continuity of the second point must not be misinterpreted as the P -a.s.
continuity of the previous point: a sp is P -a.s. continuous if every instant t is almost
surely a continuity point; it turns instead to be sample continuous if the set of the
trajectories that are not continuous even in a single point t has zero probability. All
these different varieties of continuity are not equivalent, but comply rather with the
same kind of implications listed in the Theorem 4.4 for the sequences of rv ’s. In
particular the continuity in L2 (in ms) is sufficient to entail the stochastic continuity.
It is then useful to remark that the ms continuity can be scrutinized by looking at
the continuity properties of the autocorrelation functions as stated in the following
proposition
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Proposition 5.6. A sp X(t) is continuous in ms – and hence is stochastically con-
tinuous – iff the autocorrelation R(s, t) is continuous for s = t

Proof: Since it is

E
[
|X(s)−X(t)|2

]
= E

[
X2(s)

]
+E

[
X2(t)

]
− 2E [X(s)X(t)]

= R(t, t) +R(s, s)− 2R(s, t)

by definition and from (5.6) we find that the ms continuity in t is equivalent to the
continuity of R(s, t) in s = t �

The conditions for the sample continuity of a Markov process will be subsequently
presented in the Section 7.1.7; here it will be enough to add only that the sample
continuity apparently entails all the other types of continuity listed above

5.4 Differentiation and integration in ms

Even the integration and differentiation of a sp require suitable limit procedures and
must then be defined according to the adopted type of convergence. In the subsequent
chapters we will go in further details about these topics, and here we will begin by
confining ourselves to look just to the ms convergence (entailing anyhow also that in
probability). First, according to our definitions, a sp X(t) will be differentiable in
ms if it exists another process Ẋ(t) such that for every t ≥ 0

X(t+∆t)−X(t)

∆t

ms−→ Ẋ(t) ∆t → 0

that is if

lim
∆t→0

E

[∣∣∣∣X(t+∆t)−X(t)

∆t
− Ẋ(t)

∣∣∣∣2
]
= 0 (5.7)

We can then show that, as for the ms continuity, also the ms differentiability can be
verified by looking at the properties of the process autocorrelation:

Proposition 5.7. A sp X(t) is ms differentiable in t, iff the second mixed derivative
R1,1 = ∂s∂tR of its autocorrelation R(s, t) exists in s = t. In this case we also have

E
[
Ẋ(t)

]
= ṁ(t)

Proof: By applying the Cauchy convergence test to the limit (5.7), the ms differen-
tiability in t requires

lim
∆s,∆t→0

E

[∣∣∣∣X(t+∆s)−X(t)

∆s
− X(t+∆t)−X(t)

∆t

∣∣∣∣2
]
= 0
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Since on the other hand, when the limits exist, we have

lim
∆s,∆t→0

E

[
X(t+∆t)−X(t)

∆t

X(t+∆s)−X(t)

∆s

]
= lim

∆s,∆t→0

R(t+∆s, t+∆t)−R(t+∆s, t)−R(t, t+∆t) +R(t, t)

∆t∆s
= R1,1(t, t)

lim
∆t→0

E

[∣∣∣∣X(t+∆t)−X(t)

∆t

∣∣∣∣2
]
= lim

∆s→0
E

[∣∣∣∣X(t+∆s)−X(t)

∆s

∣∣∣∣2
]

= lim
∆t→0

R(t+∆t, t+∆t)−R(t+∆t, t)−R(t, t+∆t) +R(t, t)

∆t2

= R1,1(t, t)

the Cauchy test is met, and Ẋ(t) exists, iff the derivative R1,1(t, t) exists because in
this case

lim
∆s,∆t→0

E

[∣∣∣∣X(t+∆s)−X(t)

∆s
− X(t+∆t)−X(t)

∆t

∣∣∣∣2
]

= R1,1(t, t)− 2R1,1(t, t) +R1,1(t, t) = 0

That also E
[
Ẋ(t)

]
= ṁ(t) holds is finally proved by checking the conditions to ex-

change limits and expectations �

As for the stochastic integrals, that will be discussed in more detail in the Section 8.2,
here we will just look at those of the type∫ b

a

X(t) dt (5.8)

that at any rate – if they can be established in some suitable sense – apparently define a
new rv. For the time being we will take them as defined through a Riemann procedure
by looking at their convergence in ms, by postponing to a subsequent chapter a more
detailed discussion of the stochastic integration in general. Taken to this end a partition
of [a, b] in intervals of width ∆tj, the arbitrary points τj belonging to every jth interval,
and δ = max{∆tj}, we will say that the integral (5.8) exists in ms if it exists the limit

lim
δ→0

-ms
∑
j

X(τj)∆tj (5.9)

and its value is independent from the choice of the point τj inside the decomposition
intervals

Proposition 5.8. The integral (5.8) exists in ms iff the autocorrelation R(s, t) of
X(t) is integrable, that is ∣∣∣∣∫ b

a

∫ b

a

R(s, t) ds dt

∣∣∣∣ < +∞
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In this case we also have∫ b

a

∫ b

a

R(s, t) ds dt = E

[∣∣∣∣∫ b

a

X(t) dt

∣∣∣∣2
]
≥ 0 (5.10)

Proof: According to the Cauchy convergence test the limit (5.9) exists if

lim
γ,δ→0

E

∣∣∣∣∣∑
j

X(ρj)∆sj −
∑
k

X(τk)∆tk

∣∣∣∣∣
2
 = 0

Since on the other hand, when the limits exist, we have

lim
γ,δ→0

E

[∑
j

X(ρj)∆sj ·
∑
k

X(τk)∆tk

]
= lim

γ,δ→0

∑
j.k

R(ρj, τk)∆sj∆tk

=

∫ b

a

∫ b

a

R(s, t) ds dt

lim
γ→0

E

[∑
j

X(ρj)∆sj ·
∑
i

X(ρi)∆si

]
= lim

δ→0
E

[∑
ℓ

X(τℓ)∆tℓ ·
∑
k

X(τk)∆tk

]
= lim

δ→0

∑
ℓ.k

R(τℓ, τk)∆tℓ∆tk

=

∫ b

a

∫ b

a

R(s, t) ds dt

again the ms integrability of X(t) coincides with the integrability of R(s, t). The
result (5.10) is then proved by checking the conditions to exchange limits and expec-
tations �

5.5 Stationarity and ergodicity

Definition 5.9. We will say that X(t) is a stationary process (strict-sense) when
however taken s ∈ R the two sp’s X(t) and X(t+ s) are equal in distribution. We will
instead say that the process has stationary increments when, for a given ∆t > 0,
it is

∆X(t)
d
= ∆X(s) ∀ s, t ∈ R

In other words, the global law of a stationary process must be invariant under arbitrary
changes in the origin of the times, namely (if the process is ac) for every n, and for
every choice of t1, . . . , tn and s we must find

f(x1, t1; . . . ;xn, tn) = f(x1, t1 + s; . . . ; xn, tn + s) (5.11)
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In particular from (5.11) it follows first that the one-time pdf of a stationary process
must be constant in time, and second that its joint, two-times pdf must depend only
on the time differences, that is:

f(x, t) = f(x) (5.12)

f(x1, t1; x2, t2) = f(x1, x2; τ) τ = t2 − t1 (5.13)

Remark on the other hand that the stationarity of the increments ∆X(t) only requires
that their laws depend in fact on ∆t, but not on t: this does not imply the stationarity
of the increment process (that would require conditions also on the joint laws of the
increments), even less that of the process X(t) itself. Conversely the stationarity of
a process X(t) entails the stationarity of the increments as stated in the following
proposition

Proposition 5.10. A stationary process X(t) has stationary increments ∆X(t)

Proof: We have indeed for the cdf of the increments ∆X(t) of width τ

F∆X(x, t) = P {∆X(t) ≤ x} = E [P {∆X(t) ≤ x |X(t)} ]

=

∫
P {X(t+ τ)−X(t) ≤ x |X(t) = y} f(y) dy

=

∫
P {X(t+ τ) ≤ x+ y |X(t) = y} f(y) dy

=

∫
F (x+ y, t+ τ | y, t)f(y) dy

so that differentiating and taking (5.13) in to account we get the pdf

f∆X(x) =

∫
f(x+ y, t+ τ | y, t)f(y) dy =

∫
f(x+ y, y; τ) dy (5.14)

that depends only on τ while being independent from t: namely the increments are
stationary �

The expectation and the variance of a stationary process are patently constant, while
the autocorrelation depends only on the time difference, that is

E [X(t)] = m E [X(t)X(t+ τ)] = R(τ) ∀ t ≥ 0 (5.15)

C(τ) = R(τ)−m2 σ2(t) = σ2 = C(0) = R(0)−m2 ρ(τ) =
R(τ)−m2

R(0)−m2

and moreover, given the symmetry of R(s, t) in its two arguments, the function R(τ)
will turn out to be even. Remark however that, while the relations (5.15) are always
true for a stationary process, the reverse does not hold: the conditions (5.15) alone
are not enough to entail the (strict-sense) stationarity of the Definition 5.9. Given
nevertheless their importance, when a process meets at least the conditions (5.15) it is
usually said to be wide-sense stationary .
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Proposition 5.11. A wide-sense stationary process X(t) with autocorrelation R(τ)
turns out to be (1) ms-continuous if R(τ) is continuous in τ = 0; (2) ms-differentiable
if the second derivative R′′(τ) exists in τ = 0; and (3) ms-integrable on [−T, T ] if∫ 2T

−2T

(2T − |τ |)R(τ) dτ < +∞

The abridged conditions for generic, non symmetric integration limits [a, b] are more
involved and will be left aside

Proof: These results are corollaries of the Propositions 5.6, 5.7 and 5.8. As for the
integrability condition it follows from the Proposition 5.8 with a change of variables
and an elementary integration according to a procedure that will be employed in the
proof of the subsequent Theorem 5.12 �

For a stationary process it seems reasonable – as a sort of extension of the Law of
Large Numbers – to surmise that its expectations could be replaced with some kind
of limit on time averages along the trajectories. When this actually happens we say
that the process is – in some suitable sense to be specified – ergodic. We will survey
now the conditions sufficient to entail the ergodicity for the expectations and the
autocorrelations of a wide-sense stationary process. To this end we preliminarily
define, for an arbitrary T > 0, the rv ’s

XT =
1

2T

∫ T

−T

X(t) dt RT (τ) =
1

T

∫ T

0

X(t)X(t+ τ) dt

namely the time averages of both the sp and its autocorrelation as first introduced by
da G.I. Taylor in 1920, and for further convenience the function

r(τ, σ) = E [X(t+ σ + τ)X(t+ σ)X(t+ τ)X(t)]−R2(t)

Theorem 5.12. For a wide-sense stationary sp X(t) we find

lim
T→∞

-ms XT = m lim
T→∞

-ms RT (τ) = R(τ) (5.16)

when the following conditions are respectively met

lim
T→∞

1

T

∫ 2T

−2T

(
1− |τ |

2T

)
C(τ) dτ = 0 (5.17)

lim
T→∞

1

T

∫ 2T

−2T

(
1− |σ|

2T

)
r(τ, σ) dσ = 0 (5.18)

We say then that the sp is expectation and autocorrelation ergodic

Proof: To prove the degenerate ms-limits (5.16) we can adopt the tests (4.1) from the
Theorem 4.6 that for the expectation ergodicity read

lim
T→∞

E
[
XT

]
= m lim

T→∞
V
[
XT

]
= 0 (5.19)
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Neglecting once more to check that we can exchange expectations and integrations, the
first condition in (5.19) is trivially fulfilled because for every T > 0 it is

E
[
XT

]
=

1

2T

∫ T

−T

E [X(t)] dt =
m

2T

∫ T

−T

dt = m

As for the second condition (5.19) we remark that

V
[
XT

]
= E

[
X

2

T

]
−E

[
XT

]2
=

1

4T 2
E

[∫ T

−T

∫ T

−T

X(s)X(t) dsdt

]
−m2

=
1

4T 2

∫ T

−T

∫ T

−T

[
R(t− s)−m2

]
dsdt =

1

4T 2

∫∫
D

C(t− s) dsdt

and that with the following change of integration variables (see Figura 5.1)

τ = t− s σ = s |J | = 1 (5.20)

we have

V
[
XT

]
=

1

4T 2

∫∫
D

C(t− s) dsdt =
1

4T 2

∫∫
∆

C(τ) dσdτ

=
1

4T 2

[∫ 0

−2T

dτ C(τ)

∫ T

−T−τ

dσ +

∫ 2T

0

dτ C(τ)

∫ T−τ

−T

dσ

]
=

1

4T 2

[∫ 0

−2T

C(τ)(2T + τ) dτ +

∫ 2T

0

C(τ)(2T − τ) dτ

]
=

1

2T

∫ 2T

−2T

C(τ)

(
1− |τ |

2T

)
dτ

and hence the second relation in (5.19) holds if the hypothesis (5.17) is met. We leave
aside instead the similar explicit proof of the autocorrelation ergodicity �

Corollary 5.13. A wide-sense stationary sp X(t) is expectation and autocorrelation
ergodic if ∫ +∞

0

|C(τ)| dτ < +∞ (5.21)

Proof: Since it is ∣∣∣∣1− |τ |
2T

∣∣∣∣ ≤ 1 − 2T ≤ τ ≤ 2T

and C(τ) is an even function we easily find∣∣∣∣ 1T
∫ 2T

−2T

(
1− |τ |

2T

)
C(τ) dτ

∣∣∣∣ ≤ 1

T

∫ 2T

−2T

|C(τ)| dτ =
2

T

∫ 2T

0

|C(τ)| dτ

so that (5.17) is met if (5.21) holds. We leave aside instead the more lengthy proof for
the autocorrelation ergodicity �
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Figure 5.1: Transformation of the integration domain produced by the change of vari-
ables (5.20)

5.6 Power spectrum

We could hope of performing a frequency analysis of a sp X(t) (typically when X(t) is
a signal) simply by calculating the Fourier transform of its trajectories, but it is easy
to see that in general these sample functions are not square integrable on [0,+∞), so
that the transform can not be calculated in a direct way. We resort then first to a
truncated transform

X̂T (ϖ) =

∫ T

0

X(t)e−iϖtdt (5.22)

that exists for every T > 0 and formally is a new sp with parameter ϖ. Taking then
inspiration from the idea that the square modulus of a Fourier transform represents
the energetic share allotted to every component of the signal, we initially define the
power spectrum simply as

S(ϖ) = lim
T→∞

-ms
1

T

∣∣∣X̂T (ϖ)
∣∣∣2 (5.23)

The resulting S(ϖ) is in principle again a sp with parameter ϖ, and it is then a
remarkable result the fact that, for stationary and ergodic sp’s, S(ϖ) turns out instead
to be a deterministic (non random) function that can be calculated as the Fourier
transform of the process autocorrelation R(τ)
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5.6 Power spectrum

Theorem 5.14. Wiener-Khinchin Theorem: Take a stationary sp X(t): if it is
ergodic – in the sense that it fulfills the hypotheses of the Theorem 5.12 – then it turns
out that

S(ϖ) = lim
T→∞

-ms
1

T

∣∣∣X̂T (ϖ)
∣∣∣2 = ∫ +∞

−∞
R(τ) e−iϖτdτ (5.24)

Proof: The conditions imposed are sufficient to entail both the limit convergence and
the legitimacy of all the subsequent formal steps: we will not bother however to explic-
itly check these points, and we will rather confine ourselves to show how the result (5.24)
basically comes out from the Theorem 5.12. From the definitions (5.22) and (5.23),
and with the cange (5.20) of the integration variables, we first of all have

S(ϖ) = lim
T→∞

-ms
1

T

∫ T

0

∫ T

0

X(t)X(s)e−iϖ(t−s)dtds

= lim
T→∞

-ms
1

T

[∫ 0

−T

dτ

∫ T

−τ

dσe−iϖτX(σ)X(σ + τ)

+

∫ T

0

dτ

∫ T−τ

0

dσe−iϖτX(σ)X(σ + τ)

]
= lim

T→∞
-ms

1

T

∫ T

0

dτ

[
eiϖτ

∫ T

τ

X(σ)X(σ − τ) dσ

+e−iϖτ

∫ T−τ

0

X(σ)X(σ + τ) dσ

]

and since with a further change of variables (σ′ = σ − τ) it is∫ T

τ

X(σ)X(σ − τ) dσ =

∫ T−τ

0

X(σ′)X(σ′ + τ) dσ′

We finally get

S(ϖ) = lim
T→∞

-ms

∫ T

0

dτ cosϖτ
2

T

∫ T−τ

0

X(σ)X(σ + τ) dσ

To simplify the proof we will suppose now that the limit in point can be performed in
two subsequent distinct steps

S(ϖ) = lim
T→∞

∫ T

0

dτ cosϖτ lim
T ′→∞

-ms
2

T ′

∫ T ′−τ

0

X(σ)X(σ + τ) dσ

Going first to the limit T ′ → ∞, with an arbitrary τ fixed in [0, T ], we can take
advantage of the hypothesized autocovariance ergodicity (see the second limit (5.16)
in the Theorem 5.12) in order to find

S(ϖ) = lim
T→∞

2

∫ T

0

R(τ) cosϖτ dτ =

∫ +∞

−∞
R(τ) e−iϖτdτ
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where we also took into account the fact that R(τ) is a real, even function �

The practical relevance of this result has meant that over the years the propensity to
consider (5.24) as the very definition of power spectrum has prevailed, and its origin has
been completely neglected. We too we will conform to this almost universal standpoint
by adopting the following definition that can be applied to every wide-sense stationary
process

Definition 5.15. Given a wide-sense stationary process X(t) we call power spec-
trum the Fourier transform (when it exists) of its autocorrelation with the reciprocity
relations

S(ϖ) =

∫ +∞

−∞
R(τ) e−iϖτdτ R(τ) =

1

2π

∫ +∞

−∞
S(ϖ) eiϖτdϖ (5.25)

Remark that the ergodicity condition (5.21) requires that C(τ) vanishes for τ → ±∞,
namely that X(t) and X(t + τ) become uncorrelated for large separations τ . From
the definitions we then find R(τ) → m2 for τ → ±∞, and hence the Fourier trans-
form (5.25) does not exist if m ̸= 0. To elude this snag it is customary to give also a
second definition that resorts to the autocovariance C(τ) instead of the autocorrelation
R(τ)

Definition 5.16. Given a wide-sense stationary process X(t) we call covariance
spectrum the Fourier transform of its autocovariance with the reciprocity relations

Sc(ϖ) =

∫ +∞

−∞
C(τ) e−iϖτdτ C(τ) =

1

2π

∫ +∞

−∞
Sc(ϖ) eiϖτdϖ (5.26)
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Chapter 6

Heuristic definitions

6.1 Poisson process

At this stage of the presentation we will introduce the Poisson process by first explicitly
producing its trajectories, and then by analyzing its probabilistic properties. This
illuminating and informative procedure, however, can not be easily replicated for other
typical, non trivial processes whose trajectories, as we will see later, can only be defined
either as limits of suitable approximations or by adopting a more general standpoint

6.1.1 Point processes and renewals

Take at random some instants on a time axis, and look into the la rv enumerating
the points falling in an interval [s, t] of width ∆t = t − s > 0. In this formulation,
however, the question is rather hazy and careless: first it should be said what at random
means; then, if a point is taken at random (whatever this means, but for very special
situations) on an infinite axis the probability of falling into a finite interval [s, t] will
be zero; finally the number of points must be specified. To find suitable answers we
will follow a successive approximation procedure

Proposition 6.1. If on an infinite axis we cast at random (in a sense to be specified
later) an infinite number of independent points, and if their average number for unit
interval (intensity) is λ, the rv

N = number of points falling in an interval [s, t] of width ∆t = t− s

obeys to the Poisson distribution of parameter λ∆t, namely N ∼ P(λ∆t) and

P {N = k} = e−λ∆t (λ∆t)k

k!

The analogous rv’s N1 ∼ P(λ∆t1) and N2 ∼ P(λ∆t2) for non superposed intervals
are moreover independent
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Figure 6.1: Random instants taken on a finite interval
[
− τ

2
, τ
2

]

Proof: In a step-by-step approach we start with a finite interval [−τ/2, τ/2] with
τ > 0 including [s, t] (see Figure 6.1), and we cast n points at random in the sense that

• the position of a point in [−τ/2, τ/2] is a rv independent from the other points

• the distribution of this random position is uniform in [−τ/2, τ/2]

This precisely means that each of the n points will fall in [s, t] with a probability

p =
∆t

τ

and since the n throws are independent, the rv X = number of points falling in [s, t]
will be binomial B (n; p). The law of X apparently depends on the arbitrary values
of n and τ , and we will now drive both n and τ to the infinity, with constant ∆t,
requiring also that the ratio n/τ (number of points per unit interval) stay bounded
and converges toward a positive number λ; that is we will suppose that

n → ∞ τ → +∞ n

τ
→ λ > 0 (6.1)

p =
∆t

τ
→ 0 np =

n

τ
∆t → λ∆t (6.2)

With varying n and τ we then get a family of binomial rv ’s X ∼ B (n; p) that in the
limit (6.1) fulfil the conditions of the Poisson Theorem 4.30, and hence we will have
(in distribution)

X
d−→ N ∼ P(λ∆t)

In conclusion: if we throw on an unbounded time axis an infinite number of independent
points at random (in the sense specified above), and if the average number of points per
unit interval is a constant λ > 0 (with the dimensions of a frequency), then the limit
rv : N = number of points in an interval of width ∆t, follows a Poisson distribution
P(λ∆t), namely

P {N = k} = e−λ∆t (λ∆t)k

k!
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6.1 Poisson process

We retrace now again the same path, but taking, as in the Figure 6.1, two disjoint
intervals [s1, t1] and [s2, t2] in [−τ/2, τ/2], with ∆t1 = t1 − s1 and ∆t2 = t2 − s2: if we
cast n points with the same properties as before, and we take X1 = number of points
falling in [s1, t1], X2 = number of points falling in [s2, t2], and X0 = number of points
falling elsewhere in [−τ/2, τ/2] we will find that the r-vec X = (X1, X2) follows a
three-nomial (multinomial (3.1) with r = 2) distribution B (n; p1, p2) where

p1 =
∆t1
τ

, p2 =
∆t2
τ

If we now suppose as before that both n and τ grows to infinity complying with the
conditions (6.1) and keeping constant ∆t1 and ∆t2, we will find

p1 =
∆t1
τ

→ 0, np1 =
n

τ
∆t1 → λ∆t1

p2 =
∆t2
τ

→ 0, np2 =
n

τ
∆t2 → λ∆t2

and hence according to the multinomial Poisson Theorem 4.31

X = (X1, X2)
d−→ (N1, N2) ∼ P(λ∆t1) ·P(λ∆t2)

namely the two limit rv ’s N1 and N2 will behave as two independent Poisson rv ’s.
Remark instead that, all along the limit procedure, for every finite n the rv ’s X1 and
X2 are not independent �

In the Appendix G it will be shown how these results must be adapted when the point
intensity λ is not constant. Here instead we will go on by introducing the sequence
of rv ’s Tn representing the time position of our random points. To this end we must
establish an order among the points by choosing first an arbitrary non-random origin
T0 = 0, and setting then that T1 is the instant of the first point to the right of the origin,
T2 that of the second and so on, while T−1 is that of the first to the left and so on.
This produces a bilateral sequence Tn, with n = 0,±1,±2, . . ., of rv ’s that, however, no
longer are independent because for one thing the point Tn can not come before Tn−1.
We will see instead in the next proposition that the waiting times ∆Tn = Tn+1 − Tn of
the (n+1)th point are independent both from Tn and among themselves. The sequence
of such Tn’s that we will now briefly investigate is a typical example of point process
while the waiting times ∆Tn are called renewals

Proposition 6.2. The Tn with n ≥ 1, falling after T0 = 0, are Erlang En(λ) rv’s;

those falling before T0 = 0 (n ≤ −1) comply with the specular law: T−n
d
= −Tn. The

waiting times ∆Tn = Tn+1−Tn are iid exponential E(λ) rv’s that are also independent
from the respective Tn

Proof: Take first the case n ≥ 1 of the points falling to the right of (namely after)
T0 = 0: if N is the number of points in [0, t] following the law P(λt), and ϑ(t) is the
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Heaviside function (2.13), the cdf of Tn > 0 will be

Fn(t) = P {Tn ≤ t} = P {N ≥ n} = 1− P {N < n} =

[
1− e−λt

n−1∑
k=0

(λt)k

k!

]
ϑ(t)

giving rise to the pdf

fn(t) = F ′
n(t) =

[
n−1∑
k=0

(λt)k

k!
−

n−1∑
k=1

(λt)k−1

(k − 1)!

]
λe−λtϑ(t) =

(λt)n−1

(n− 1)!
λe−λtϑ(t) (6.3)

which coincides with the pdf (4.27) of an Erlang distribution En(λ). In particular the
law of T1 is E1(λ), namely an exponential E(λ) with pdf f1(t) = λe−λtϑ(t). Similarly

it is shown that T−n
d
= −Tn, that are by symmetry reversed Erlang distributions

concentrated on the negative time axis: we will neglect to check that explicitly
To study then the waiting times ∆Tn we will start by remarking that – because of

the properties of the increments of the simple Poisson process N(t) – their conditional
cdf is

Gn(τ |Tn = t) = P {∆Tn ≤ τ |Tn = t} = P {Tn+1 ≤ t+ τ |Tn = t}
= P {N(t+ τ)−N(t) ≥ 1} = 1− P {N(t+ τ)−N(t) = 0}
= 1− e−λτ

namely it is an exponential E(λ) dependent neither on n nor on t, and as a consequence
it also coincides with the un-conditional cdf of ∆Tn

Gn(τ) = P {∆Tn ≤ τ} = E [P {∆Tn ≤ τ |Tn}]

=

∫ +∞

−∞
P {∆Tn ≤ τ |Tn = t} fn(t) dt = (1− e−λτ )

∫ +∞

−∞
fn(t) dt

= 1− e−λτ = Gn(τ |Tn = t)

showing that ∆Tn and Tn are independent. To prove finally that the ∆Tn also are
mutually independent, remark first that apparently

Tn = T1 + (T2 − T1) + . . . (Tn − Tn−1) = ∆T0 +∆T1 . . .+∆Tn−1

with Tn ∼ En(λ) and ∆Tk ∼ E(λ), and then that – according to the discussion in the
Example 4.22 – an Erlang En(λ) rv always is decomposable into the sum of exponential
E(λ) rv ’s when these are independent �

The rv ’s ∆Tn are a particular example of a sequence of renewals, namely of iid rv ’s
Zn > 0, that can be used in their turn as the starting point to assemble a point process
according to the reciprocal relations

Tn =
n−1∑
k=0

Zk Zn = ∆Tn = Tn+1 − Tn (6.4)
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6.1 Poisson process

As a rule every sequence of renewals Zn produces a point process and vice versa, and it
must also be said that in general the renewals can be distributed according to arbitrary
laws different from E(λ), provided that Zn stay positive. It is important then to remark
that a sequence of exponential renewals always produces both a point process Tn with
Erlang laws (to this end see the Exemple 4.22), and numbers N of points falling into
finite intervals distributed according to Poisson laws, as will be shown in the subsequent
proposition

Proposition 6.3. Take a sequence Zn ∼ E(λ) of exponential renewals E(λ), and the
corresponding point process Tn defined as in (6.4) and distributed according to the
Erlang laws En(λ): then the number N of the points Tn falling into [0, t] is distributed
according to the Poisson law P(λt)

Proof: With an exchange of the integration order on the integration domain D rep-
resented in the Figure 6.2 we indeed find

P {N = n} = P {Tn ≤ t, Tn+1 > t} = P {Tn ≤ t, Tn + Zn > t}
= E [P {Tn ≤ t, Tn + Zn > t |Zn}]

=

∫ +∞

0

P {Tn ≤ t, Tn + Zn > t |Zn = z}λe−λz dz

=

∫ +∞

0

P {t− z < Tn ≤ t}λe−λz dz

=

∫ +∞

0

dz λe−λz

∫ t

t−z

(λs)n−1

(n− 1)!
λe−λsϑ(s) ds

=

∫∫
D

λe−λz (λs)
n−1

(n− 1)!
λe−λsϑ(s) dz ds

=

∫ t

0

ds
(λs)n−1

(n− 1)!
λe−λs

∫ +∞

t−s

λe−λz dz =

∫ t

0

(λs)n−1

(n− 1)!
λe−λse−λ(t−s)ds

= e−λtλ
n

n!

∫ t

0

nsn−1ds = e−λt (λt)
n

n!
(6.5)

and hence N is distributed according to the Poisson law P(λt) as for the limit rv ’s
defined at the beginning of the present section �

6.1.2 Poisson process

Definition 6.4. Given a point process Tn of intensity λ, the simple Poisson process
of intensity λ is the sp N(t) with t > 0 counting the random number of points Tn

falling in [0, t], with the initial condition N(0) = 0, P -a.s.. Taking advantage of the
point process Tn the Poisson process N(t) can also be represented as

N(t) =
∞∑
k=1

ϑ(t− Tk) (6.6)
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Figure 6.2: Integration domain for the integral (6.5)

where ϑ is the Heaviside function (2.13). With a fixed ∆t > 0 we can furthermore define
the corresponding process of the Poisson increments ∆N(t) = N(t+∆t)−N(t)
counting now the number of points Tn falling in an interval [t, t+∆t]

Proposition 6.5. The Poisson process N(t) has independent and stationary incre-
ments; the distributions and the chf ’s of N(t) and ∆N(t) respectively are

pN(k, t) = P {N(t) = k} = e−λt (λt)
k

k!
(6.7)

p∆N(k) = P {∆N(t) = k} = e−λ∆t (λ∆t)k

k!
(6.8)

φN(u, t) = eλt(e
iu−1) φ∆N(u,∆t) = eλ∆t(eiu−1) (6.9)

while the transition probability (namely the two-times conditional probability) of
N(t), with ∆t > 0 and k ≥ ℓ, is

pN(k, t+∆t| ℓ, t) = e−λ∆t (λ∆t)k−ℓ

(k − ℓ)!
(6.10)

Proof: The increments on non-superposed intervals (with at most an extremal point
in common) are independent rv ’s by construction, and the increment ∆N(t) is also
independent from N(t): the Poisson process is then our first example of indepen-
dent increments process , a class of sp that will be investigated in more detail in the
Section 7.1.3. From the previous sections we know moreover that, for every t > 0,
N(t) ∼ P(λt), while ∆N(t) ∼ P(λ∆t), and hence (6.7), (6.8) and (6.9) apparently
hold. This in particular entails that the laws of the increments ∆N(t) – at variance
with the process N(t) himself – do not change with t but depend only on ∆t: as a
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Figure 6.3: The correlation coefficient ρN(s, t) (6.14) of a simple Poisson process N(t).

consequence N(t) has stationary increments (see also the Section 5.5). As for the
transition probability, from the previous properties we finally have

pN(k, t+∆t|ℓ, t) = P {N(t+∆t) = k |N(t) = ℓ}
= P {N(t+∆t)−N(t) +N(t) = k |N(t) = ℓ}

= P {∆N(t) = k − ℓ} = e−λ∆t (λ∆t)k−ℓ

(k − ℓ)!

namely (6.10). Remark that this distribution depends only on ∆t, but not on t, because
of the increments stationarity (Section 5.5); and on k− ℓ, but not separately on k and
ℓ, because of the increments independence (see also the Section 7.1.3) �

Proposition 6.6. The main statistical properties of a simple Poisson process N(t) are

mN(t) = σ2
N(t) = λt (6.11)

RN(s, t) = λmin{s, t}+ λ2st (6.12)

CN(s, t) = λmin{s, t} (6.13)

ρN(s, t) =
min{s, t}√

st
=

{ √
s/t if s < t√
t/s if t < s

(6.14)

Proof: The results (6.11) immediately stem from (6.7). To prove (6.12) we start
instead from the remark that from the previous results for s = t it is

RN(t, t) = E
[
N2(t)

]
= V [N(t)] +E [N(t)]2 = λt+ λ2t2

so that from the increments independence we will have for s < t

RN(s, t) = E [N(s)N(t)] = E [N(s)(N(t)−N(s) +N(s))]

= E [N(s)]E [N(t)−N(s)] +RN(s, s)

= λs · λ(t− s) + λs+ λ2s2 = λs+ λ2st
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Figure 6.4: An example of a 10 jumps trajectory of the Poisson process N(t). In this
plot also the point process Tn and the function mN(t) = λt are displayed

and eventually the relation (6.12) for arbitrary s and t; (6.13) and (6.14) result then
from the definition (5.3) and from (6.11). Notice that from (6.13) we also recover the
variance (6.11) σ2

N(t) = C(t, t) = λt �

Remark that the variance in (6.11) linearly grows with the time: a property – some-
times also called diffusion – that is shared with other important processes. In the
Figure 6.3 (where, to fix the ideas, we kept s constant and t variable) the behavior of
the correlation coefficient (6.14) is then displayed: the correlation apparently (slowly)
decreases when s and tmove away from each other, so that the process in t progressively
forgets its state in s as time lapses away

The process N(t) also enjoys a few other properties that we will find again later on:
it is easy to check for instance that the distributions (6.7) are solutions of the equation

∂tpN(n, t) = −λ [pN(n, t)− pN(n− 1, t)] pN(n, 0) = δn0 (6.15)

that is a first example of master equation , an equation that we will study in more
detail in the Section 7.2.3. Also the transition probabilities pN(k, t|ℓ, s) in (6.10) turn
out to be solutions of the same master equation, but for the different initial conditions
pN(k, s

+) = δkℓ. From a power expansion of the exponential near t = 0 we then recover
the following behaviors

pN(n, t) = [1− λt+ o(t)]
(λt)n

n!
=


1− λt+ o(t) n = 0
λt+ o(t) n = 1
o(t) n ≥ 2

(6.16)

that constitute in fact a characteristic of the Poisson process: it would be possible to
prove indeed that if the pN(n, t) of a growth process conforms to the (6.16), then its
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Figure 6.5: A few trajectories of the Poisson process N(t) scattered around its expec-
tation mN(t) = λt

laws are also solutions of the equation (6.15) and hence they must be of the Poisson
type (6.7)

A typical trajectory of the Poisson process N(t) for t > 0 is shown in the Fig-
ure 6.4: it looks as infinite, climbing stair with a random steps length (ruled by the
point process), and fixed unit height, representing the enumeration of the random
points falling into the interval [0, t]. The relation between these trajectories and the
linear function mN(t) is shown in the pictures: on a short time interval every trajectory
in the Figure 6.5 deviates little form the average trend and overall they are equally
distributed around mN(t) = λt. For longer times, as in the Figure 6.6, the trajectories
continue to be equally distributed around λt, but they also progressively move away
from it as an outcome of the variance growth. The fact that in the Figure 6.6 the
trajectories seem to be not too divergent from mN(t) = λt depends mainly on a scale
effect: the standard deviation only grows as

√
λt, while of course the vertical axis scale

goes up as λt

Proposition 6.7. The Poisson process N(t) is ms-continuous, but not ms-differen-
tiable in every t > 0; it is instead both P -a.s.-continuous and P -a.s.-differentiable for
every t > 0, and in this sense we have Ṅ(t) = 0. Finally N(t) is not stationary

Proof: According to the Proposition 5.6 the ms-continuity results from the continuity
of the autocorrelation (6.12). It does not exist in s = t, instead, the mixed derivative
∂s∂tRN : the first derivative is indeed

∂tRN(s, t) = λϑ(s− t) + λ2s

where ϑ is the Heaviside function (2.13) with a discontinuity in s = t, and hence the sec-
ond derivative ∂s∂tRN does not exist in s = t. It follows then from the Proposition 5.7
that for every t > 0 the process is not ms-differentiable
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Figure 6.6: Trajectories of a Poisson process N(t) with 1 000 jumps. The standard
deviation only grows as

√
λt, and hence the paths appear to be little divergent from

the average mN(t) = λt because of a scale effect:
√
1 000 ≃ 32

To prove on the other hand that the Poisson process N(t) is P -a.s. continuous and
differentiable (with a vanishing derivative) we should respectively prove that for every
t > 0 it is

P
{
lim
∆t→0

∆N(t) = 0
}
= 1 P

{
lim
∆t→0

∆N(t)

∆t
= 0

}
= 1

This intuitively stems from the fact that the two limits could possibly not vanish iff
Tk = t for some k, that is iff t turns out to be one of the discontinuity instants of the
point process Tn: this on the other hand happens with zero probability because the Tn

are ac Erlang rv ’s

The Poisson process N(t), finally, is not stationary (not even in the wide sense)
because its expectation (6.11) is not constant and its autocorrelation (6.12) separately
depends on s and t and not only on t− s �

Given the apparent jumping character of the Poisson trajectories, both the ms and
P -a.s. continuities stated in the Proposition 6.7 could be startling. We should however
keep in mind that these continuities (as well as the stochastic continuity) just state that
every t is a point of continuity in ms and P -a.s. It is not at all asserted, instead, that
the Poisson process is sample continuous in the sense of the Definition 5.5: as we will
see later indeed this process does not meet the minimal requirements for this second
– stronger – kind of continuity. In the same vein the P -a.s. differentiability of N(t)
results from the remark that almost every trajectory of N(t) is piecewise constant,
but for the jumping points (a Lebesgue negligible set) where the discontinuities are
located. As for the seeming incongruity between the ms non differentiability and the
P -a.s. differentiability we will only remark that this is a typical example of the different
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Figure 6.7: Possible interval arrangements to calculate the autocorrelation (6.18) of
the Poisson increments with a given ∆t > 0

meaning of the two convergences: remember for instance that the possible existence of
the ms derivative Ṅ(t) = 0 would require that the expectation

E

[∣∣∣∣∆N(t)

∆t

∣∣∣∣2
]
=

E [(∆N(t))2]

∆t2
=

λ∆t+ λ2∆t2

∆t2
=

λ

∆t
+ λ2

be infinitesimal for ∆t → 0, while apparently it is not. This discussion about the
process differentiability will be resumed in the Section 6.3 devoted to the white noise

Proposition 6.8. The Poisson increments process ∆N(t) with a fixed ∆t > 0 is wide
sense stationary: we have indeed

m∆N = σ2
∆N = λ∆t (6.17)

R∆N(τ) =

{
λ2∆t2 if |τ | ≥ ∆t
λ2∆t2 + λ(∆t− |τ |) if |τ | < ∆t

(6.18)

C∆N(τ) =

{
0 if |τ | ≥ ∆t
λ(∆t− |τ |) if |τ | < ∆t

(6.19)

ρ∆N(τ) =

{
0 if |τ | ≥ ∆t

1− |τ |
∆t

if |τ | < ∆t
(6.20)

S∆N(ϖ) = 2λ(∆t)2
1− cosϖ∆t

(ϖ∆t)2
(6.21)

where S∆N is the covariance spectrum (5.26)

Proof: We already knew that N(t) has independent and stationary increments : we
moreover show here that ∆N(t) also is wide sense stationary as a sp. To begin with
the (6.17) immediately results form the remark that the increments ∆N(t) are dis-
tributed according to the Poisson law P(λ∆t). As for the autocorrelation function

R∆N(s, t) = E [∆N(s)∆N(t)]
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Figure 6.8: Sample trajectory of the compensated Poisson process (6.22)

we must remember that the increments on non superposed time intervals (see Fig-
ure 6.7) are independent, so that if |t− s| ≥ ∆t

R∆N(s, t) = E [∆N(s)]E [∆N(t)] = λ2∆t2 |t− s| ≥ ∆t

When instead |t− s| < ∆t, we first take t > s and remark that (see Figure 6.7)

∆N(s)∆N(t) = [N(s+∆t)−N(s)][N(t+∆t)−N(t)]

= [N(s+∆t)−N(t) +N(t)−N(s)][N(t+∆t)−N(t)]

= [N(t)−N(s)][N(t+∆t)−N(t)] + [N(s+∆t)−N(t)]2

+[N(s+∆t)−N(t)][N(t+∆t)−N(s+∆t)]

From the intervals arrangement we then find

R∆N(s, t) = λ(t− s) · λ∆t+ λ(∆t− t+ s) + λ2(∆t− t+ s)2

+λ(∆t− t+ s) · λ(t− s)

= λ2∆t2 + λ[∆t− (t− s)]

If instead t < s we just swap s and t: summing up all the cases we then find (6.18)
with τ = t − s. From these results also immediately stem the autocovariance (6.19)
and the correlation coefficient (6.20), while the covariance spectrum (6.21) result from
an elementary Fourier transform �

6.1.3 Compensated Poisson process

The Poisson process and its corresponding point process also constitute the first step
in the definition of other important processes: to begin with the compensated Poisson
process is defined as

Ñ(t) = N(t)− λt (6.22)
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Figure 6.9: 1 000 steps trajectories of the compensated Poisson process (6.8)

Since λt is the expectation of N(t), it is apparent that Ñ(t) is just a centered Poisson
process whose sample trajectories are displayed in the Figure 6.8. Keeping (6.12) into
account we then have

mÑ(t) = 0 σ2
Ñ
(t) = λt

RÑ(s, t) = CÑ(s, t) = λmin{s, t} ρÑ(s, t) =
min{s, t}√

st

so that again the variance grows linearly in time while the trajectories will be evenly
arranged around the horizontal axis steadily drifting away as in the Figure 6.9: in other
words the process Ñ(t) too diffuses around its vanishing expectation. Remark however
that now, at variance with the Figure 6.6, the diffusion is more appreciable, the scale
effect having been eliminated by the centering. Since moreover the autocorrelation
of Ñ(t) essentially coincides with that of N(t), the Proposition 6.7 still holds for the
compensated Poisson process. From (6.9) we finally find its chf

φÑ(u, t) = φN(u, t)e
−iuλt = eλt(e

iu−iu−1)

The compensated Poisson process plays an important role in the theory of the stochastic
differential equations of the jump process, a topic that however will exceed the scope
of these lectures

6.1.4 Compound Poisson process

Definition 6.9. By extending the definition (6.6), given a point process Tn, a com-
pound Poisson process is the sp

X(t) =
∞∑
k=1

Xkϑ(t− Tk) (6.23)
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Figure 6.10: Sample trajectory of a compound Poisson process (6.23) with N (0, 1)
distributed iid components Xk

where Xk is a sequence of rv’s independent from Tn. If moreover N(t) is the simple
Poisson process associated to Tn, the process (6.23) can also be represented as the sum
of the random number N(t) of rv’s Xk turned up within the time t

X(t) =

N(t)∑
k=1

Xk (6.24)

All in all the compound Poisson process follows trajectories that are akin to that of
the simple Poisson process, but for the fact that in every instant Tk, instead of jumping
deterministically ahead of a unit length, it now takes a leap of random lengthXk. In the
Figure 6.10 an example is displayed where the Xk are independent standard Gaussians.
The simple Poisson process itself is also apparently a particular case of the compound
process: it would be enough to take Xk = 1,P -a.s.. In the Figure 6.11 a few examples
of longer spanning trajectories are presented, and to a purely qualitative observation
they look not very different from those of a compensated Poisson process. In the next
proposition, moreover, we will find that the representation (6.24) of the sp X(t) turns
out to be especially advantageous to calculate its main statistical characteristics

Proposition 6.10. If X(t) is the compound Poisson process (6.23), and if the rv’s
Xk are iid with E [Xk] = µ and V [Xk] = σ2, then it is

mX(t) = λµt (6.25)

σ2
X(t) = λ(µ2 + σ2)t (6.26)

RX(s, t) = λ(µ2 + σ2)min{s, t}+ λ2µ2st (6.27)

CX(s, t) = λ(µ2 + σ2)min{s, t} (6.28)

ρX(s, t) =
min{s, t}√

st
(6.29)
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Proof: The (6.25) results from the representation (6.24) and the usual properties of
the conditional expectations:

mX(t) = E

N(t)∑
k=1

Xk

 =
∞∑
n=0

e−λt (λt)
n

n!
E

N(t)∑
k=1

Xk

∣∣∣∣∣∣N(t) = n


=

∞∑
n=0

e−λt (λt)
n

n!
E

[
n∑

k=1

Xk

]
=

∞∑
n=1

e−λt (λt)n

(n− 1)!
µ

= λµt
∞∑
n=0

e−λt (λt)
n

n!
= λµt

Keeping moreover into account the general relation E [XkXℓ] = µ2 + σ2δkℓ easily de-
duced from the hypotheses, we can calculate first

RX(t, t) = E
[
X(t)2

]
= E

 N(t)∑
k,ℓ=1

XkXℓ

 =
∞∑
n=0

e−λt (λt)
n

n!
E

[
n∑

k,ℓ=1

XkXℓ

]

=
∞∑
n=0

e−λt (λt)
n

n!

n∑
k,ℓ=1

(µ2 + σ2δkℓ) =
∞∑
n=0

e−λt (λt)
n

n!
(n2µ2 + nσ2)

= µ2

∞∑
n=1

ne−λt (λt)n

(n− 1)!
+ σ2

∞∑
n=1

e−λt (λt)n

(n− 1)!

= µ2λt
∞∑
n=0

(n+ 1)e−λt (λt)
n

n!
+ σ2λt

∞∑
n=0

e−λt (λt)
n

n!

= (λt)2µ2 + λt(µ2 + σ2)

and then – from the increments independence – the autocorrelation (6.27): taking
indeed s < t we get

RX(s, t) = E [X(s)X(t)] = E [X(s)(X(t)−X(s) +X(s))]

= E [X(s)]E [X(t)−X(s)] +R(s, s)

= λ2µ2s(t− s) + (λs)2µ2 + λs(µ2 + σ2) = λ2µ2st+ λs(µ2 + σ2)

and hence (6.27) in the general case with arbitrary s, t. The autocovariance (6.28),
the variance (6.26) and the correlation coefficient (6.29) trivially result then from the
definitions (5.3) and (5.5) �

The variance is then again diffusive in the sense that it linearly grows in time as can be
guessed also from the Figure 6.11. Remark that the correlation coefficient (6.29) ex-
actly concurs with those of both the simple and compensated Poisson processes (6.14),
while the correspondent autocorrelation and autocovariance (6.12) are recovered for
µ = 1, σ = 0. As a consequence also the stationarity, continuity and differentiability
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Figure 6.11: 1 000 steps sample trajectories of the compound Poisson process (6.23)
with N (0, 1) iid Xk’s

properties of a compound Poisson process coincide with that of the simple Poisson
process summarized in the Proposition 6.7. Remark finally that, if φ(u) is the common
chf of the Xk, the chf of the compound Poisson process is

φX(u, t) = E
[
eiuX(t)

]
=

∞∑
n=0

e−λt (λt)
n

n!
E
[
eiu

∑n
k=1 Xk

]
=

∞∑
n=0

e−λt (λt)
n

n!
φ(u)n = eλt[φ(u)−1] (6.30)

Also this chf is reduced to that of the simple Poisson process (6.9) when Xk = 1, P -a.s.
for every k because now φ(u) = eiu
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Figure 6.12: Sample trajectory of the shot noise process (6.31) with h(t) chosen as
in (6.32).

6.1.5 Shot noise

Definition 6.11. Take a point process with intensity λ: we call shot noise the sp

X(t) =
∞∑
k=1

h(t− Tk) (6.31)

where h(t) is an arbitrary integrable function that as a rule (but not necessarily) is non
zero only for t > 0

A typical example of h(t) is

h(t) = q at e−atϑ(t) a > 0, q > 0 (6.32)

that yields sample trajectories like that in the Figure 6.12. To fix the ideas we could
imagine that this sp describes the current impulses produced by the random arrival of
isolated thermal electrons on the cathode of a vacuum tube: in this case the arrival
times apparently constitute a point process, and every electron elicit in the circuit a
current impulse of the form h(t) that as a rule exponentially vanishes. Of course close
arrivals produce superpositions with the effects shown in the Figure 6.12

Proposition 6.12. If the function h(x) is integrable and square integrable, the shot
noise X(t) (6.31) is wide sense stationary, and with τ = t− s we find

mX(t) = λH σ2
X(t) = λg(0) (6.33)

RX(τ) = λg(|τ |) + λ2H2 CX(τ) = λg(|τ |) ρX(τ) =
g(|τ |)
g(0)

(6.34)

H =

∫ +∞

−∞
h(t) dt g(t) =

∫ +∞

−∞
h(t+ s)h(s) ds (6.35)
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Figure 6.13: Correlation coefficient ρX(τ) (6.36) of a shot noise with h(t) chosen as
in (6.32).

Proof: Omitted1. Remark that the stationarity is now consistent with the traits of
the new trajectories consisting of a sequence of impulses of the form h with intensity
λ, and no longer showing a bent to diffuse drifting away from the horizontal axis �

Exemple 6.13. The general results of the Proposition (6.12) for a shot noise X(t) are
explicitly implemented according to the choise of the function h: with an h(t) of the
form (6.32) we get in particular (see also Figure 6.13)

H =
q

a
g(t) =

q2

4a
(1 + a|t|) e−a|t|

mX(t) =
λq

a
σ2
X(t) =

λq2

4a
RX(τ) =

λq2

4a
(1 + a|τ |) e−a|τ | +

λ2q2

a2

CX(τ) =
λq2

4a
(1 + a|τ |) e−a|τ | ρX(τ) = (1 + a|τ |) e−a|τ | (6.36)

and hence, taking also into account the results of the Section 5, we can say that

• X(t) is ms-continuous because its autocorrelation RX(τ) is continuous in τ = 0
(Proposition 5.6)

• X(t) ms-differentiable because it is possible to show explicitly from (6.36) that
now its second derivative R′′

X(τ) exists in τ = 0 (Proposition 5.11)

• X(t) is ergodic for expectation and autocorrelation because the condition (5.21)
is apparently met by our CX(τ) (Corollary 5.13)

1A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw Hill
(Boston, 2002)
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• The covariance spectrum of the shot noise in our example can be calculated
from (6.36) and (5.26) and is

SX(ϖ) =
λa2q2

2π (a2 +ϖ2)2
(6.37)

6.2 Wiener process

The Wiener process (also known as Brownian motion, a name that nevertheless we will
reserve for the physical phenomenon discussed in the Section 6.4 and in the Capter 9)
can be more conveniently defined, as we will see later on, starting from its formal
probabilistic properties. In the present heuristic introduction we will however first
follow a more intuitive path through an explicit presentation of its trajectories, in a
way similar to that adopted for the Poisson process. Yet, at variance with this last one,
the Wiener process stems only as a limit in distribution of a sequence of elementary
processes known as random walks : as a consequence its sketched trajectories will only
be approximations attained by means of random walks with a large number of steps

6.2.1 Random walk

Definition 6.14. Take s > 0, τ > 0, and the sequence (Xj)j≥0 of iid rv’s

X0 = 0, P -a.s. Xj =

{
+s, with probability p
−s, with probability q = 1− p

j = 1, 2, . . .

then we will call random walk the sp

X(t) =
∞∑
j=0

Xjϑ(t− jτ) (6.38)

that is, in a different layout,

X(t) =

{
X0 = 0 0 ≤ t < τ
X1 + . . .+Xn nτ ≤ t < (n+ 1)τ, n = 1, 2, . . .

The possible sample trajectories of a random walk are then (ascending and descending)
stairs like to that in the Figure 6.14 that at first sight resemble those of a compound
Poisson process (6.23). At variance with them however the steps length in not random
and is instead always τ , while their height takes only two possible values ±s. Since
moreover

E [Xj] = (p− q)s E
[
X2

j

]
= s2 V [Xj] = 4pqs2

it is easy to see that for every n = 0, 1, 2, . . . we have

E [X(t)] = (p− q)ns V [X(t)] = 4pqns2 nτ ≤ t < (n+ 1)τ (6.39)
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Figure 6.14: Typical trajectory of a symmetric random walk with 15 steps

so that, if for instance p ̸= q, the absolute value of the expectation grows with n,
namely with t. When instead p = q = 1/2 we have a symmetric random walk , and
in this case E [X(t)] = 0 for every t. The variance on the other hand in any event
grows with n, and hence with t. Furthermore also this process has by construction
independent increments ∆X(t) for non overlapping intervals

6.2.2 Wiener process

Definition 6.15. Take the family of all the symmetric random walks X(t) with p =
q = 1/2 , s > 0 and τ > 0, then the Wiener process W (t), with W (0) = 0,P -a.s.,
and diffusion coefficient D > 0 is the limit (in distribution according to the Defini-
tion 5.4) of the random walks X(t) when

τ → 0 s → 0
s2

τ
→ D > 0 (6.40)

When D = 1 we also call it standard Wiener process. We finally define the
Wiener increments process ∆W (t) = W (t+∆t)−W (t) for every given ∆t > 0

We will take for granted without proof that the limits in distribution of the previous
definition actually exist, namely that – under the conditions (6.40) – all the finite joint
distributions of X(t) converge toward a consistent family of finite joint distributions
defining the global law of W (t). It is furthermore apparent from our definition that the
trajectories of W (t) (at variance with those of a Poisson process, or of a random walk)
can not be graphically represented in an exact way because we are dealing with a limit
process. We can expect however that the trajectories of a random walk with a large
number of steps will constitute a good approximation for the trajectories of W (t), as
happens in the Figure 6.15 for the samples of a random walk with 1 000 steps. Remark
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Figure 6.15: Typical 1 000 steps trajectory of a symmetric random walk : it can be
considered as an approximation of a Wiener process W (t) (here D = 1)

that for long enough times these trajectories qualitatively resemble those of both a
compensated (Figura 6.9) and a compound Poisson process (Figura 6.11). The main
difference between the real Wiener trajectories and its approximations is that if we
would look more closely (at a shorter time scale) at the approximate trajectories of
Figure 6.15 we would immediately find the underlying random walk of the Figure 6.14,
while if we zoom in on a trajectory of W (t) at any level we always find the same kind of
irregular behavior. In other words the samples of a Wiener process are self-similar
in the sense that they always show the same irregular look regardless of the space-time
scale of our investigation

In the following we will also adopt the shorthand notation

ϕa2(x) =
e−x2/2a2

√
2πa2

Φa2(x) =

∫ x

−∞
ϕa2(y) dy (6.41)

respectively for the pdf and the cdf of a centered N (0, a2) law

Proposition 6.16. A Wiener process W (t) has stationary and independent incre-
ments; we have moreover with ∆t > 0

W (t) ∼ N (0, Dt) ∆W (t) ∼ N (0, D∆t) (6.42)

and hence the pdf ’s and the chf ’s respectively are

fW (x, t) =
e−x2/2Dt

√
2πDt

f∆W (x) =
e−x2/2D∆t

√
2πD∆t

(6.43)

φW (u, t) = e−Dtu2/2 φ∆W (u,∆t) = e−D∆t u2/2 (6.44)
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The transition pdf (conditional pdf ) with ∆t > 0 finally is N (y,D∆t), that is

fW (x, t+∆t|y, t) = f∆W (x− y) =
e−(x−y)2/2D∆t

√
2πD∆t

(6.45)

Proof: Since W (t) has been defined as the limit process of a family of random walks
X(t) that have independent increments by definition, it is apparent that also the incre-
ments ∆W (t) on non overlapping intervals are independent: this is the second example
of a process with independent increments after that of Poisson. The result (6.42) ensues
on the other hand from the Central Limit Theorem 4.27: for every arbitrary but fixed
t take indeed the sequence of symmetric random walks X(t) with

τ =
t

n
s2 =

Dt

n
n = 1, 2, . . .

so that the requirements (6.40) are met for n → ∞. As a consequence

X(t) = X(nτ) = X0 +X1 + . . .+Xn = Sn n = 0, 1, 2, . . .

with E [Sn] = 0 and V [Sn] = Dt, as follows from (6.39) for p = q = 1/2. From the
Centra Limit Theorem 4.27 we then have for n → ∞

S∗
n =

X(t)√
Dt

d−→ N (0, 1)

If now W (t) is the limit in distribution of X(t) we can say that

W (t)√
Dt

∼ N (0, 1)

namely W (t) ∼ N (0, Dt), that is (6.42) so that the pdf of the Wiener process will
be (6.43). The chf (6.44) is then easily calculated from (4.13) keeping into account (6.42).
The law (6.42) of the increments ∆W (t), its pdf (6.43) and chf (6.44) are derived in
a similar way. As for the transition pdf, from (6.42) and the increments independence,
we finally have

FW (x, t+∆t|y, t) = P {W (t+∆t) ≤ x |W (t) = y}
= P {W (t+∆t)−W (t) +W (t) ≤ x |W (t) = y}
= P {∆W (t) ≤ x− y |W (t) = y}
= P {∆W (t) ≤ x− y} = ΦD∆t(x− y)

where ΦD∆t(x) is the cdf (6.41) of the law N (0, D∆t) so that (6.45) immediately
follows from an x-differentiation �
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Proposition 6.17. The main statistical properties of a Wiener process W (t) are

mW (t) = 0 σ2
W (t) = Dt (6.46)

RW (s, t) = CW (s, t) = Dmin{s, t} (6.47)

ρW (s, t) =
min{s, t}√

st
=

{ √
s/t if s < t√
t/s if t < s

(6.48)

Proof: The formulas (6.46) immediately result from (6.42). As for the autocorrela-
tion (6.47) (coincident with the autocovariance because the expectation is zero) con-
sider first s = t so that from (6.42) we get

RW (t, t) = E
[
W 2(t)

]
= V [W (t)] = Dt (6.49)

Then, with s < t, remark that the increments W (s) = W (s)−W (0) and W (t)−W (s)
are independent and respectively distributed according toN (0, Ds) andN (0, D(t−s)),
so that

RW (s, t) = E [W (s)W (t)] = E
[
W (s)

(
W (t)−W (s) +W (s)

)]
= E

[
W 2(s)

]
= RW (s, s) = Ds

In conclusion, however chosen s and t, we retrieve (6.47) and hence also (6.48). �

Despite their obvious differences, the statistical properties of the Wiener and of the sim-
ple Poisson processes – as listed in the previous proposition and in the Proposition 6.6
– are rather comparable, with the diffusion coefficient D playing a role analogous to
that of the Poisson intensity λ: the coefficient D, whose existence we surmised in the
definition of W (t), by construction has dimensions m2/sec and is the main characteris-
tic parameter of the Wiener process. Remark finally that – as for the Poisson process
– here too the process variance linearly grows with t, so that also the Wiener process
is considered a diffusion

Proposition 6.18. The Wiener process W (t) is sample continuous, but almost every
trajectory is nowhere differentiable. Moreover W (t) is non stationary (not even in
wide sense), but it is Gaussian and, however taken t1 < t2 < . . . < tn (the ordering
has been fixed here only for convenience), we have (W (t1), . . . ,W (tn)) ∼ N (0,A) with
covariance matrix

A = D


t1 t1 t1 . . . t1
t1 t2 t2 t2
t1 t2 t3 t3
...

. . .
...

t1 t2 t3 . . . tn

 (6.50)

Proof: A more detailed discussion of the sample continuity of W (t) according to the
Definition 5.5 will be postponed until the Section 7.1.7 (see Proposition 7.23): here
we will confine ourselves only to remark that this result also apparently entails all the
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other, weaker continuities listed in the Section 5.3. It would be easy to show, however,
that the ms-continuity for every t could be independently proved in the same way as
that of the simple Poisson process in the Proposition 6.7 because the autocorrelation
functions of the two processes essentially coincide. Also the proof of the non stationarity
is clearly the same

Neglecting then a proof of the global non differentiability stated in the theorem,
we will only show the weaker result that for every t > 0 the Wiener process is not
differentiable in probability, and hence – according to the negative of the point 1 of
the Theorem 4.4 – it is also non differentiable in ms and P -a.s. We are reduced then
to prove that for every t > 0∣∣∣∣∆W (t)

∆t

∣∣∣∣ P−→ +∞ for ∆t → 0

namely

lim
∆t→0

P

{∣∣∣∣∆W (t)

∆t

∣∣∣∣ > M

}
= 1 ∀M > 0 (6.51)

Take indeed M > 0: from (6.43) it is

P

{∣∣∣∣∆W (t)

∆t

∣∣∣∣ > M

}
= 1− P

{∣∣∣∣∆W (t)

∆t

∣∣∣∣ ≤ M

}
= 1−

∫ M |∆t|

−M |∆t|

e−x2/2D|∆t|√
2πD|∆t|

dx

and (6.51) follows from the remark that with y = x/
√
|∆t| we get

lim
∆t→0

∫ M |∆t|

−M |∆t|

e−x2/2D|∆t|√
2πD|∆t|

dx = lim
∆t→0

∫ M
√

|∆t|

−M
√

|∆t|

e−y2/2D

√
2πD

dy = 0

From the Proposition 6.16 we already know that the pdf and the transition pdf
of W (t) are Gaussian: we will show now that also the higher order joint pdf ’s are
Gaussian. Take first the r-vec (W (s),W (t)) with s < t for convenience: its joint pdf
then is2

fW (x, t; y, s) = fW (x, t|y, s)fW (y, s) = ϕD(t−s)(x− y)ϕDs(y) (6.52)

If we now write down this pdf and compare it with the general pdf (2.24) of a bivariate
normal law – we will skip the explicit calculation – we find that (6.52) exactly conforms

2Remark that to retrieve the marginals (6.43) from the joint pdf (6.52) the integral

fW (x, t) =

∫ +∞

−∞
fW (x, t; y, s) dy = [ϕD(t−s) ∗ ϕDs](x) = ϕDt(x)

is handily performed by taking advantage of the reproductive properties (3.67) of the Gaussian dis-
tributions, namely

N (0, D(t− s)) ∗N (0, Ds) = N (0, Dt)
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to the Gaussian N (0,A) with the covariance matrix

A = D

(
s s
s t

)
To go on to the joint pdf ’s with n = 3, 4, . . . instants we iterate the procedure: take
t1 < t2 < t3 and – retracing the path leading to (6.45), but we will neglect the details
– calculate first the conditional pdf

fW (x3, t3 | x2, t2; x1, t1) = ϕD(t3−t2)(x3 − x2)

and then, keping (6.52) into account, the joint pdf

fW (x3, t3; x2, t2;x1, t1) = fW (x3, t3 |x2, t2;x1, t1)fW (x2, t2;x1, t1)

= ϕD(t3−t2)(x3 − x2)ϕD(t2−t1)(x2 − x1)ϕDt1(x1)

that again by inspection turns out to be Gaussian with a covariance matrix of the
form (6.50). Iterating the procedure for arbitrary t1 < . . . < tn we find that all the
joint pdf ’s of the r-vec’s (W (t1), . . . ,W (tn)) are Gaussian N (0,A) with covariance
matrices (6.50), and hence that W (t) is a Gaussian process �

It is easy to check by direct calculation that the transition pdf ’s fW (x, t| y, s) (6.45) of
a Wiener process are solutions of the equation

∂tf(x, t) =
D

2
∂2
xf(x, t), f(x, s+) = δ(x− y) (6.53)

that represents a first example of a Fokker-Planck equation to be discussed in
further details in the Section 7.2.3

Proposition 6.19. The Wiener increments process ∆W (t) with ∆t > 0 is wide sense
stationary with

m∆W = 0 σ2
∆W = D∆t (6.54)

R∆W (τ) = C∆W (τ) =

{
0 if |τ | ≥ ∆t
D(∆t− |τ |) if |τ | < ∆t

(6.55)

ρ∆W (τ) =

{
0 if |τ | ≥ ∆t

1− |τ |
∆t

if |τ | < ∆t
(6.56)

S∆W (ϖ) = 2D(∆t)2
1− cosϖ∆t

(ϖ∆t)2
(6.57)

Proof: We have already seen that the increments ∆W (t) are independent and sta-
tionary: here it will be shown moreover that the increment process is wide sense sta-
tionary. The results (6.54) directly follow from (6.42), namely from the remark that
∆W (t) ∼ N (0, D∆t). As for the autocorrelation and autocovariance we will retrace
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the procedure adopted for the Poisson increments: by recalling that the increments on
non overlapping intervals are independent, when |t− s| ≥ ∆t we have

R∆W (s, t) = E [∆W (s)∆W (t)] = E [∆W (s)]E [∆W (t)] = 0

If instead |t− s| < ∆t, take first t > s to have (see Figure 6.7)

∆W (s)∆W (t) = [W (s+∆t)−W (s)] [W (t+∆t)−W (t)]

= [W (s+∆t)−W (t) +W (t)−W (s)] [W (t+∆t)−W (t)]

= [W (t)−W (s)][W (t+∆t)−W (t)] + [W (s+∆t)−W (t)]2

+[W (s+∆t)−W (t)][W (t+∆t)−W (s+∆t)]

and hence – because of the increments independence and the vanishing of their expec-
tations – we will have with τ = t− s > 0

R∆W (τ) = E
[
[W (s+∆t)−W (t)]2

]
= D(∆t− τ)

For t < s it would be enough to swap s and t, and by gathering all the results we
immediately get (6.55). The results (6.56) and (6.57) will finally follow from their
respective definitions �

6.2.3 Geometric Wiener process

As for the Poisson process, a number of different sp’s can be derived from the Wiener
process, but here we will only briefly linger on the so called geometric Wiener
process (geometric Brownian motion) defined as

X(t) = eW (t) X(0) = 1 (6.58)

where W (t) ∼ N (0, Dt) is a Wiener process. Such a process is especially relevant in
the field of the mathematical finance, and we already said in the Section 3.47 that its
law is log-normal with

fX(x, t) =
e− ln2 x/2Dt

x
√
2πDt

x > 0 (6.59)

while its expectation and variance are

mX(t) = eDt/2 σ2
X(t) =

(
eDt − 1

)
eDt

At variance with those of the Wiener process W (t), the sample trajectories of X(t)
apparently never go negative (see Figure 6.16 with a logarithmic scale), and this is one
of the main reasons why the geometric Brownian motion, unlike the simple Wiener
process, is considered a good model to describe the price trend on the market. In the
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Figure 6.16: Sample trajectories (logarithmic scale and D = 1) of a geometric Wiener
process (6.60) approximated as the exponential of 1 000 steps random walks

applications, however, it is customary to adopt a de-trended variant of X(t) centered
around 1 and defined as

Z(t) =
X(t)

mX(t)
= eW (t)−Dt/2 (6.60)

so that we immediately find that

mZ(t) = 1 σ2
Z(t) = eDt − 1

6.3 White noise

From a strictly formal standpoint the white noise does not exist as a sp, in the same
sense in which the Dirac delta δ(x) does not exist as a function. Neglecting however
for short the rigorous definitions giving a precise meaning to this idea, we will limit
ourselves here just to a few heuristic remarks to put in evidence its opportunities and
pitfalls

Definition 6.20. We will call white noise every process B(t) with autocovariance

CB(s, t) = q(t)δ(t− s) (6.61)

where q(s) > 0 is its intensity. A white noise is stationary when its intensity q is
constant, and in this case with τ = t− s we will have

CB(τ) = qδ(τ) SB(ϖ) = q (6.62)

namely its covariance spectrum is flat and hence motivates the name of the process

173



N. Cufaro Petroni: Probability and Processes

A white noise is then a singular process, as it is apparently disclosed by the occurrence
of a Dirac delta in its definition. Their distinctively irregular character is substantiated
by the remark that (6.61) entails in particular the non correlation of the process B(t)
in arbitrary separate instants, so that it takes values that are totally not predictable
from previous observations. In the following we will survey a few examples of white
noises in order to link their singular behavior to the use of processes allegedly derived as
derivatives of other non-differentiable processes, in the same way that the Dirac δ can
be considered as the derivative of the famously non-differentiable Heaviside function

Exemple 6.21. Poisson white noise: Take first the shot noise (6.31) obtained by
choosing h(t) = δ(t): in this case the process consists in a sequence of δ-like impulses
at the random times Tk, and could be formally considered as the derivative, trajectory
by trajectory, of a Poisson process in the form (6.6), namely

Ṅ(t) =
∞∑
k=1

δ(t− Tk) (6.63)

also called process of the Poisson impulses. To see that (6.63) is indeed a station-
ary white noise with intensity λ it is enough to remark that from (6.33) with h(t) = δ(t)
we find H = 1 and g(t) = δ(t) and hence

mṄ = λ RṄ(τ) = λ2 + λδ(τ) CṄ(τ) = λδ(τ) (6.64)

A slightly different stationary white noise with zero expectation can be obtained as the
derivative of a compensated Poisson process (6.22)

˙̃
N(t) = Ṅ(t)− λ (6.65)

It is apparent then that we are dealing here with a centered process of impulses because
from (6.64) it is easy to see that

m ˙̃
N
= mṄ − λ = 0

That this too is a stationary white noise follows from (6.64) and (6.65) since

R ˙̃
N
(τ) = C ˙̃

N
(τ) = RṄ(τ)− λ2 = λδ(τ)

It is illuminating finally to remark that all the other shot noises (6.31) with arbitrary
h(t) different from δ(t) can be obtained from a convolution of the process of the impulses
with the function h(t) according to the relation

X(t) = [Ṅ ∗ h](t) (6.66)

Exemple 6.22. Wiener white noise: Another kind of white noise is associated to
the Wiener process W (t): we know that W (t) is not differentiable and we can then
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Figure 6.17: Autocovariance CZ(τ) (6.68) of the ratio (6.67) for a Wiener process: the
triangle area always is D for every value of ∆t, but its shape is higher and narrower
for ∆t → 0

surmise that its formal derivative Ẇ (t) could display the singular properties of a white
nose. If we in fact consider, with a fixed ∆t, the process of the difference quotients

Z(t) =
∆W (t)

∆t
(6.67)

it is easy to see from the Proposition 6.19 about the increments process ∆W (t) that

mZ = 0 RZ(τ) = CZ(τ) =

{
0 if |τ | ≥ |∆t|
D
|∆t|

(
1− |τ |

|∆t|

)
if |τ | < |∆t| (6.68)

A plot of RZ(τ) = CZ(τ) is displayed in the Figure 6.17 and shows that

CZ(τ) → D δ(τ) ∆t → 0

As a consequence, if in a sense whatsoever we accept that the derivative Ẇ (t) exists as
the limit

Z(t) =
∆W (t)

∆t
→ Ẇ (t) ∆t → 0

we also expect that

mẆ = 0 RẆ (τ) = CẆ (τ) = D δ(τ) (6.69)

namely that Ẇ (t) is a stationary white noise of intensity D

The previous examples hint to a few increment features that we will also resume
later in further detail. Consider the increment processes ∆N(t),∆Ñ(t) and ∆W (t),
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with m∆Ñ(t) = m∆W (t) = 0 from (6.17) e (6.54): we know then that

E
[
∆Ñ2(t)

]
= σ2

∆Ñ
= λ|∆t| E

[
∆W 2(t)

]
= σ2

∆W = D|∆t| (6.70)

E
[
∆N2(t)

]
= σ2

∆N +m2
∆N = λ|∆t|+ λ2∆t2 (6.71)

that is – but only in a symbolic sense for the time being – in the limit ∆t → 0

E
[
dÑ2(t)

]
= E

[
dN2(t)

]
= λ|dt| E

[
dW 2(t)

]
= D|dt| (6.72)

This prompts the idea that the infinitesimal increments of our processes are not in fact
of the order dt, but rather of the order

√
dt, namely, symbolically again,

dN(t) = O
(√

dt
)

dÑ(t) = O
(√

dt
)

dW (t) = O
(√

dt
)

Albeit stated in a rather inaccurate form, this remark intuitively accounts for the non
existence of the limits of the difference quotients (6.67), and then explains the non-
differentiability of our processes. Remark moreover that, while strictly speaking the

white noises Ṅ(t),
˙̃
N(t) and Ẇ (t) do not exist as sp’s, the finite increments ∆N(t),

∆Ñ(t) and ∆W (t) always are well defined, and in a suitable sense (as we will see
later in the framework of the stochastic calculus) do exist – and play a decisive role

– also their stochastic differentials dN(t), dÑ(t) and dW (t) that for the time being
we intuitively understand just as infinitesimals of the order

√
dt. What in any case is

not possible to generalize straightaway without the risk of serious errors are the usual
formulas of the calculus connecting derivatives and differentials. In other words, for a
stochastic process the symbols

dN(t) dÑ(t) dW (t)

can be correctly defined end used (see Chapter 8), but we can not right away identify
them with the respective familiar expressions

Ṅ(t) dt
˙̃
N(t) dt Ẇ (t) dt

both because the involved derivatives do not exist, and because the increments are
infinitesimals of the order

√
dt rather than dt. In the Appendice H the risks of a

careless application of the usual rules of calculus are further discussed with a few
examples, while in the Chapter 8 the way to overcome these hurdles will be presented
in a more systematic way

6.4 Brownian motion

After Robert Brown3 observed in 1827 the flutter of pollen particles in a fluid (known
since then as Brownian motion) a long debate started about the nature of this phe-

3R. Brown, A brief account of microscopical observations made in the months of June, July and
August, 1827, on the particles contained in the pollen of plants; and on the general existence of active
molecules in organic and inorganic bodies, Phil. Mag. 4 (1828) 161-173
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nomenon, and even that these corpuscles were living beings was conjectured. Subse-
quent experiments showed that this is not the case, but the origin of the movement
remained puzzling. We had to wait for the papers of Einstein4 (1905) and Smolu-
chowski5 (1906) to get a theory giving a satisfactory account. Einstein was able in
particular to manufacture a physical model based on the interactions of the pollen
grains with the surrounding fluid molecules: he showed that the movement is charac-
terized by a diffusion coefficient D depending on the temperature, and also anticipated
that the mean square displacement in a time t in every direction is proportional to√
Dt. These statements – that today would ring trivial – were rather contentious at

that time, and it is important to remember that the success of the Einstein model was
a major factor in establishing the idea that matter is composed of atoms and molecules
(as was proved for good by Jean Perrin6 in 1909): an idea far from being generally
shared at that time

We must remember moreover that even a rigorous and coherent theory of the
stochastic processes is quite new. The first pioneering ideas about models that can be
traced back to the Wiener process are contained in a work by Thorvald Thiele (1880)
on the method of least squares, and chiefly in the doctoral thesis of Louis Bachelier
(1900). The latter work however has long been ignored because his argument was a
description of the prices behavior in the financial markets, a problem that has only
recently become popular in the physical and mathematical context. For this reason
the first works that actually opened the way to the modern study of the sp’s are those
of Einstein in 1905, Smoluchowski in 1906 and Langevin7 in 1908. In particular, this
group of articles identifies from the beginning the two paths that can be followed to
examine the evolution of a random phenomenon:

1. We can first study the evolution of the laws, namely – in our notation – of the
pdf ’s fX(x, t) and of the transition pdf ’s fX(x, t|y, s) by means of suitable partial
differential equations to be satisfied by these functions; in this case the focus
apparently is on the process distributions, and not on the process itself with its
trajectories

2. Alternatively we can investigate the trajectories x(t) of the process considering
them as generalizations of the traditional functions, and in this case we will have
to deal with differential equations on the process X(t) more or less as we do in the
traditional Newtonian mechanics. We will have to exercise, however, particular
care to correctly define what these equations can mean: while in fact the process
pdf ’s are ordinary functions, the processes X(t) we are dealing with are not in
general differentiable

4A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 17 (1905) 549-560

5M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der
Suspensionen, Ann. Phys. 21 (1906) 757-779

6J. Perrin, Mouvement brownien et réalité moléculaire, Ann. Chim. Phys. 8-ième série 18 (1909)
5-114

7P. Langevin, On the theory of Brownian motion, C. R. Acad. Sci. (Paris) 146 (1908) 530-533
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Historically the articles by Einstein and Smoluchowski follow the first line of thought,
while that of Langevin opened the second path. We will now briefly examine the
problems posed by these articles to introduce the topic in an intuitive way, referring
then to the Chapter 9 for a more in-depth discussion of the Brownian motion

6.4.1 Einstein (1905)

Let’s try to retrace – within a notation and a language adapted to ours – the arguments
of Einstein’s paper: let us first consider a time interval τ that is simultaneously quite
small with respect to the macroscopic times of observation, and quite large with respect
to the microscopic times of the movement of the molecules in the fluid. This choice,
as we will see later, is instrumental: on the one hand it reflects the observation that
pollen particles are small on macroscopic scales, but they are also large on molecular
scales; on the other hand it allows us to realistically conjecture that two displacements
in subsequent intervals τ actually are independent. If indeed τ is large with respect
to the characteristic times of the molecular thermal agitation, we can think that the
corresponding displacements resulting from the sum of many individual impacts are
altogether independent of each other. The smallness of τ on macroscopic scales, on
the other hand, allows us to use some convenient series expansions. The scale of a
parameter such as τ , that is both small on macroscopic scales and large on microscopic
scales, is also called mesoscopic. It must be said, however, that a description of the
Brownian motion at smaller scales (we will present it in the Chapter 9) was subse-
quently proposed by Ornstein and Uhlenbeck in another celebrated paper8 (1930) in
which a new process was defined that takes its name from its two proponents and that
we will discuss at length in the next chapters

Take then a rv Z, representing the pollen grain displacement in τ , and its pdf g(z)
that we will suppose symmetric and clustered near to z = 0 with∫ +∞

−∞
g(z) dz = 1, g(−z) = g(z)

g(z) ̸= 0 only for small values of z

Einstein starts by proving that, if X(t) is the position of the pollen grain at the time
t, then its pdf f(x, t) must comply with the equation

f(x, t+ τ) =

∫ +∞

−∞
f(x+ z, t)g(z) dz (6.73)

We will see later that this amounts to a particular form of the Markov property, but
for the time being we will prove it just in this form. His line of reasoning is typically
physical, but we prefer to give a justification in a language more adherent to our

8L.S. Ornstein, G.E. Uhlenbeck, On the theory of Brownian Motion, Phys. Rev. 36 (1930)
823-841
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notations. We know indeed from the rules of conditioning that for the two rv ’s X(t)
and X(t+ τ) we can always write

f(x, t+ τ) dx = P {x ≤ X(t+ τ) < x+ dx}

=

∫ +∞

−∞
P {x ≤ X(t+ τ) < x+ dx |X(t) = y} f(y, t) dy

On the other hand from our hypotheses we can say that Z = X(t + τ) − X(t) is
independent from X(t) and hence

P {x ≤ X(t+ τ) < x+ dx |X(t) = y} = P {x ≤ X(t) + Z < x+ dx |X(t) = y}
= P {x ≤ y + Z < x+ dx |X(t) = y}
= P {x− y ≤ Z < x− y + dx}
= g(x− y) dx

Taking then z = y − x, from the symmetry properties of g(z) it follows that

f(x, t+ τ) dx = dx

∫ +∞

−∞
g(x− y)f(y, t) dy

= dx

∫ +∞

−∞
f(x+ z, t)g(z) dz

that is (6.73). Since now τ is small and g(z) is non vanishing only for small z values,
we are entitled to adopt in (6.73) the following Taylor expansions

f(x, t+ τ) = f(x, t) + τ∂tf(x, t) + o(τ)

f(x+ z, t) = f(x, t) + z∂xf(x, t) +
z2

2
∂2
xf(x, t) + o(z2)

so that (in a slightly condensed notation)

f + τ∂tf = f

∫
g(z) dz + ∂xf

∫
zg(z) dz + ∂2

xf

∫
z2

2
g(z) dz

But from our hypotheses it is∫ +∞

−∞
g(z) dz = 1

∫ +∞

−∞
zg(z) dz = 0

and hence we finally have

∂tf(x, t) = ∂2
xf(x, t)

1

2τ

∫ +∞

−∞
z2g(z) dz

It is apparent moreover that g(z) (the pdf of the displacement Z in τ) is contingent
on τ , and that by symmetry E [Z] = 0, so that∫ +∞

−∞
z2g(z) dz
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is the variance of Z that we can reasonably suppose to be infinitesimal for τ → 0 (in
the sense that the increment Z tends to be invariably zero for τ → 0). If furthermore
we suppose that

lim
τ→0

1

τ

∫ +∞

−∞
z2g(z) dz = D

our equation will be

∂tf(x, t) =
D

2
∂2
x f(x, t) (6.74)

namely will coincide with the equation (6.53) satisfied by the pdf of a Wiener process:
its solution, with the initial condition f(x, 0+) = δ(x) (that is X(0) = 0, P -a.s.), will
then be the normal pdf N (0, Dt) with

E [X(t)] = 0 V [X(t)] = Dt (6.75)

The first important outcome of this Einstein model is then that the Brownian particle
position is well described by a Wiener process with diffusion coefficient D and
a variance linearly growing with t. From further thermodynamical argumentations
Einstein was also able to calculate the diffusion constant from the fluid temperature
according to the formula

D =
kT

3πηa
(6.76)

where k is the Boltzmann constant, T the temperature, η the viscosity and a the
diameter of the supposedly spherical particle. It will be shown in the next section that
the formula (6.76) and the other results listed above can also be derived, and in a
simpler way, from in the Langevin model

6.4.2 Langevin (1908)

In 1908 Langevin obtained basically the same results as Einstein directly handling
the particle trajectories with a shrewd (though not very rigorous) generalization of
the Newton equations of motion. In his model X(t) is the particle position while
V (t) = Ẋ(t) is its velocity that is supposed to be subjected to two kinds of forces due
to the surrounding fluid:

• the deterministic force due to the viscous drag that, within our notations, is
proportional to the velocity according to the formula −6πηaV (t)

• a random force B(t) due to the collisions with the molecules, having zero expec-
tation E [B(t)] = 0 and uncorrelated to X(t)

The Newton equation of motion then is

mẌ(t) = −6πηaẊ(t) +B(t) (6.77)
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6.4 Brownian motion

that, with V (t) = Ẋ(t), can also be reformulated as a first order equation for the
velocity

mV̇ (t) = −6πηaV (t) +B(t) (6.78)

known today as the Langevin equation
It will be argued in the Section 8.1 that the force B(t) effectively behaves as the

Wiener white noise of the Example 6.22: this will also be the starting point to introduce
the Itō stochastic calculus. For the time being however we will just derive the behavior
of E [X2(t)] amounting to the position variance because X(t) will be supposed always
centered around the origin. To this end multiply then (6.77) byX(t)

mX(t)Ẍ(t) = −6πηaX(t)Ẋ(t) +X(t)B(t)

and remarking that from the usual rules of calculus

d

dt

[
X2(t)

]
= 2X(t)Ẋ(t) (6.79)

d2

dt2
[
X2(t)

]
= 2Ẋ2(t) + 2X(t)Ẍ(t) = 2V 2(t) + 2X(t)Ẍ(t) (6.80)

we could also write

m

2

d2

dt2
[
X2(t)

]
−mV 2(t) = −3πηa

d

dt

[
X2(t)

]
+X(t)B(t)

Take now the expectations of both the sides, and remembering that by hypothesis it
is E [X(t)B(t)] = E [X(t)]E [B(t)] = 0, we find

m

2

d2

dt2
E
[
X2(t)

]
−E

[
mV 2(t)

]
= −3πηa

d

dt
E
[
X2(t)

]
From the equipartition law of the statistical mechanics we moreover know that, at the
thermal equilibrium, the average kinetic energy of a (one-dimensional) particle is

E
[m
2
V 2(t)

]
=

kT

2
(6.81)

where k is the Boltzmann constant and T the temperature. Our equation then reads
as

m

2

d2

dt2
E
[
X2(t)

]
+ 3πηa

d

dt
E
[
X2(t)

]
= kT

From a first integration we then have

d

dt
E
[
X2(t)

]
=

kT

3πηa
+ Ce−6πηat/m

where C represents an integration constant, so that, after a short transition (the ex-
ponential vanishes with a characteristic time of the order of 10−8 sec), and taking into
account (6.76), we find

d

dt
E
[
X2(t)

]
=

kT

3πηa
= D
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and then with a second integration we get again the Einstein result

V [X(t)] = E
[
X2(t)

]
= Dt (6.82)

where we have supposed X(0) = 0 in order to have E [X2(0)] = 0. The convenience of
this Langevin treatment is that it is rather intuitive being based on a physical model
with a simple equation of motion; also the calculations are rather elementary. However,
it also presents some risks due of its shaky mathematical basis as it is elucidated in the
Appendix H. The rigorous foundations for a convincing reformulation of this Langevin
model are instead postponed to the Chapter 8
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Chapter 7

Markov processes

7.1 Markov processes

7.1.1 Markov property

Although Markov’s property is generally given with a preferential time orientation –
that from the past to the future – its statement is actually symmetric in both directions,
and it could be intuitively expressed by saying that the events of the future and those of
the past result mutually independent conditionally to the knowledge of the information
available at present. To emphasize this symmetry we will start by giving the following
definition of the Markov property, briefly postponing a proof of its equivalence with
the other, more familiar formulations

Definition 7.1. We will say that a vector process with M components X(t) =
(
X1(t), . . . , XM(t)

)
is a Markov process if, for every choice of n, of the instants s1 ≤ . . . ≤ sm ≤ s ≤
t1 ≤ . . . ≤ tn and of the vectors y1, . . . ,ym,y,x1, . . . ,xn, it is

F (xn, tn; . . . ;x1, t1;ym, sm; . . . ;y1, s1 |y, s)
= F (xn, tn; . . . ;x1, t1 |y, s)F (ym, sm; . . . ;y1, s1 |y, s) (7.1)

where the F are the conditional cdf ’s of the process

It is important to remark that in this definition, more than the actual ordering of
the time instants, it is important their separation (produced by a present s) into two
groups (a past s1, . . . , sm, and a future t1, . . . , tn) that however play symmetrical roles:
the ordering of the instants within the two groups is instead inconsequential. Of course,
if X(t) is ac with its pdf ’s then (7.1) will become

f(xn, tn; . . . ;x1, t1;ym, sm; . . . ;y1, s1 |y, s)
= f(xn, tn; . . . ;x1, t1 |y, s) f(ym, sm; . . . ;y1, s1 |y, s) (7.2)

if instead it is discrete with integer values k, ℓ and distribution p we will have

p(kn, tn; . . . ;k1, t1; ℓm, sm; . . . ; ℓ1, s1 | ℓ, s)
= p(kn, tn; . . . ;k1, t1 | ℓ, s) p(ℓm, sm; . . . ; ℓ1, s1 | ℓ, s) (7.3)
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Proposition 7.2. X(t) is a Markov process iff

F (xn, tn; . . . ;x1, t1 |y, s;ym, sm; . . . ;y1, s1) = F (xn, tn; . . . ;x1, t1 |y, s) (7.4)

for every choice of s1 ≤ . . . ≤ sm ≤ s ≤ t1 ≤ . . . ≤ tn and y1, . . . ,ym,y,x1, . . . ,xn;
the roles of the past s1, . . . , sm and the future t1, . . . , tn in (7.4) can moreover be inter-
changed

Proof: Remark first that when X(t) is either ac, or discrete with integer values k, ℓ,
the condition (7.4) respectively become

f(xn, tn; . . . ;x1, t1 |y, s;ym, sm; . . . ;y1, s1) = f(xn, tn; . . . ;x1, t1 |y, s) (7.5)

p(kn, tn; . . . ;k1, t1 | ℓ, s; ℓm, sm; . . . ; ℓ1, s1) = p(kn, tn; . . . ;k1, t1 | ℓ, s) (7.6)

For convenience we will however prove the proposition only in the form (7.5): first,
if (7.5) holds we have

f(xn, tn; . . . ;x1, t1;ym, sm; . . . ;y1, s1 |y, s)

=
f(xn, tn; . . . ;x1, t1;y, s;ym, sm; . . . ;y1, s1)

f(y, s)

=
f(xn, tn; . . . ;x1, t1;y, s;ym, sm; . . . ;y1, s1)

f(y, s;ym, sm; . . . ;y1, s1)

f(y, s;ym, sm; . . . ;y1, s1)

f(y, s)

= f(xn, tn; . . . ;x1, t1 |y, s;ym, sm; . . . ;y1, s1) f(ym, sm; . . . ;y1, s1 |y, s)
= f(xn, tn; . . . ;x1, t1 |y, s) f(ym, sm; . . . ;y1, s1 |y, s)

that is (7.2) and the process is Markovian. Conversely, if the process is Markovian,
namely if (7.2) holds, we have

f(xn, tn; . . . ;x1, t1 |y, s;ym, sm; . . . ;y1, s1)

=
f(xn, tn; . . . ;x1, t1;y, s;ym, sm; . . . ;y1, s1)

f(y, s;ym, sm; . . . ;y1, s1)

=
f(xn, tn; . . . ;x1, t1;y, s;ym, sm; . . . ;y1, s1)

f(y, s)

f(y, s)

f(y, s;ym, sm; . . . ;y1, s1)

=
f(xn, tn; . . . ;x1, t1;ym, sm; . . . ;y1, s1 |y, s)

f(ym, sm; . . . ;y1, s1 |y, s)
= f(xn, tn; . . . ;x1, t1 |y, s)

and we recover (7.4). Given moreover the past-future symmetry of (7.1), the ordering
of the instants is not relevant for the proof and can be modified by interchanging past
and future, but always in compliance with their separation �

In this second formulation – in the version from the past to the future – the Markov
property states that the information afforded by the last available observation (the
present, here the time s) summarizes all that is worthwhile in the past (the instants
s1, . . . , sm) in order to forecast the future: to this end it is relevant indeed to know
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where the process is at the present s, but there is no need to know how (namely, along
which path) it arrived there. Of course the future is not altogether independent from
the past, but the latter is superfluous because the previous history is summarized in
the present s. This is in fact the simplest way to introduce a non trivial dependence
among the values of the process in different instants. Remark that if the future is
reduced to a single instant t then (7.5) and (7.6) take a simplified form highlighting
the role of the transition probabilities and pdf ’s

f(x, t |y, s;ym, sm; . . . ;y1, s1) = f(x, t |y, s) (7.7)

p(k, t | ℓ, s; ℓm, sm; . . . ; ℓ1, s1) = p(k, t | ℓ, s) (7.8)

Corollary 7.3. X(t) is a Markov process iff , for every choice of the instants s1 ≤
. . . ≤ sm ≤ s ≤ t1 ≤ . . . ≤ tn and of an arbitrary bounded Borel function g(x1, . . . ,xn),
it is

E [g(X(t1), . . . ,X(tn)) |X(s),X(sm), . . . ,X(s1)]

= E [g(X(t1), . . . ,X(tn)) |X(s)] P -a.s. (7.9)

that is iff , with arbitrary y1, . . . ,ym,y, it turns out that

E [g(X(t1), . . . ,X(tn)) |X(s) = y,X(sm) = ym, . . . ,X(s1) = y1]

= E [g(X(t1), . . . ,X(tn)) |X(s) = y] PX-a.s. (7.10)

where PX is here a shorthand for the joint distribution of X(s),X(sm), . . . ,X(s1).
From the Definition 3.41 it follows that the condition (7.9) is also equivalent to require
that for every g(x1, . . . ,xn) is is possible to find another Borel function h(x) such that

E [g(X(t1), . . . ,X(tn)) |X(s),X(sm), . . . ,X(s1)] = h(X(s)) P -a.s. (7.11)

Of course even here past and future can be exchanged

Proof: If (7.10) holds, taking g = χA the indicator of the event A = (−∞,x1]× . . .×
(−∞,xn] we find

F (xn, tn, . . . ,x1, t1 |y, s;ym, sm . . . ;y1, s1)

= P {(X(t1), . . . ,X(tn)) ∈ A |X(s) = y; . . . ;X(s1) = y1}
= E [χA(X(t1), . . . ,X(tn)) |X(s) = y; . . . ;X(s1) = y1]

= E [χA(X(t1), . . . ,X(tn)) |X(s) = y]

= P {(X(t1), . . . ,X(tn)) ∈ A |X(s) = y} = F (xn, tn, . . . ,x1, t1 |y, s)

namely (7.4). if conversely (7.4) holds, the (7.10) easily follows because the conditional
expectations are calculated from the conditional cdf ’s �

It is important to point out now that the Markovianity of a vector process X(t) in
no way entails the Markovianity of its individual components Xj(t) (or of a subset
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of them): these components in fact provide less information that the whole vector,
and hence are often non Markovian. We can look at this remark, however, also from
a reverse standpoint: if for instance a process with just one component X1(t) is not
Markovian, it is in general possible to add further components to assemble a Marko-
viano vector. This apparently considerably widens the scope of the Markov property,
because in many practical cases we will be entitled to consider our possibly non Marko-
vian processes just as components of some suitable Markovian vector process (see in
particular the analysis of the Brownian motion in the Section 9.3)

Proposition 7.4. Markov chain rule: The law of a Markov process X(t) is com-
pletely specified by its one-time distribution plus its transition distribution, that is –
respectively in the ac and discrete cases – by

f(x, t) and f(x, t |y, s) (7.12)

p(k, t) and p(k, t | ℓ, s) (7.13)

according to the chain rules

f(xn, tn; . . . ;x1, t1) = f(xn, tn|xn−1, tn−1) . . . f(x2, t2|x1, t1)f(x1, t1) (7.14)

p(kn, tn; . . . ;k1, t1) = p(kn, tn|kn−1, tn−1) . . . p(k2, t2|k1, t1)p(k1, t1) (7.15)

where the time ordering must be either ascending (t1 ≤ . . . ≤ tn) or descending

Proof: As recalled in the Section 5.1, the global law of a process is specified when we
know all its joint laws in an arbitrary (finite) number of arbitrary instants; but it is
easy to see – for instance in the ac case – that if X(t) is Markovian such joint laws can
be retrieved from the (7.12). Take indeed the arbitrary instants t1 ≤ . . . ≤ tn (possibly
also in the reverse order): from the definition (3.53) of conditional pdf and from (7.7)
we have in fact

f(xn, tn; . . . ;x1, t1) = f(xn, tn |xn−1, tn−1; . . . ;x1, t1) ·
f(xn−1, tn−1 |xn−2, tn−2; . . . ;x1, t1) · . . .

·f(x2, t2 |x1, t1) f(x1, t1)

= f(xn, tn |xn−1, tn−1) f(xn−1, tn−1 |xn−2, tn−2) · . . .
·f(x2, t2 |x1, t1) f(x1, t1)

that is the chain rule (7.14), so that all the joint pdf ’s are recovered from (7.12). In
the discrete case the proof is the same. Remark that to find (7.14) from the Markov
property (7.7) the time instants must be put either in an ascending or in a descending
order: any other possibility is excluded �

7.1.2 Chapman-Kolmogorov equations

The importance of Markovianity is immediately appreciated if one reflects on the fact
that, because of the Proposition 7.4, this property allows to completely reconstruct
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the whole hierarchy of the joint pdf ’s of X(t) – that is its global law – starting just
from the knowledge of its one-time laws and of its transition laws (namely either (7.12)
or (7.13)): this is a considerable simplification certainly not available for all other
kinds of process. In this regard, however, it should be noted immediately that the
functions (7.12) and (7.13) are always well defined for any type of process, even for the
non-Markovian ones: but in this latter eventuality they are no longer sufficient to fully
determine the law of the process. Furthermore it must be remembered that in general
there can be different processes (not all Markovian, of course) sharing both the same
one time laws, and the same transition laws displayed in (7.12) or (7.13). In other
words, given (for example in the ac case) the pair of functions (7.12), in general there
will be several different processes that admit them as one time pdf and transition pdf :
if among them there is a Markovian one – but this is in no way assured – this is unique
and retrievable through the chain rule (7.14) from the (7.12) only. These considerations
suggest then that the simple a priori assignment of a pair of functions (7.12) does not
guarantee at all that it is possible to assemble a Markov process from them: such
functions could in fact be associated to a plurality of processes of which no one is
Markovian. It is therefore important to be able first to find whether a given pair (7.12)
may or may not generate a Markov process, and we will see that, while f(x, t) is
totally arbitrary, not every possible transition pdf f(x, t, |y, s) can do the job. For
short in the following discussion the integrals and the sums without further indications
are understood to be performed on the whole available domain, for example RM ,N ,
while dx is a simplification of dMx

Proposition 7.5. Chapman-Kolmogorov equations: If X(t) is a Markov process,
and if s ≤ r ≤ t, the following equations hold in the ac case

f(x, t) =

∫
f(x, t |y, s)f(y, s) dy (7.16)

f(x, t |y, s) =

∫
f(x, t |z, r)f(z, r |y, s) dz (7.17)

while in the discretete case we will have

p(k, t) =
∑
ℓ

p(k, t | ℓ, s)p(ℓ, s) (7.18)

p(k, t | ℓ, s) =
∑
j

p(k, t | j, r)p(j, r | ℓ, s) (7.19)

The ordering of the instants s, r, t can be reversed, but r must always fall between s and
t

Proof: We remark first that the equations (7.16) and (7.18) are satisfied by every
process (even non Markovian): if indeed for instanceX(t) has a pdf, (7.16) immediately
derives from the definitions:

f(x, t) =

∫
f(x, t;y, s) dy =

∫
f(x, t |y, s)f(y, s) dy
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In the discrete case (7.18) follows in the same way. On the other hand only a Markov
process can satisfy the equations (7.17) and (7.19): to deduce (7.17) it is enough to
remark for example that

f(x, t |y, s) =

∫
f(x, t; z, r |y, s) dz =

∫
f(x, t |z, r;y, s)f(z, r |y, s) dz

=

∫
f(x, t |z, r)f(z, r |y, s) dz

where we used again the definitions, but also the Markov property (7.7) which holds
both for s ≤ r ≤ t, and for t ≤ r ≤ s �

As a consequence, while on the one hand the equations (7.16) and (7.18) allow to calcu-
late the one time law at the instant t from those in previous times (the transition laws
playing the role of propagators), on the other hand the equations (7.17) and (7.19) are
authentic Markov compatibility conditions for the transition laws: if (7.17) and (7.19)
are not met there is no hope to use either f(x, t |y, s) or p(k, t | ℓ, s) to assemble a
Markov process. When instead these equations are satisfied a Markov process can
always be manufactured taking advantage of the chain rule of the Proposition 7.4

Definition 7.6. We will call Markovian transition laws those whose f(x, t |y, s)
(or p(k, t | ℓ, s)) satisfy (7.17) (respectively (7.19)); taken then an arbitrary but fixed
conditioning instant s ≥ 0, we will furthermore tell apart the advanced (t ∈ [0, s])
from the retarded region (t ∈ [s,+∞))

Proposition 7.7. To every Markovian transition law, known at least in the retarded
region,

f(x, t |y, s) or p(k, t | ℓ, s) 0 ≤ s ≤ t

is associated a family of Markov processes, one for every initial law f0(x) (or p0(ℓ))

Proof: Confining ourselves for short to the ac case, take an arbitrary initial pdf
f(x, 0) = f0(x): then the Markovian transition pdf f(x, t |y, s) in the retarded re-
gion enables us to calculate the one time pdf at every instant

f(x, t) =

∫
f(x, t |y, 0)f0(y) dy

and hence to supplement the pair (7.12) needed to calculate the law of the Markov
process from the chain rule (7.14). Remark that to perform this last step it is enough
to know the transition pdf only in the retarded region when the chain rule is chosen
with ascending times �

Everything said so far has been settled in the perspective of assembling a Markov
process from given f0(x) and f(x, t, |y, s): we have shown that this is always possible
if f(x, t, |y, s) is Markovian, and known at least in the retarded region. There is
however a reverse standpoint that is just as relevant: given a sp, how can we check
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Figure 7.1: Possible relations between the process Markovianity and the Markovianity
of the transition pdf ’s. The two arrow heads convey the notion that only the laws of
Markov processes can be deduced from the initial and transition pdf ’s only

whether it is Markovian or not? Can we confine ourselves to inspect its transition
distributions? In this second perspective the Chapman-Kolmogorov equations are only
a necessary condition of Markovianity: they effectively afford us just a way to say with
certainty whether a process is not Markovian. There exist indeed examples of sp’s
– see the Appendix I for details – that are not Markovian despite having Markovian
transition distribution. This seeming inconsistency (see also Figure 7.1) is suitably
investigated only in the framework of the non uniqueness of the processes having the
same transition laws. If a sp is given and, for example, its transition pdf ’s satisfy
the Chapman-Kolmogorov equations, this is not sufficient to affirm that our process
is Markovian: starting from the given Markovian transition pdf a Markov process can
always be built in a unique way, but there can also be other non Markovian processes
featuring the same transition pdf, and in particular our initial sp can be exactly one of
them

7.1.3 Independent increments processes

Definition 7.8. We will say that X(t) is an independent increments process if,
for every choice of 0 ≤ t0 < t1 < . . . < tn−1 < tn, the rv’s X(t0), X(t1)−X(t0), . . . ,
X(tn)−X(tn−1) are independent. In particular an increment ∆X(t) = X(t+∆t)−
X(t) with ∆t > 0 will be independent1 from every X(s) with s ≤ t

We have already met several examples of sp’s with independent increments by con-
struction (for instance the Poisson and the Wiener processes, and several of their

1With 0 ≤ s ≤ t ≤ t+∆t, the r-vec’s

X(0) X(s)−X(0) X(t)−X(s) ∆X(t) = X(t+∆t)−X(t)

are all independent by definition, and hence ∆X(t) and X(s) = [X(s)−X(0)]+X(0) are independent
too
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byproducts): we will show now that the processes enjoying this property represent in
fact an especially important class of Markov processes

Proposition 7.9. Every independent increments process X(t) is Markovian and its
distribution is completely specified (but for an initial condition) by the law of their
increments ∆X(t) = X(t+∆t)−X(t) with ∆t > 0. Moreover it is

E [g(X(t+∆t)) |X(t) = x] = E [g(∆X(t) + x)] (7.20)

Proof: To keep the things short we will prove the Markovianity in the form (7.4) with
just one future time t + ∆t, and a slightly different notation: take the instants t1 ≤
. . . ≤ tm ≤ t ≤ t+∆t, then – from the increments independence and a straightforward
application of the point 3 of the Proposition 3.42 – it is

FX(x, t+∆t | y, t;ym, tm; . . . ;y1, t1)

= P {X(t+∆t) ≤ x | X(t) = y;X(tm) = ym; . . . ;X(t1) = y1}
= P {∆X(t) +X(t) ≤ x | X(t) = y;X(tm) = ym; . . . ;X(t1) = y1}
= P {∆X(t) + y ≤ x | X(t) = y;X(tm) = ym; . . . ;X(t1) = y1}
= P {∆X(t) + y ≤ x | X(t) = y} = P {∆X(t) +X(t) ≤ x | X(t) = y}
= P {X(t+∆t) ≤ x | X(t) = y} = FX(x, t+∆t | y, t)

In the same way we have moreover that

FX(x, t+∆t |y, t) = P {X(t+∆t) ≤ x |X(t) = y}
= P {∆X(t) +X(t) ≤ x |X(t) = y}
= P {∆X(t) ≤ x− y |X(t) = y}
= P {∆X(t) ≤ x− y} = F∆X(x− y,∆t; t)

where F∆X is the cdf of the increment ∆X(t) that apparently is now all we need
to find the global law of the process: we know indeed from the Proposition 7.7 that
– but for an initial distribution – this global law is completely determined from the
retarded transition distribution that here coincides with the increment distribution. Of
course, when the process is ac, we also can calculate the pdf ’s by differentiation and
in particular we find

fX(x, t+∆t |y, t) = f∆X(x− y,∆t; t) ∆t > 0 (7.21)

As for (7.20) we finally have

E [g(X(t+∆t)) |X(t) = x] = E [g(∆X(t) + x) |X(t) = x] = E [g(∆X(t) + x)]

just by retracing the previous lines of reasoning �

This result is very important to understand the deep connection existing between the
theory of independent increments processes and the limit theorems of the Chapter 4. If
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indeed X(t) is an independent increment process, we have just seen that the knowledge
of the increment distribution is paramount: to study these increments ∆X(t) = X(t)−
X(s) we can now decompose the interval [s, t] in n sub-intervals by means of the points

s = t0 < t1 < . . . < tn−1 < tn = t

and remark that the n increments X(tk)−X(tk−1) with k = 1, . . . , n are all indepen-
dent. As a consequence the increment ∆X(t) is the sum of n independent rv ’s, and
since n and the separation points are arbitrary it is easy to understand that in general
the law of the increment ∆X(t) will be the limit law of some suitable sequence of sums
of independent rv ’s. It is then cardinal for a complete understanding of the independent
increment processes (a large class of Markov processes) to be able to identify all the
possible limit laws of sums of independent rv ’s. We already know some of them: the
Gaussian laws (Central limit Theorem), the degenerate laws (Law of large numbers)
and the Poisson laws (Poisson theorem). It would be possible to show however that
these are only the most widespread examples of a much larger class of possible limit
laws known as infinitely divisible laws, first suggested in 1929 by B. de Finetti and then
completely classified in the 30’s with the results of P. Lévy, A. Khintchin and others.
We will not have here the time for a detailed discussion of these distributions that
are a cornerstone of the Lévy processes2 (see later Section 7.1.6) and we will confine
ourselves to give below just their definition

Definition 7.10. We will say that a law with chf φ(u) is infinitely divisible when
for every n = 1, 2, . . . we can find another chf φn(u) such that φ(u) = [φn(u)]

n.

It is easy to see then from (4.5) that a rv with an infinitely divisible law law φ can always
be decomposed in the sum of an arbitrary number n of other iid rv ’s with law φn, and
this apparently accounts for the chosen name. Beyond the three mentioned families of
laws (Gauss, degenerate and Poisson), are infinitely divisible also the laws of Cauchy
and Student, the exponentials and many other families of discrete and continuous laws.
There are conversely several important families of laws that are not infinitely divisible:
in particular it can be shown that no distribution with the probability concentrated in a
bounded interval (as the uniform, the beta or the Bernoulli) can be infinitely divisible.
Of course the distributions that are not infinitely divisible can not be the laws of the
independent increments of a Markov processes

7.1.4 Stationarity and homogeneity

We already know that generally speaking the increments stationarity of a process does
not entail its global stationarity in the strict sense (see Definition 5.9); but in fact
even its wide sense stationarity (5.15) is not assured. There are indeed examples (the
Poisson and Wiener processes are cases in point) with stationary increments, but non

2K.I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge UP (Cam-
bridge, 1999)
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constant expectation and/or variance. On the other hand even the requirements (5.12)
and (5.13) on the one- and two-times laws, albeit entailing at least the wide sense
stationarity, are not sufficient for the strict sense stationarity. The case of Markov
processes, however, is rather peculiar: for short in the following we will confine the
exposition to ac processes with a pdf

Proposition 7.11. A Markov process X(t) is strict sense stationary iff

f(x, t) = f(x) (7.22)

f(x, t;y, s) = f(x,y; τ) τ = t− s (7.23)

In this case its transition pdf ’s will depend only on τ according to the notation

f(x, t |y, s) = f(x, τ |y) (7.24)

and if moreover X(t) also has independent increments these transition pdf ’s will co-
incide with the stationary increment laws

f(x, τ |y) = f∆X(x− y, τ) (7.25)

Proof: The strict sense stationarity (5.11)

f(x1, t1; . . . ;xn, tn) = f(x1, t1 + s; . . . ;xn, tn + s) (7.26)

for every t1, . . . , tn and s, follows from (7.22) and (7.24) when the joint pdf in the
r.h.s. of (7.26) is calculated with the Markov chain rule of Proposition 7.4 because
only the time differences are taken into account. The reverse statement is trivial.
Since X(t) is strict sense stationary also its increments ∆X(t) will be stationary (see
Section 5.5) and their pdf f∆X(x, τ) will depend only on τ : if they are also independent,
from (7.21), (7.22) and (7.23) we have

f(x,y; τ) = f(x, t+ τ |y, t)f(y, t) = f∆X(x− y, τ)f(y) (7.27)

namely (7.25) because of the relation f(x,y; τ) = f(x, τ |y)f(y) between the joint
and the conditional densities �

The Chapman-Kolmogorov equations for stationary Markov processes (here
s > 0, t > 0 are the interval widths) are then reduced to

f(x) =

∫
f(x, t |y)f(y) dy (7.28)

f(x, t+ s |y) =

∫
f(x, t |z)f(z, s |y) dz (7.29)

where the first equation (7.28) just states that f(x) is an invariant pdf that is deter-
mined by the initial condition; the second equation (7.29) instead is the Markovianity
condition for a stationary f(x, t |y)
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Corollary 7.12. The Markovianity of stationary and independent incre-
ments can also be expressed in terms either of the convolutions of their pdf ’s

f∆X(x, t+ s) = [f∆X(t) ∗ f∆X(s)](x) s > 0, t > 0 (7.30)

or of the products of the corresponding chf ’s

φ∆X(u, t+ s) = φ∆X(u, t)φ∆X(u, s) s > 0, t > 0 (7.31)

and it amounts to require that an increment on an interval of width s+ t be the sum of
two independent increments on intervals of widths s and t. In this case we also speak
of Markovian increments

Proof: When the increments are independent too, we see from (7.25) that the station-
ary Chapman-Kolmogorov equations (7.28) and (7.29) become

f(x) =

∫
f∆X(x− y, t)f(y) dy (7.32)

f∆X(x− y, t+ s) =

∫
f∆X(x− z, t)f∆X(z − y, s) dz (7.33)

To show then that (7.33) takes the form of a convolution (7.30) it would be enough to
change the variables according to the transformation x − y → x, e z − y → z with
Jacobian determinant equal to 1, to have

f∆X(x, t+ s) =

∫
f∆X(x− z, t)f∆X(z, s) dz

The form (7.31) for the chf ’s easily follows then from the convolution theorem �

Definition 7.13. We will say that a Markov process is time homogeneous when
its transition pdf (7.24) only depends on the difference τ = t − s; in this case the
Chapman-Kolmogorov Markovianity condition takes the form (7.29)

Remark that the time homogeneity only requires the condition (7.23), while nothing is
said about the other condition (7.22). As a consequence a time homogeneous Markov
process is not in general a stationary process, not even in the wide sense

Corollary 7.14. Every process with independent and stationary increments is a time
homogeneous Markov process, and – when an invariant distribution exist – it is also
strict sense stationary if the initial distribution is chosen to be invariant

Proof: When the independent increments are stationary the transition pdf (7.21) of
the process only depends on ∆t, and not on t, namely it is of the form (7.24) and
hence the process is time homogeneous according to the Definition 7.13. If moreover
also the one time distribution is invariant then both (7.22) and (7.23) hold and the
process is strict sense stationary according to the Proposition 7.11. Remark however
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that in general the chosen initial distribution is not necessarily the invariant one, so
that a time homogeneous Markov process may not be stationary (not even in wide
sense). This may happen either because the invariant distribution does not exist at
all (as for the Wiener and Poisson sp’s), or because the invariant pdf has not been
chosen as the initial distribution for the Chapman-Kolmogorov equation (7.32). In
these cases the process is not stationary according to the Definition 5.9, but it is only
time homogeneous according to the Definition 7.13 �

7.1.5 Distribution ergodicity

Suppose we want to construct (the law of) a stationary Markov process starting with a
given (at least in the retarded region t > 0) time homogeneous transition pdf f(x, t |y)
such as (7.24). We should first check that the Chapman-Kolmogorov Markovianity con-
dition in the form (7.29) is satisfied: if this is the case, according to the Proposition 7.7
we will be able to manufacture a whole family of processes by arbitrarily choosing the
initial pdf f0(x). All these Markov processes will be time homogeneous by definition,
but – retracing the discussion of the Corollary 7.14 – they could all be non-stationary.
The initial pdf f0(x) may indeed be non invariant, nay an invariant pdf could not exist
at all for the given f(x, t |y). If this happens (either because an invariant law does not
exist, or because we have chosen a non invariant initial law) the process will be time
homogeneous, but not stationary and it will evolve according to

f(x, t) =

∫
f(x, t|y)f0(y) dy (7.34)

If instead f0(x) is chosen as the invariant pdf f(x), then the equation (7.34) be-
comes (7.28) with f(x) = f0(x), and the process is strict sense stastionary. It is
then especially important to provide a procedure to find – if it exists – an invariant
distribution for a given time homogeneous transition pdf

Going back then to the idea of ergodicity presented in the Section 5.5, take first an
ac stationary Markov process X(t) with invariant pdf f(x), and consider the problem
of estimating its distribution

P {X(t) ∈ B} = E [χB (X(t))] =

∫
B

f(x) dx B ∈ B
(
RM

)
(7.35)

(here again χB(x) is the indicator of the set B) by means of a time averaage on a fairly
long time interval [−T, T ]. To do that start by defining the process Y (t) = χB (X(t)),
so that from (7.35) it is

E [Y (t)] =

∫
B

f(x) dx (7.36)

and then take the rv

Y T =
1

2T

∫ T

−T

Y (t) dt =
1

2T

∫ T

−T

χB (X(t)) dt
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representing the time fraction of [−T, T ] during which X(t) sojourns in B (that is an
estimate of the relative frequency of its findings in B)

Theorem 7.15. Take the family of time homogeneous ac Markov processes associ-
ated (according to the Proposition 7.7) to a Markovian homogeneous transition pdf
f(x, t|y): if it exists an asymptotic pdf of f(x, t|y), that is an f̄(x) such that

lim
t→+∞

f(x, t |y) = f̄(x) ∀ y ∈ RM (7.37)

then f̄(x) is both an invariant pdf , and the asymptotic pdf of every other time ho-
mogeneous non stationary process: namely, starting with an arbitrary non invariant
initial pdf f0(x), we will always have

lim
t→+∞

f(x, t) = f̄(x) (7.38)

Moreover, if X(t) is stationary with invariant pdf f̄(x), and if the autocovariance
CY (τ) of Y (t) meets the condition∫ +∞

0

|CY (τ)| dτ < +∞ (7.39)

than we will have

lim
T→∞

-ms Y T =

∫
B

f̄(x) dx = P {X(t) ∈ B} (7.40)

and X(t) will be said to be distribution ergodic

Proof: Taking for granted that we can exchange limits and integrals, from (7.37) an
from the Chapman-Kolmogorov equation (7.29) we have first of all∫

f(x, t |y)f̄(y) dy =

∫
f(x, t |y) lim

s→+∞
f(y, s | z) dy

= lim
s→+∞

∫
f(x, t |y)f(y, s | z) dy = lim

s→+∞
f(x, t+ s |z) = f̄(x)

so that the limit pdf turns out to be also the invariant pdf. If then we take an arbi-
trary (non invariant) initial distribution f0(x), from the Chapman-Kolmogorov equa-
tion (7.34) and from (7.37) we also find the result (7.38):

lim
t→+∞

f(x, t) = lim
t→+∞

∫
f(x, t|y)f0(y) dy = f̄(x)

∫
f0(y) dy = f̄(x)

Within our notations, finally, the ms-convergence (7.40) amounts to require that the
process Y (t) = χB (X(t)) be expectation ergodic in the sense of the Theorem 5.12,
and this is assured, according to the Corollary 5.13, if the sufficient condition (7.39) is
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satisfied. In this regard it is finally useful to add that, being X(t) a stationary process,
we have

CY (τ) = E [Y (t+ τ)Y (t)]−E [Y (t+ τ)]E [Y (t)]

= E [Y (t+ τ)Y (t)]−E [Y (t)]2

=

∫ ∫
χB(x)χB(y)f(x, t+ τ ;y, t) dxdy −

(∫
B

f̄(x) dx

)2

=

∫
B

∫
B

f(x, τ |y)f̄(y) dxdy −
∫
B

∫
B

f̄(x)f̄(y) dxdy

=

∫
B

∫
B

[
f(x, τ |y)− f̄(x)

]
f̄(y) dxdy

so that the condition (7.37) entails first that CY (τ) is infinitesimal for τ → +∞, an
second that the condition (7.39) is satisfied too if the said convergence of (7.37) is fast
enough: in this case, according to the Corollary 5.13, Y (t) is expectation ergodic, and
X(t) is distribution ergodic �

In conclusion, given a time homogeneous and ergodic Markov process with an asymp-
totic pdf f̄(x) in the sense of (7.37), all the initial pdf f0(x) follow time evolutions
f(x, t) tending toward the same invariant pdf f̄(x). As a matter of fact the process
gradually loses memory of the initial distribution and tend toward a limit law that co-
incides with the invariant pdf f̄(x). Such a process, albeit non stationary in a proper
sense, is asymptotically stationary in the sense that its limit law is invariant

Remark however that under particular conditions (when for instance the available
space is partitioned in separated, non communicating regions) there could be more
than one invariant or asymptotic pdf. In this case we must pay attention to identify
the invariant pdf of interest and its relation to the asymptotic pdf : we will neglect
however to elaborate further on this point

7.1.6 Lévy processes

Definition 7.16. A sp X(t) is a Lévy process if

1. X(0) = 0 P -a.s.

2. it has independent and stationary increments

3. it is stochastically continuous according to the Definition 5.5, that is (keeping into
account also 1. and 2.) if for every ϵ > 0

lim
t→0+

P {|X(t)| > ϵ} = 0 (7.41)

From what it has been stated in the previous sections, it follows that every Lévy process
is a homogeneous Markov process, and that the laws of its increments must be infinitely
divisible. Therefore the global law of a Lévy process is completely determined by the
infinitely divisible, stationary laws of its increments according to the following result
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Proposition 7.17. If X(t) is a Lévy process, then it exists an infinitely divisible chf
φ(u) and a time scale T > 0 such that the chf φ∆X(u, t) of the increments of width t
is

φ∆X(u, t) = [φ(u)]t/T t ≥ 0 (7.42)

Conversely, taken an arbitrary infinitely divisible chf φ(u) and a time scale T > 0,
the (7.42) will always be the chf of the increments of a suitable Lévy process

Proof: Without going into the details of a discussion that would exceed the boundaries
of our presentation3, we will just remark about the reverse statement first that the
infinite divisibility of the given chf entails that (7.42) continues to be an infinitely
divisible chf for every t ≥ 0, and then that the formula (7.42) for the increment chf is
the simplest way to meet the Chapman-Kolmogorov Markovianity conditions (7.31) of
the Corollary 7.12. �

Exemple 7.18. According to the previous proposition, to assemble a Lévy process we
must start by choosing an infinitely divisible law with chf φ(u), and then we must de-
fine the process law by adopting the independent and stationary increment chf (7.42).
The explicit form of the increment pdf can then be calculated – if possible – by inverting
the chf . We have already seen at least two examples of Lévy processes: the simple
Poisson process N(t) is stochastically continuous, and the chf of its independent
increments (6.9) follows from (7.42) just by taking an infinitely divisible Poisson law
P(α) with chf φ(u) = eα(e

iu−1), and then λ = α/T into (6.9). In the same way the
Wiener process W (t) is stochastically continuous, and the chf of its independent
increments (6.44) follows from (7.42) taking the infinitely divisible law N (0, α2) with
chf φ(u) = e−α2u2/2 and D = α2/T into (6.44). A third example, the Cauchy pro-
cess, will be presented in the Definition 7.25, and again the chf of its independent
increments (7.52) will come from (7.42) starting from the infinitely divisible law C(α)
with chf φ(u) = e−α|u| then taking a = α/T .

7.1.7 Continuity and jumps

Different kinds of continuity have been presented in the Definition 5.5, and the con-
ditions for the ms-continuity (and hence for the stochastic continuity too) have been
discussed in the Proposition 5.6. We will look now into the conditions for the sample
continuity of a Markov process X(t)

Theorem 7.19. A Markov process X(t) is sample continuous iff the following Lin-
deberg conditions are met

sup
y,t

P {|∆X(t)| > ϵ |X(t) = y} = o (∆t) ∀ϵ > 0 ∆t → 0 (7.43)

3K.I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge UP (Cam-
bridge, 1999). D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge UP
(Cambridge, 2009)
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If the process also has stationary and independent increments such conditions become

P {|∆X(t)| > ϵ} = o (∆t) ∀ϵ > 0 ∆t → 0 (7.44)

Proof: Omitted4 �

According to this result the sample continuity of a Markov process (to wit that all
its sample trajectories are continuous for every t, but for a subset of zero probability)
is ensured when (uniformly in y and t) the probability that a ∆t-increment exceeds
in absolute value an arbitrary threshold ϵ > 0 is infinitesimal of order larger than
∆t → 0. In other words the Lindeberg condition is an apparent requirement on the
vanishing rate of |∆X(t)| when ∆t → 0. Remark finally that if the process is ac the
condition (7.43) becomes

lim
∆t→0

1

∆t
sup
y,t

∫
|x−y|>ϵ

f(x, t+∆t |y, t) dx = 0 ∀ϵ > 0 (7.45)

that is

lim
∆t→0

1

∆t

∫
|x−y|>ϵ

f(x, t+∆t |y, t) dx = 0 ∀ ϵ > 0 (7.46)

uniformly in y and t. If moreover the process also has independent and stationary
increments, taking x− y → x, from (7.25) the Lindeberg condition becomes

lim
∆t→0

1

∆t

∫
|x|>ϵ

f∆X(x,∆t) dx = 0 ∀ ϵ > 0 (7.47)

Remark that there is a sort of competition betweenMarkovianity and continuity
of a process according to the chosen time scale of the observations. We could say that
the shorter the observation times, the more continuous a process, but at the same time
the less Markovian. In a sense this depends on the fact that a continuous description
requires more information on the past of the trajectory and therefore comes into conflict
with Markovianity. For instance a model for the molecular movement in a gas based
on hard spheres and instantaneous collisions provides piecewise rectilinear trajectories
with sudden velocity changes: in this case the velocity process will be discontinuous,
while the position is continuous and Markovian (the position after a collision will
depend on the starting point, but not on its previous path). If however we go to
shorter times with a more detailed physical description (elasticity, deformation ...) the
velocity may become continuous too, but the position is less Markovian because a longer
section of its history will be needed to predict the future even only probabilistically

Of course, a process may be stochastically continuous even without being sample
continuous, but in this case the trajectories may present discontinuities (jumps):
this is not unusual, for example, among the Lévy processes. Typically the jumping

4W. Feller, An Introduction to Probability Theory and its Applications - II, Wiley
(New York, 1971). C.W. Gardiner, Handbook of Stochastic Methods, Springer (Berlin, 1997)

198



7.1 Markov processes

times of our Markov processes are random as well as their jump sizes (think to a
compound Poisson process); in general, however, they are first kind discontinuities and
anyhow the trajectories will be cadlag, namely right continuous and admitting a left
limit in every instant. The study of both the discontinuities and their distributions is
a major topic in the investigations about the Lévy processes that, however, we will be
obliged to neglect

7.1.8 Poisson, Wiener and Cauchy processes

In the next two sections we will deduce the univariate distributions of the Markov
processes of our interest starting from their Markovian transition laws, and we will
exploit them in order to scrutinize the process properties. In two cases (Poisson and
Wiener processes) the processes have already been heuristically introduced working up
their trajectories and then deducing their basic probabilistic attributes: here we will
dwell in particular on their possible sample continuity. In other two cases (Cauchy and
Ornstein-Uhlenbeck processes) the processes will be introduced here for the first time
from their transition distributions moving on then to obtain all their other properties

Poisson process

Definition 7.20. We say that N(t) is a simple Poisson process of intensity λ
if it takes integer values, and has stationary and independent increments, with the
homogeneous Markovian transition probability (in the retarded region ∆t > 0)

pN(n, t+∆t|m, t) = e−λ∆t (λ∆t)n−m

(n−m)!
n = 0, 1, 2, . . . ; 0 ≤ m ≤ n (7.48)

consistent with the distribution (6.8) of the increments of width ∆t > 0. Since we
know from the Proposition 6.7 that a Poisson process is ms-, and hence stochastically
continuous, when moreover N(0) = 0, P -a.s., then N(t) is also a Lévy process

Recalling then that from (6.9) the increment chf is

φ∆N(u, t) = eλt(e
iu−1) (7.49)

the Lévy Poisson process can also be produced according to the Proposition 7.17 start-
ing from the infinitely divisible Poisson chf

φ(u) = eλT (eiu−1)

where T > 0 is the usual time constant. Yet, given the jumping character of its
trajectories discussed in the Section 6.1.2, it easy to understand that N(t) can not
be sample continuous, as it is also upheld by the following result that exploits the
Lindeberg conditions
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Proposition 7.21. A Poisson process N(t) does not satisfy the Lindeberg condi-
tions (7.44) and hence it is not sample continuous

Proof: We see indeed for 0 < ϵ < 1 and t → 0 that the probability

P {|∆N | > ϵ} = 1− P {|∆N | ≤ ϵ} = 1− P {|∆N | = 0} = 1− e−λt

= 1−
(
1− λt+ . . .+ (−1)n

λntn

n!
+ . . .

)
= λt+ o(t)

is of the first order in t, and hence the Lindeberg conditions are not respected �

We also recall that N(t) is homogeneous, but it is not stationary (not even in the wide
sense because its expectation is not constant), and that for t → +∞ its transition
probabilities do not converge toward a probability distribution: they rather flatten to
zero for every n. As a consequence there is no invariant law for the Poisson transition
distributions, and N(t) is not ergodic

Wiener process

Definition 7.22. We say that W (t) is a Wiener process with diffusion coefficient
D if it is ac, and has stationary and independent increments, with the homogeneous
Markovian transition pdf (in the retarded region)

fW (x, t+∆t|y, t) = e−(x−y)2/2D∆t

√
2πD∆t

∆t > 0 (7.50)

consistent with the distribution (6.43) of the increments of width ∆t > 0. Since we
know from the Proposition 6.18 that a Wiener process is ms-, and hence stochastically
continuous, when moreover W (0) = 0, P -a.s., then W (t) is also a Lévy process

Recalling then that from (6.44) the increment chf is

φ∆W (u, t) = e−Dtu2/2 (7.51)

the Lévy Wiener process can also be produced according to the Proposition 7.17 start-
ing from the infinitely divisible, centered Gaussian chf

φ(u) = e−DT u2/2

where T > 0 is the usual time constant. At variance with the Poisson process, however,
W (t) is also sample continuous, as anticipated in the Proposition 6.18 and upheld by
the following result that again exploits the Lindeberg conditions

Proposition 7.23. A Wiener process W (t) is Gaussian if W (0) is Gaussian; it more-
over meets the Lindeberg conditions (7.44) and hence it is sample continuous
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Proof: The Gaussianity follows by direct inspection of the joint pdf ’s of the r-vec
W (t1), . . . ,W (tn) (with arbitrary instants) that result from the chain rule (7.14). As
for the sample continuity, with t → 0+ we have indeed from (7.50)

P {|∆W | > ϵ} =

∫
|x|>ϵ

f∆W (x, t) dx = 2

[
1− Φ

(
ϵ√
Dt

)]
−→ 0

where we adopted the notation

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy Φ′(x) =

e−x2/2

√
2π

Then by using l’Hôpital’s rule, and by taking α = ϵ/
√
Dt we have

lim
t↓0

1

t

[
1− Φ

(
ϵ√
Dt

)]
= lim

t↓0

ϵ

2t

e−ϵ2/2Dt

√
2πDt

= lim
α→+∞

Dα3

ϵ2
e−α2/2

√
2π

= 0

so that the Lindeberg conditions are obeyed and W (t) is sample continuous �

We already know that W (t) is homogeneous but not stationary, and that for t → +∞
its transition pdf ’s do not converge to some other pdf (they rather flatten to the
uniform Lebesgue measure on R that however is not a pdf ): then there is no invariant
distribution for the Wiener transition pdf ’s and hence W (t) is not ergodic

Cauchy process

Proposition 7.24. The stationary increments ∆X(t) ∼ C(a∆t) for a > 0,∆t > 0,
with a chf

φ∆X(u,∆t) = e−a∆t|u| (7.52)

and a pdf

f∆X(x,∆t) =
1

π

a∆t

x2 + a2∆t2
(7.53)

are Markovian, and thus enable us to define an entire family of independent increments
Markov processes

Proof: The chf ’s (7.52) trivially comply with the conditions required in the Corol-
lary 7.12 because for increments s > 0 and t > 0 we find

φ∆X(u, t+ s) = e−a(t+s)|u| = e−at|u|e−as|u| = φ∆X(u, t)φ∆X(u, s)

As a consequence, according to the Proposition 7.7 we can consistently work out (the
laws of) an entire family of independent and stationary increment processes X(t) from
the increment distribution (7.53) �
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Definition 7.25. We say that X(t) is a Cauchy process with parameter a if it is
ac, and has stationary and independent increments, with the homogeneous Markovian
transition pdf (in the retarded region)

fX(x, t+∆t | y, t) = 1

π

a∆t

(x− y)2 + (a∆t)2
∆t > 0 (7.54)

consistent with the distribution (7.53) of the increments of width ∆t > 0

Remark that, because of the properties of the Cauchy distributions, a Cauchy process
X(t) is not provided with expectation, variance and autocorrelation: we will always
be able to calculate probabilities, medians or quantiles of every order, but we will be
oblige to do without the more familiar moments of order larger or equal to 1

Proposition 7.26. A Cauchy process X(t) is stochastically continuous, but it is not
sample continuous. As a consequence, if we also take X(0) = 0 P -a.s., then X(t) is a
Lévy process

Proof: The process X(t) is stochastichally continuous (and hence is a Lévy process if
X(0) = 0, P -a.s.) because from its distribution

fX(x, t) =
1

π

at

x2 + a2t2
φX(u, t) = e−at|u| (7.55)

it is easy to see that for ϵ > 0

lim
t↓0

P {|X(t)| > ϵ} = lim
t↓0

∫
|x|>ϵ

fX(x, t) dx = lim
t↓0

(
1− 2

π
arctan

ϵ

at

)
= 0

namely that the requirement (7.41) is met. On the other hand from (7.53) we again
have

lim
∆t↓0

P {|∆X(t)| > ϵ} = lim
∆t↓0

∫
|x|>ϵ

f∆X(x,∆t) dx = lim
∆t↓0

(
1− 2

π
arctan

ϵ

a∆t

)
= 0

but then from l’Hôpital’s rule we see that

lim
∆t↓0

1

∆t

(
1− 2

π
arctan

ϵ

a∆t

)
=

2ϵ

aπ
lim
∆t↓0

a2

ϵ2 + a2∆t2
=

2a

ϵπ
> 0

namely that the Cauchy process does not comply with the Lindeberg condition (7.44)
so that it is not sample continuous �

Because of the previous result the Cauchy process makes jumps even if – at variance
with the other jumping process, the Poisson one – it takes continuous values in R (it
is indeed ac). It could also be shown that the lengths of the Cauchy jumps actually
cluster around infinitesimal values, but this is not inconsistent with the existence of
finite size discontinuities too. Finally the Cauchy process is apparently homogeneous,
but it is neither stationary nor ergodic because its transition pdf ’s do not converge
toward a limit pdf for t → ∞
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7.1.9 Ornstein-Uhlenbeck processes

Proposition 7.27. The homogeneous transition pdf (α > 0, β > 0, ∆t > 0)

f(x, t+∆t | y, t) = f(x,∆t | y) = e−(x−ye−α∆t)2/ 2β2(1−e−2α∆t)√
2πβ2(1− e−2α∆t)

(7.56)

of the Gaussian law N (ye−α∆t , β2(1− e−2α∆t)), is Markovian and ergodic with invari-
ant pdf

f(x) =
e−x2/2β2√

2πβ2
(7.57)

namely that of the Gaussian law N (0, β2)

Proof: Since (7.56) is time homogeneous, to prove the Markovianity we should check
the second Chapman-Kolmogorov equation in the form (7.29): to this end we re-
mark that by taking v = ze−αt, and by keeping into account the reproductive proper-
ties (3.67) of the normal laws, we find∫

f(x, t|z)f(z, s|y) dz =

∫
e−(x−ze−αt)2/ 2β2(1−e−2αt)√

2πβ2(1− e−2αt)

e−(z−ye−αs)2/ 2β2(1−e−2αs)√
2πβ2(1− e−2αs)

dz

=

∫
e−(x−v)2/ 2β2(1−e−2αt)√

2πβ2(1− e−2αt)

e−(v−ye−α(t+s))2/ 2β2e−2αt(1−e−2αs)√
2πβ2e−2αt(1− e−2αs)

dv

= N (0, β2(1− e−2αt)) ∗N (ye−α(t+s), β2e−2αt(1− e−2αs))

= N (ye−α(t+s), β2(1− e−2α(t+s))) = f(x, t+ s|y)

as required for the Markovianity. The ergodicity follows then from the fact that

N (ye−ατ , β2(1− e−2ατ )) −→ N (0, β2) τ → +∞

with the limit pdf (7.57), and we can check by direct calculation that this limit law is
also invariant: taking indeed v = ye−αt as before, it is∫

f(x, t|y)f(y) dy =

∫
e−(x−ye−αt)2/ 2β2(1−e−2αt)√

2πβ2(1− e−2αt)

e−y2/ 2β2√
2πβ2

dy

=

∫
e−(x−v)2/ 2β2(1−e−2αt)√

2πβ2(1− e−2αt)

e−v2/ 2β2e−2αt√
2πβ2e−2αt

dv

= N (0, β2(1− e−2αt)) ∗N (0, β2e−2αt) = N (0, β2) = f(x)

where we used again the reproductive properties (3.67) �

Definition 7.28. We will say that X(t) is an Ornstein-Uhlenbeck process if it
is a homogeneous and ergodic Markov process with transition pdf (7.56); its invariant
limit pdf (7.57) apparently selects the stationary Ornstein-Uhlenbeck process when it
is taken as the initial pdf
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Proposition 7.29. An Ornstein-Uhlenbeck process X(t) is sample continuous, and it
is Gaussian if X(0) is Gaussian. In particular the stationary process (that starting
from (7.57)) is Gaussian with E [X(t)] = 0, V [X(t)] = β2 and

R(τ) = C(τ) = β2e−α|τ | ρ(τ) = e−α|τ | S(ϖ) =
β2

π

α

α2 +ϖ2
(7.58)

while, for every t1, . . . , tn, it is (X(t1), . . . , X(tn)) ∼ N (0,A) with covariance matrix

A = β2


1 e−α|τ12| . . . e−α|τ1n|

e−α|τ21| 1 e−α|τ2n|

...
. . .

...
e−α|τn1| e−α|τn2| . . . 1

 τjk = tj − tk (7.59)

The increments ∆X = X(t)−X(s) of an Ornstein-Uhlenbeck process are not indepen-
dent, and therefore it can never be a Lévy process

Proof: Postponing to the Section 7.40 the proof of the sample continuity, and to the
Section 8.5.4 that of the Gaussianity for arbitrary Gaussian initial conditions X(0), we
will confine the present discussion first to the Gaussianity of the stationary process:
from (7.56) and (7.57) we have indeed for two times with τ = t− s > 0

f(x, t; y, s) = f(x, t | y, s)f(y, s) = f(x, τ | y)f(y)

=
e−(x−ye−ατ )2/ 2β2(1−e−2ατ )√

2πβ2(1− e−2ατ )

e−y2/2β2√
2πβ2

=
e−(x2+y2−2xye−ατ )/ 2β2(1−e−2ατ )√

2πβ2
√
2πβ2(1− e−2ατ )

and juxtaposing it to the general form (2.24) of a bivariate normal pdf we deduce that
the r-vec (X(s), X(t)) is a jointly bivariate Gaussian N (0,A) with

A = β2

(
1 e−ατ

e−ατ 1

)
The results (7.58) easily follow then from this bivariate normal distribution, while the
generalization to n time instants is achieved by means of a rather tedious iterative
procedure.

As for the non independence of the increments it will be discussed here only for the
stationary process too: in this case we will take advantage of the previous bivariate
law N (0,A) to show that two increments on non overlapping intervals are correlated,
and hence they are not independent. With s1 < s2 ≤ t1 < t2 we have indeed from the
previous results

E
[(
X(t2)−X(t1)

)(
X(s2)−X(s1)

)]
= E [X(t2)X(s2)] +E [X(t1)X(s1)]−E [X(t2)X(s1)]−E [X(t1)X(s2)]

= β2
[
e−α(t2−s2) + e−α(t1−s1) − e−α(t2−s1) − e−α(t1−s2)

]
= β2

(
e−αt2 − e−αt1

)
(eαs2 − eαs1)

that in general is a non vanishing quantity, so that the increments correlation is non
zero and their independence is ruled out �
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7.1 Markov processes

7.1.10 Non Markovian, Gaussian processes

Non Markovian stochastic processes do in fact exist, and of course they are bereft of
most of the properties hitherto exposed. In particular we will no longer be able to find
the global law of the process just from the transition pdf by means of the usual chain
rule: these simplifications are lost, and the hierarchy of the finite joint laws needed to
define the overall distribution must be given otherwise

Exemple 7.30. Non Markovian transition distributions: Take first the condi-
tional pdf ’s uniform in [y − α(t− s) , y + α(t− s)]

f(x, t | y, s) =
{ 1

2α(t−s)
se |x− y| ≤ α(t− s)

0 se |x− y| > α(t− s)
(7.60)

It is easy to see then that, with the notation
∣∣[a, b]∣∣ = |b− a|, it is∫

f(x, t | z, r)f(z, r | y, s) dz

=

∣∣ [x− α(t− r), x+ α(t− r)] ∩ [y − α(r − s), y + α(r − s)]
∣∣

4α2(t− r)(r − s)

̸= f(x, t | y, s)

so that the Chapman-Kolmogorov condition (7.17) is not satisfied, although (7.60) is a
legitimate conditional pdf : hence in no way a conditional uniform distribution can be
taken as the starting point to define the laws of a Markov process

A second example is the family of the conditional Student pdf ’s (a > 0, ν > 0)

f(x, t+∆t | y, t) = 1

a∆t B
(
1
2
, ν
2

) ( a2∆t2

(x− y)2 + a2∆t2

) ν+1
2

(7.61)

where B(u, v) is the Riemann beta function defined as

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
(7.62)

taking advantage of the gamma function (3.68). It is easy to see that the transi-
tion pdf ’s (7.61) are a generalization of the Cauchy pdf (7.54) that is recovered for
ν = 1. Albeit a legitimate transition pdf , a long calculation that we will neglect here
would prove that the (7.61) too does not meet the second Chapman-Kolmogorov equa-
tion (7.17), but for the unique particular Cauchy case with ν = 1 that, as we already
know, is Markovian. As a matter of fact a Student Lévy (and hence Markov) process
does exist, but its transition pdf ’s have not the form (7.61), and are not even explicitly
known with the exception of the Cauchy case
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It is important then to emphasize that there is another relevant family of processes
(that in general are not Markovian) whose global distributions can still be provided
in an elementary way, viz. the Gaussian processes of the Definition 5.3. Their main
simplification comes from the properties of the multivariate, joint Gaussian laws that
are wholly specified by means of a covariance matrix and a mean vector. If indeed X(t)
(with just one component for short) is a Gaussian process, from the Definition 4.17
we find that all its joint laws will be completely specified through the funcions (5.1)
and (5.3)

m(t) = E [X(t)] C(t, s) = E [X(t)X(s)]−m(t)m(s)

If in fact we have an arbitrary m(t) and a symmetric, non negative definite C(t, s), then
for every choice of t1, . . . , tn the r-vec (X(t1), . . . , X(tn)) will be distributed according
to the law N (b,A) with

bj = m(tj) ajk = C(tj, tk)

In other words the chf of an arbitrary finite joint distribution of X(t) takes the form

φ(u1, t1; . . . ;un, tn) = e i
∑

j m(tj)uj− 1
2

∑
jk C(tj ,tk)ujuk (7.63)

so that the law of a Gaussian processX(t) is completely specified whenm(t) and C(t, s)
(non negative defined) are given. We already met a few instances of Gaussian processes
that were also Markov processes: the Wiener process W (t) with W (0) = 0 P -a.s.,
about which, from the Propositions 6.17 and 6.18, we know that

mW (t) = 0 CW (t, s) = Dmin{s, t}

and the stationary Ornstein-Uhlenbeck process X(t) about which, from the Proposi-
tion 7.29, we have that

mX(t) = 0 CX(t, s) = β2e−α|t−s|

Several other Gaussian processes can be defined in this way: a notable example of
a Gaussian, non Markovian process, the fractional Brownian motion, is briefly
presented in the Appendix J

7.2 Jump-diffusion processes

The second Chapman-Kolmogorov equation (7.17) is a major compatibility condition
for the Markovian transition pdf ’s, but – since it is a non linear, integral equation – it
would be troublesome to actually use it to find the transition distributions of a Markov
process. It is crucial then to show that, for a wide class of Markov processes, (7.17)
can be put in a more tractable layout. Remark moreover that this new form will turn
out to be nothing else than a generalization of the Einstein diffusion equations put
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forward in 1905, and therefore it stands within the first of the two lines of thought
mentioned in the Section 6.4: it will be indeed an equation for the distributions, not
for the trajectories of the process. For short in the following we will generally confine
our presentation to the case of ac processes endowed with pdf ’s

Definition 7.31. We will say that a Markov process X(t) = (X1(t), . . . , XM(t)), with
a transition pdf f(x, t |y, s) given at least in the retarded region t > s, is a jump-
diffusion when it conforms to the following conditions5:

1. it exists ℓ(x|z, t) ≥ 0 called Lévy density such that, for every ϵ > 0, and
uniformly in x, z, t, it is

lim
∆t↓0

1

∆t
f(x, t+∆t | z, t) = ℓ(x|z, t) for |x− z| > ϵ (7.64)

and if in particular ℓ(x|z, t) = 0 the process is simply called a diffusion

2. it exists A(z, t) called drift vector such that, for every ϵ > 0, and uniformly in
z, t, it is

lim
∆t↓0

1

∆t

∫
|x−z|<ϵ

(xi − zi)f(x, t+∆t |z, t) dx = Ai(z, t) +O(ϵ) (7.65)

which is equivalent to say that

Ai(z, t) = lim
ϵ↓0

lim
∆t↓0

E

[
∆Xi(t)

∆t
χ[0,ϵ)

(
|∆X(t)|

) ∣∣∣∣ X(t) = z

]
(7.66)

where χB( · ) is the indicator of a set B

3. it exists B(z, t) called diffusion matrix such that, for every ϵ > 0, and uni-
formly in z, t, it is

lim
∆t↓0

1

∆t

∫
|x−z|<ϵ

(xi − zi)(xj − zj)f(x, t+∆t |z, t) dx = Bij(z, t) +O(ϵ) (7.67)

which is equivalent to say that

Bij(z, t) = lim
ϵ↓0

lim
∆t↓0

E

[
∆Xi(t)∆Xj(t)

∆t
χ[0,ϵ)

(
|∆X(t)|

) ∣∣∣∣ X(t) = z

]
(7.68)

It is possible to show that higher order terms of the type (7.65) and (7.67) would vanish,
and therefore they will be simply neglected. Remark that, since ℓ(x|z, t) = 0 for x ̸= z
entails that the Lindeberg condition (7.46) is apparently satisfied, a diffusion process
will always be sample continuous. A non vanishing ℓ(x|z, t) would point instead to
the existence of discontinuous trajectories, that is to the jumping behavior of a generic
jump-diffusion

5W. Feller, An Introduction to Probability Theory and its Applications - II, Wiley
(New York, 1971). C.W. Gardiner, Handbook of Stochastic Methods, Springer (Berlin, 1997)
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7.2.1 Forward equations

Theorem 7.32. The pdf f(x, t) of a jump-diffusion X(t) with X(0) = X0, P -a.s.,
is a solution of the so-called forward equation

∂tf(x, t) = −
∑
i

∂i[Ai(x, t)f(x, t)] +
1

2

∑
i,j

∂i∂j[Bij(x, t)f(x, t)]

+

∫
z ̸=x

[ℓ(x|z, t) f(z, t)− ℓ(z|x, t) f(x, t)] dz (7.69)

with the initial condition

f(x, 0+) = f0(x) (7.70)

where f0(x) is the X0 pdf . Moreover its transition pdf f(x, t |y, s) in the retarded
region t > s, with X(s) = y, is a solution (7.69) with the initial condition

f(x, s+) = δ(x− y) (7.71)

Proof: Remembering that the uniformity of the convergence in the Definition 7.31
will enable us below to exchange limits and integrals, we will prove first the second
statement to the effect that the transition pdf f(x, t |y, s) of a jump-diffusion in the
retarded region t ≥ s is solution of the forward equation (7.69). Take indeed a function
h(x) at least twice differentiable (in order to be able to implement the Taylor formula
up to the second order) and, recalling that a derivative – if it exists at all – coincides
with the right derivative, we will have

∂tE [h (X(t)) |X(s) = y] = ∂t

∫
h(x)f(x, t |y, s) dx =

∫
h(x) ∂tf(x, t |y, s) dx

= lim
∆t↓0

∫
h(x)

f(x, t+∆t |y, s)− f(x, t |y, s)
∆t

dx

For ∆t > 0 and renaming the variables wherever needed, from the Chapman-Kolmo-
gorov equation (7.17) and a simple normalization we can write∫

h(x)f(x, t+∆t |y, s) dx =

∫∫
h(x)f(x, t+∆t |z, t)f(z, t|y, s) dxdz∫

h(x)f(x, t |y, s) dx =

∫
h(z)f(z, t |y, s) dz

=

∫∫
h(z)f(x, t+∆t | z, t)f(z, t|y, s) dxdz

so that, decomposing the integration domain in |x− z| < ϵ and |x− z| ≥ ϵ by means
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of an arbitrary ϵ > 0, we will have∫
h(x) ∂tf(x, t |y, s) dx

= lim
∆t↓0

∫∫
[h(x)− h(z)]

f(x, t+∆t | z, t)
∆t

f(z, t|y, s) dxdz

= lim
ϵ↓0

lim
∆t↓0

[∫∫
|x−z|<ϵ

[h(x)− h(z)]
f(x, t+∆t | z, t)

∆t
f(z, t|y, s) dxdz

+

∫∫
|x−z|≥ϵ

[h(x)− h(z)]
f(x, t+∆t |z, t)

∆t
f(z, t|y, s) dxdz

]
Take first the integration on the domain |x − z| < ϵ: for ϵ → 0 we can use for h(x)
the Taylor formula up to the second order in a neighborhood of z

h(x) = h(z) +
∑
i

(xi − zi)∂ih(z)

+
1

2

∑
i,j

(xi − zi)(xj − zj)∂i∂jh(z) + |x− z|2R(x,z)

where for the remainder it is understood that R(x,z) → 0 when |x−z| → 0. We then
have for the integral on |x− z| < ϵ∫∫

|x−z|<ϵ

[h(x)− h(z)]
f(x, t+∆t | z, t)

∆t
f(z, t|y, s) dxdz

=

∫∫
|x−z|<ϵ

[∑
i

(xi − zi)∂ih(z)

+
1

2

∑
i,j

(xi − zi)(xj − zj)∂i∂jh(z)

]
f(x, t+∆t | z, t)

∆t
f(z, t|y, s) dxdz

+

∫∫
|x−z|<ϵ

|x− z|2R(x, z)
f(x, t+∆t |z, t)

∆t
f(z, t|y, s) dxdz

that, in the limits ∆t → 0 and ϵ → 0, because of (7.65) and (7.67) and with a few
integrations by parts, becomes∫ [∑

i

Ai(z, t)∂ih(z) +
∑
i,j

1

2
Bij(z, t)∂i∂jh(z)

]
f(z, t|y, s) dz

=

∫
h(z)

{
−
∑
i

∂zi
[
Ai(z, t)f(z, t |y, s)

]
+

1

2

∑
i,j

∂zi∂zj
[
Bij(z, t)f(z, t |y, s)

]}
dz

In the external domain |x − z| ≥ ϵ instead – decomposing the integral in two terms
and exchanging the names of the integration variables x and z in the first addend –
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we have∫∫
|x−z|≥ϵ

[h(x)− h(z)]
f(x, t+∆t |z, t)

∆t
f(z, t|y, s) dxdz

=

∫∫
|x−z|≥ϵ

h(z)

[
f(z, t+∆t |x, t)

∆t
f(x, t|y, s)

−f(x, t+∆t |z, t)
∆t

f(z, t|y, s)
]
dxdz

Then from (7.64), in the limit ∆t → 0 we first get∫∫
|x−z|≥ϵ

h(z)
[
ℓ(z|x, t) f(x, t|y, s)− ℓ(x|z, t) f(z, t|y, s)

]
dxdz

and subsequently for ϵ → 0∫
h(z)

{∫
x̸=z

[
ℓ(z|x, t) f(x, t|y, s)− ℓ(x|z, t) f(z, t|y, s)

]
dx

}
dz

where we adopted the shorthand notation∫
x̸=z

. . . dx = lim
ϵ→0

∫
|x−z|≥ϵ

. . . dx

Collecting all the results we then have∫
h(z) ∂tf(z, t |y, s) dz

=

∫
h(z)

{
−
∑
i

∂zi [Ai(z, t)f(z, t |y, s)] +
1

2

∑
i,j

∂zi∂zj [Bij(z, t)f(z, t |y, s)]

+

∫
x̸=z

[
ℓ(z|x, t) f(x, t|y, s)− ℓ(x|z, t) f(z, t|y, s)

]
dx

}
dz

and since h(x) is arbitrary we will be finally able to write (exchanging for convenience
z and x)

∂tf(x, t |y, s) = −
∑
i

∂xi
[Ai(x, t)f(x, t |y, s)] +

1

2

∑
i,j

∂xi
∂xj

[Bij(x, t)f(x, t |y, s)]

+

∫
z ̸=x

[ℓ(x|z, t) f(z, t|y, s)− ℓ(z|x, t) f(x, t|y, s)] dz (7.72)

that is the form of our integro-differential forward equation (7.69) adapted to the case
of the transition pdf ’s. To have that in the initial form (7.69) for f(x, t) it will be
enough to multiply (7.72) by f(y, s) and to integrate it in dy: the first Chapman-Kol-
mogorov equation (7.16) will then entail that also f(x, t) is a solution of (7.69), in
particular for s = 0 �
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Theorem 7.33. Let us take

1. a non negative Lévy density ℓ(x|y, t)

2. a drift vector A(x, t)

3. a definite nonnegative covariance matrix B(x, t)

then – under appropriate conditions that we will avoid to specify here – it exists a
unique non negative and normalized solution of the forward equation (7.69) with a
degenerate initial condition (7.70) and suitable boundary conditions; such a solution
f(x, t |y, s) for t > s satisfies the Chapman-Kolmogorov equation (7.17) and therefore
is a Markovian transition pdf in the retarded region fulfilling the requirements of the
Definition 7.31: as a consequence, according to the Proposition 7.7 it selects an entire
family of jump-diffusions, one for every possible initial condition

Proof: Omitted6 �

We have derived the previous results by supposing that the process was endowed with
a pdf f : it is apparent then that these statements must be suitable modified in order to
encompass also the cases of processes bereft of a pdf. Confining ourselves to the simplest
instances, let us take a process with integer values (as the simple Poisson process N(t))
and revise first the conditions (7.64), (7.65) and (7.67). To this end remark that for an
integer values process the requirements |x−z| > ϵ and |x−z| ≤ ϵ with arbitrary ϵ > 0,
just mean n ̸= m and n = m. As a consequence the conditions (7.65) and (7.67) are
trivially reduced to A = 0 and B = 0. The first condition (7.64) is instead to be
replaced with its discrete version

lim
∆t↓0

1

∆t
p(n, t+∆t |m, t) = ℓ(n|m, t) with n ̸= m (7.73)

uniformly in n,m, t. Under these new conditions it is possible to show then that the
forward equation (7.72) is replaced by the master equation (see later Section 7.2.3
for further details)

∂tp(n, t) =
∑
k

[
ℓ(n|k, t)p(k, t)− ℓ(k|n, t)p(n, t)

]
(7.74)

whose solution is the transition probability p(n, t |m, s) if the initial condition is
p(n, s+) = δnm. Of course for such a kind of processes with integer values their
jumping behavior is a foregone conclusion, and this accounts for the prominent role
played by ℓ(n|m, t). But it would be wrong to suppose in reverse that ℓ(x|y, t) should
vanish only because a process takes continuous values. We already remarked indeed at
the end of the Section 7.1.1 that even these processes can have discontinuous, jumping
trajectories as for instance the Cauchy process that will be further elaborated later on
in the present chapter

6I.F. Gihman, A.V. Skorohod, The Theory of Stochastic Processes - II, Springer
(Berlin, 1975). C.W. Gardiner, Handbook of Stochastic Methods, Springer (Berlin, 1997)
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7.2.2 Backward equations

The equation (7.72) is known as forward equation because it – understood as an equa-
tion for the transition pdf ’s in the retarded region – involves operations on the final
variables x, t of f(x, t |y, s) imposing initial conditions at the time s < t. It admits
however also another formulation called backward equation: in this second case the
integro-differential operations are performed on the initial variables y, s, while the so-
lutions must satisfy appropriate final conditions at the time t > s. It is possible to
prove indeed that the transition pdf ’s of a jump-diffusion process are also solutions of
the following backward equation

∂sf(x, t |y, s) = −
∑
i

Ai(y, s)∂yif(x, t |y, s)

−1

2

∑
i,j

Bij(y, s)∂yi∂yjf(x, t |y, s) (7.75)

+

∫
z ̸=y

ℓ(z|y, s)
[
f(x, t|y, s)− f(x, t|z, s)

]
dz

with final conditions f(x, t |y, t−) = δ(x−y). These two formulations. forward (7.72)
and backward (7.75), are in fact equivalent: a retarded pdf ’s f(x, t |y, s) solution of
the forward equations in x, t with initial conditions y, s, is also a solution of the back-
ward equation in y, s with the same coefficients and final conditions x, t. Both these
formulations can be adopted according to the needs: the forward equations are more
popular in the physical applications, but also the backward ones are employed in several
problems, as for instance that of the first passage time

From a mathematical standpoint, however, the backward equation (7.75) is more
desirable precisely because it operate on the conditioning (initial) variables y, s. To
write the forward equation in the form (7.72) we need in fact the existence of the
pdf f(x, t |y, s) because its integro-differential operations are performed on the final
variables x, t. On the other hand this requirement is apparently not always met, and
hence (as for the integer values processes) a different formulation is needed for the cases
without a pdf. The conditioning variables y, s are conversely always explicitly spelled
in every distribution or expectation conditioned by {X(s) = y}. This enables us to
find a general form of the evolution equations without being obliged to tell apart the
ac cases with pdf from the discrete ones

Without going into needless details and neglecting for simplicity the jump (integral)
terms, let us take just the backward equations (7.75) in its diffusive form

∂sf(x, t |y, s) = −
∑
i

Ai(y, s)∂yif(x, t |y, s)

−1

2

∑
i,j

Bij(y, s)∂yi∂yjf(x, t |y, s) (7.76)
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and an arbitrary function h(x): if we now define

g(y, s) = E
[
h(X(t))

∣∣X(s) = y
]
=

∫
h(x)f(x, t |y, s) dx

a multiplication of (7.76) by h(x) and a subsequent x-integration yield

∂sg(y, s) = −
∑
i

Ai(y, s)∂ig(y, s)−
1

2

∑
i,j

Bij(y, s)∂i∂jg(y, s) (7.77)

with final condition g(y, t−) = h(y). The equation (7.77), that no longer makes an ex-
plicit reference to a pdf, is known in the literature as a particular case of Kolmogorov
equation

7.2.3 Main classes of jump-diffusions

Pure jump processes: Master equation

Consider first the case A = B = 0, while only ℓ ̸= 0: the forward equation (7.69) then
becomes

∂tf(x, t) =

∫
z ̸=x

[ℓ(x|z, t) f(z, t)− ℓ(z|x, t) f(x, t)] dz (7.78)

When in particular the process takes only integer values (like the simple Poisson pro-
cess) the equation (7.78) appears in the discrete form (7.74). Equations of this kind
are called master equations, and the processes X(t) ruled by them (even if they take
continuous values) are known as pure jump processes because they lack both a drift
and a diffusive component

Proposition 7.34. If X(t) is a pure jump process taking continuous values, the prob-
ability of performing a finite size jump in the time interval [t, t+ dt] is

P {X(t+ dt) ̸= X(t) |X(t) = y} = dt

∫
x̸=y

ℓ(x|y, t) dx+ o (dt) (7.79)

Proof: The retarded transition pdf f(x, t|y, s), with t > s and initial condition
f(x, s+|y, s) = δ(x− y), abide by the master equation (7.78) in the form

∂tf(x, t|y, s) =
∫
z ̸=x

[ℓ(x|z, t) f(z, t|y, s)− ℓ(z|x, t) f(x, t|y, s)] dz

that for s = t can also be symbolically written as

f(x, t+ dt|y, t)− δ(x− y)

dt
=

∫
z ̸=x

[
ℓ(x|z, t)δ(z − y)− ℓ(z|x, t)δ(x− y)

]
dz

namely (neglecting for short the higher order infinitesimals) even as

f(x, t+ dt|y, t) =
[
1− dt

∫
z ̸=x

ℓ(z|x, t) dz
]
δ(x− y) + dt

∫
z ̸=x

ℓ(x|z, t)δ(z − y) dz

213



N. Cufaro Petroni: Probability and Processes

We then have

P {X(t+ dt) ̸= X(t) |X(t) = y} =

∫
x̸=y

f(x, t+ dt|y, t) dx

=

∫
x̸=y

dx

[
1− dt

∫
z ̸=x

ℓ(z|x, t) dz
]
δ(x− y)

+dt

∫
x̸=y

dx

∫
z ̸=x

ℓ(x|z, t)δ(z − y) dz

and since from the Dirac delta properties it is∫
x̸=y

dx

[
1− dt

∫
z ̸=x

ℓ(z|x, t) dz
]
δ(x− y) = 0∫

x̸=y

dx

∫
z ̸=x

ℓ(x|z, t)δ(z − y) dz =

∫
x̸=y

ℓ(x|y, t) dx

we finally get the result (7.79) �

This result enables us to identify both the jumping character of the process and the
meaning of the Lévy density ℓ(x|y, t): for an infinitesimal dt the term ℓ(x|y, t) dt plays
the role of a density for the probability of not staying in the initial position y by per-
forming a jump of finite size x− y in a time dt, as pointed out also in (7.79). Keep in
mind though that this interpretation cannot be pushed beyond a certain limit because
generally speaking ℓ(x|y, t) itself is not normalizable and hence can not be consid-
ered as an authentic pdf : the previous integral of ℓ(x|y, t) can indeed approximate a
probability only as an infinitesimal, that is only if multiplied by dt

Diffusion processes: Fokker-Planck equation

Let us consider now the case ℓ = 0, but B ̸= 0 (it is not relevant whether A vanishes
or not): for such a diffusion process the Lindeberg criterion guarantees then that X(t)
is sample continuous, while the forward equation becomes

∂tf(x, t) = −
∑
i

∂xi
[Ai(x, t)f(x, t)] +

1

2

∑
i,j

∂xi
∂xj

[Bij(x, t)f(x, t)] (7.80)

and takes the name of Fokker-Planck equation . This, at variance with (7.69), is
moreover an exclusively partial differential equation without additional integral terms.
The equation (6.53) previously found for the Wiener process with just one component
is a particular case with A = 0 and B = D

Proposition 7.35. If on a diffusion process we impose the condition X(t) = y,P -a.s.
at an arbitrary instant t > 0, then after an infinitesimal delay dt > 0 the process law
becomes

X(t+ dt) ∼ N
(
y +A(y, t)dt , B(y, t)dt

)
(7.81)
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Proof: We know that the retarded transition pdf of our process f(x, t|y, s), with
t > s and initial condition f(x, s+|y, s) = δ(x− y), is a solution of the Fokker-Planck
equation (7.80) in the form

∂tf(x, t|y, s) = −
∑
i

∂xi
[Ai(x, t)f(x, t|y, s)] +

1

2

∑
i,j

∂xi
∂xj

[Bij(x, t)f(x, t|y, s)]

If the time interval [s, t] is infinitesimal the transition pdf f at a time t very near to
s will still be squeezed around its initial position y, so that – near to y where it is
not zero – f will exhibit very large spatial derivatives. We can then assume that the
corresponding spatial derivatives of A and B will be negligible w.r.t. that of f , and
hence that in a first approximation the functions A and B can reasonably be considered
as constant and still coincident with their values in y at the time s. If this is so the
previous Fokker-Planck equation is reduced to

∂tf(x, t |y, s) = −
∑
i

Ai(y, s)∂xi
f(x, t |y, s) + 1

2

∑
i,j

Bij(y, s)∂xi
∂xj

f(x, t |y, s)

where A and B depend now only on the variables y, s not involved in the differenti-
ations. Remark that, despite their formal similarities, this equation differs from the
backward equation without jumping terms (7.76): not only the sign of the diffusive
term B is reversed, but in (7.76) the derivatives involve y, s, not x, t, so that the terms
A and B can not be considered constant as we do here. Our approximated Fokker-
Planck equation with constant coefficients can now be easily solved: it is possible to
check indeed by direct calculation that, with t− s = dt > 0, the solution is

f(x, t |y, s) =

√∣∣B−1(y, s)
∣∣

(2π)Mdt
e−[x−y−A(y,s)dt]·B−1(y,s)[x−y−A(y,s)dt] / 2dt

where |B−1| is the determinant of the matrix B−1. It is obvious then that – if we
adapt our notations to that of (7.81) with the replacements s → t, and t → t + dt
– we are now able to state that, starting from X(t) = y, in an infinitesimal interval
[t, t+ dt] a solution of (7.80) evolves exactly toward the law (7.81) of our proposition.
This apparently elucidates both the role of drift velocity of A, and that of diffusion
coefficient of B, and hence fully accounts for their names �

Degenerate processes: Liouville equation

Take finally ℓ = B = 0 and only A ̸= 0 so that the forward equation becomes

∂tf(x, t) = −
∑
i

∂i[Ai(x, t)f(x, t)] (7.82)

also known as Liouville equation. This is now a differential equation ruling the pdf
evolution with neither jumps nor diffusion terms, and hence the process will predictably
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follow degenerate trajectories: we will show indeed that its solution with initial con-
dition f(x, s+) = δ(x− y) progresses without spreading, and remains concentrated in
one point that follows a deterministic trajectory

Proposition 7.36. Take a dynamic system x(t) ruled by the equation

ẋ(t) = A
[
x(t), t

]
t ≥ s (7.83)

and its solution x(t|y, s) labeled by its initial condition x(s) = y: then the solution of
the Liouville equation (7.82) with initial condition f(x, s+ |y, s) = δ(x− y) is

f(x, t |y, s) = δ
[
x− x(t|y, s)

]
(7.84)

namely the process is invariably degenerate in x(t|y, s) and follows its trajectory without
diffusion

Proof: We will first prove the following property of the δ distributions:

∂tδ
[
x− g(t)

]
= −

∑
i

ġi(t) ∂iδ
[
x− g(t)

]
(7.85)

Confining ourselves for simplicity to the one-dimensional case, we find indeed for an
arbitrary test function φ(x) that∫

φ(x) ∂tδ
[
x− g(t)

]
dx = ∂t

∫
φ(x)δ

[
x− g(t)

]
dx

= ∂t
[
φ(g(t))

]
= ġ(t)φ′(g(t))

−
∫

φ(x)ġ(t) ∂xδ
[
x− g(t)

]
dx = ġ(t)

∫
φ′(x) δ

[
x− g(t)

]
dx = ġ(t)φ′(g(t))

and hence the two sides of (7.85) coincide. Keeping then into account also (7.83) we
find

−
∑
i

∂i
[
Ai(x, t) δ

(
x− x(t |y, s)

)]
= −

∑
i

∂i
[
Ai

(
x(t |y, s), t

)
δ
(
x− x(t |y, s)

)]
= −

∑
i

Ai

(
x(t |y, s), t

)
∂iδ
(
x− x(t |y, s)

)
= −

∑
i

ẋi(t |y, s) ∂iδ
(
x− x(t |y, s)

)
= ∂tδ

(
x− x(t |y, s)

)
showing in this way that (7.84) is a solution of the Liouville equation (7.82) �
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7.2.4 Notable jump-diffusion processes

We will analyze now a few typical examples of forward equations : for simplicity in the
present section we will confine the discussion to the one-component processes so that
in the ac case with pdf f the equation (7.69) becomes

∂tf(x, t) = −∂x[A(x, t)f(x, t)] +
1

2
∂2
x[B(x, t)f(x, t)]

+

∫
z ̸=x

[ℓ(x|z, t) f(z, t)− ℓ(z|x, t) f(x, t)] dz (7.86)

while for the discrete processes taking integer values the master equation (7.74) becomes

∂tp(n, t) =
∑
k

[
ℓ(n|k, t)p(k, t)− ℓ(k|n, t)p(n, t)

]
(7.87)

In the following we will explicitly find the coefficients A, B and ℓ of some notable
forward equation taking advantage of the Markovian transition pdf ’s that select the
families of jump-diffusions already defined in the previous sections; we will also give a
few hints about the solution methods for these equations

Proposition 7.37. The distributions and the transition probabilities (7.48) of a sim-
ple Poisson process N(t) satisfy the master equation

∂tp(n, t) = −λ
[
p(n, t)− p(n− 1, t)

]
(7.88)

Proof: Since N(t) is a counting process it only takes integer values and hence, as
already suggested at the end of the Section 7.2.1, we first of all have A = B = 0, so
that its forward equation will be a master equation of the type (7.87). To find then
ℓ(n|m, t) we will use the one-dimensional version of (7.73): taking indeed the transition
probability (7.48) with n ̸= m, in the limit ∆t → 0 we find

1

∆t
pN(n, t+∆t |m, t) =

{
λe−λ∆t → λ if n = m+ 1
O(∆tn−m) → 0 if n ≥ m+ 2

By summarizing we can then say that for a simple Poisson process it is

ℓ(n|m, t) = λδn,m+1 (7.89)

that plugged into (7.87) gives the master equation (7.88). Scanning then through the
possible initial conditions we will find out all the simple Poisson processes of intensity
λ of the Definition 7.20: the transition probability (7.48) is in particular associated to
the degenerate initial condition p(n, t) = δnm �

If conversely a master equation is given, we will face the problem of solving it with
an appropriate initial condition, to find the law of the corresponding discrete Markov
process N(t). A well known method takes advantage of the so called generating
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function: for example, in the case of the master equation (7.88) with degenerate
initial conditions p(n, 0) = δn0, we first check – by taking (7.88) into account – that
the generating function of N(t) defined as

γ(u, t) = E
[
uN(t)

]
=
∑
n

unp(n, t) (7.90)

satisfies the transformed equation

∂tγ(u, t) = λ(u− 1)γ(u, t) γ(u, 0) = 1

then we find that its solution apparently is

γ(u, t) = eλ(u−1)t

and finally, comparing its Taylor expansion around u = 0

γ(u, t) = e−λt
∑
n

un (λt)
n

n!

with its definition (7.90), we finally get

p(n, t) = e−λt (λt)
n

n!

This result just corroborates our initial suggestion that the solution of the master
equation (7.88) with a degenerate initial condition provides the law of a simple Poisson
process

Proposition 7.38. The distributions and the transition probabilities (7.50) of a Wiener
process W (t) satisfy the Fokker-Planck equation

∂tf(x, t) =
D

2
∂2
xf(x, t) (7.91)

Proof: By using l’Hôpital’s rule we first find from (7.50) that for x ̸= y

1

∆t
fW (x, t+∆t | y, t) = e−(x−y)2/2D∆t

∆t
√
2πD∆t

−→
∆t→0

0

namely ℓ(x|y, t) = 0, a result consistent with that of the Proposition 7.23 stating that
a Wiener process is sample continuous. We will moreover find A = 0 by symmetry,
while for the diffusion coefficient B, taking y = (x− z)/

√
D∆t, we will have

1

∆t

∫ z+ϵ

z−ϵ

(x− z)2fW (x, t+∆t | z, t) dx = D

∫ +ϵ/
√
D∆t

−ϵ/
√
D∆t

y2e−y2/2

√
2π

dy −→
∆t→0

D
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Collecting finally all these remarks we find that the pdf of a Wiener process satisfies
the Fokker-Planck equation (7.91) – coincident with the (6.74) first derived by Einstein
– and that its transition pdf (7.50) is the solution selected by the initial condition
f(x, t+) = δ(x− y) �

If conversely the following Fokker-planck equation with degenerate initial condition is
given

∂tf(x, t) =
D

2
∂2
xf(x, t) f(x, s+) = δ(x− y) (7.92)

by solving it we find the transition pdf of the associated wiener process. Here too a
well known solution method is that of the Fourier transform: we have indeed that
the chf

φ(u, t) =

∫ +∞

−∞
eiuxf(x, t) dx

turns out to abide by the transformed equation

∂tφ(u, t) = −Du2

2
φ(u, t) φ(u, s) = eiuy

whose well known solution is

φ(u, t) = eiuye−Du2(t−s)/2

The straightforward inversion of this chf provides then a transition pdf

f(x, t | y, s) = e−(x−y)2/2D(t−s)√
2πD(t− s)

consistent with that of the Definition 7.22

Proposition 7.39. The distributions and the transition probabilities (7.54) of a Cauchy
process X(t) satisfy the master equation

∂tf(x, t) =
a

π

∫
z ̸=x

f(z, t)− f(x, t)

(x− z)2
dz (7.93)

Proof: First of all we have indeed

1

∆t
fX(x, t+∆t | y, t) = a

π

1

(x− y)2 + (a∆t)2
−→
∆t→0

ℓ(x|y, t) = a

π(x− y)2

so that the process is not sample continuous and its trajectories will make jumps.
Moreover it is A = 0 by symmetry, while for the diffusion coefficient we have with
y = (x− z)/a∆t that

1

∆t

∫ z+ϵ

z−ϵ

(x− z)2fX(x, t+∆t | z, t) dx =
a2∆t

π

∫ +ϵ/a∆t

−ϵ/a∆t

y2

1 + y2
dy

=
2a2∆t

π

( ϵ

a∆t
− arctan

ϵ

a∆t

)
−→
∆t→0

2aϵ

π
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and hence that B = 0 in the limit ϵ → 0. The Cauchy process is therefore a pure
jump process and the equation for its pdf is the master equation (7.93). The transi-
tion pdf (7.54) is of course the solution selected with the degenerate initial condition
f(x, t) = δ(x− y) �

At variance with the previous examples the equation (7.93) had not been previously
mentioned among our heuristic considerations: it is in fact only derivable in the present
framework of a discussion about Markovian jump-diffusions. Even in this instance,
of course, it is in principle possible to take the reverse standpoint of recovering the
process distributions by solving its forward equation (7.93) with the initial condition
f(x, s+) = δ(x− y) in order to find first the transition pdf and then all the other joint
laws. Being however an integro differential equation effectively rules out any possible
elementary procedure and hence we will leave aside this point

Proposition 7.40. The distributions and the transition probabilities (7.56) of a Orn-
stein-Uhlenbeck process X(t) satisfy the Fokker-Planck equation

∂tf(x, t) = α∂x[xf(x, t)] +
D

2
∂2
xf(x, t) (7.94)

with D = 2αβ2. As a consequence the process is sample continuous

Proof: Omitted: for the details see Appendix K. We will remark here only that the
process sample continuity – announced but not proved in the Proposition 7.29 – follows
here from the fact that the jump coefficient ℓ of an Ornstein-Uhlenbeck process vanishes
and hence the Lindeberg conditions are met �

Even in this case the solution procedures of the equation (7.94) are less elementary than
those of the previous examples and we will neglect them: we will only remark in the
end that it would be tedious, but not particularly difficult to check by direct calculation
that the transition pdf (7.56) is a solution of our equation with the degenerate initial
condition f(x, t) = δ(x− y)
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Chapter 8

An outline of stochastic calculus

8.1 Wienerian white noise

For simplicity again, in this chapter we will only consider processes with just one com-
ponent. We already remarked in the Section 6.3 that a white noise is a singular process
whose main properties can be traced back to the non differentiability of some processes.
As a first example we have shown indeed that the Poisson impulse process (6.63) and its
associated compensated version (6.65) are white noises entailed by the formal deriva-

tion respectively of a simple Poisson process N(t) and of its compensated variant Ñ(t).
In the same vein we have shown then that also the formal derivative of the Wiener
process W (t) – not differentiable according to the Proposition 6.18 – meets the condi-
tions (6.69) to be a white noise, and in the Appendix H we also hinted that the role of
the fluctuating force B(t) in the Langevin equation (6.78) for the Brownian motion is
actually played by such a white noise Ẇ (t). We can now give a mathematically more
cogent justification for this identification in the framework of the Markovian diffusions

The Langevin equation (6.78) is a particular case of the more general equation

Ẋ(t) = a(X(t), t) + b(X(t), t)Z(t) (8.1)

where a(x, t) and b(x, t) are given functions and Z(t) is a process with E [Z(t)] = 0
and uncorrelated with X(t). From a formal integration of (8.1) we find

X(t) = X(t0) +

∫ t

t0

a(X(s), s) ds+

∫ t

t0

b(X(s), s)Z(s) ds

so that, being X(t) assembled as a combination of Z(s) values with t0 < s < t, to
secure the non correlation of X(t) and Z(t) we should intuitively require also the non
correlation of Z(s) and Z(t) for every pair s ̸= t. Since moreover Z(t) is presumed
to be wildly irregular, we are also led to suppose that its variance (namely here just
E [Z2(t)]) is very large, so that finally, for a suitable constant D > 0, it will be quite
natural to assume that

E [Z(t)Z(s)] = D δ(t− s)
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namely that Z(t) is a stationary white noise with vanishing expectation and intensity
D. We will suppose in fact that Z(s) and Z(t) are even independent1 for s ̸= t. If
finally the equation (8.1) is intended to describe physical phenomena physical similar
to the Brownian motion, all the involved processes will be obviously supposed to be
sample continuous. We will show now that all these hypotheses entail that the white
noise Z(t) can only be a Wienerian white noise Ẇ (t)

Proposition 8.1. If Z(t) is a stationary white noise of intensity D > 0 with Z(s) and
Z(t) independent for s ̸= t, and if the process

W (t) =

∫ t

t0

Z(s) ds (8.2)

is sample continuous, then W (t) is a Wiener process with diffusion coefficient D

Proof: To prove the result it will be enough to show that the distributions of the
process W (t) in (8.2) comply with the Fokker-Planck equation (7.91) of a Wiener
process. Let us remark first that the increments of W (t) on non overlapping intervals
t1 < t2 ≤ t3 < t4 are

W (t2)−W (t1) =

∫ t2

t1

Z(s) ds W (t4)−W (t3) =

∫ t4

t3

Z(s) ds

namely are sums of rv ’s Z(s) independent by hypothesis, and are therefore them-
selves independent. According to the Proposition 7.9, W (t) is thus a Markov process,
and since it is sample continuous by hypothesis it turns out to be a diffusion and its
distributions will satisfy the Fokker–Planck equation (with ℓ = 0) discussed in the
Section 7.2.3. To find out now what a particular diffusion W (t) is, it will be enough
to calculate the equation coefficients (7.66) and (7.68) that in our one-dimensional
setting are

A(x, t) = lim
ϵ→0+

lim
∆t→0

∫
|y−x|<ϵ

y − x

∆t
fW (y, t+∆t |x, t) dy

B(x, t) = lim
ϵ→0+

lim
∆t→0

∫
|y−x|<ϵ

(y − x)2

∆t
fW (y, t+∆t |x, t) dy

To this end remark first that since W (t) is sample continuous the Lindeberg condi-
tions (7.46) require that

lim
∆t→0

∫
|y−x|>ϵ

1

∆t
fW (y, t+∆t | x, t) dy = 0 ∀ϵ > 0

namely that, with ∆t → 0, the support of fW (y, t + ∆t |x, t) will quickly shrink into
[x − ϵ , x + ϵ]. As a consequence the A and B defining formulas can be simplified by

1This is not a very restrictive hypothesis: since our processes will turn out to be Gaussian, inde-
pendence and non correlation happen to be quite equivalent
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8.1 Wienerian white noise

extending the integration interval to (−∞,+∞) without changing the final result: we
thus have

A(x, t) = lim
∆t→0

∫ +∞

−∞

y − x

∆t
f(y, t+∆t |x, t) dy

= lim
∆t→0

E

[
∆W (t)

∆t

∣∣∣∣ W (t) = x

]
B(x, t) = lim

∆t→0

∫ +∞

−∞

(y − x)2

∆t
f(y, t+∆t | x, t) dy

= lim
∆t→0

E

[
[∆W (t)]2

∆t

∣∣∣∣ W (t) = x

]
On the other hand from the properties of Z(t) we know that

E [∆W (t) | W (t) = x] = E

[∫ t+∆t

t

Z(s) ds

∣∣∣∣ W (t) = x

]
=

∫ t+∆t

t

E [Z(s)] ds = 0

E
[
[∆W (t)]2

∣∣ W (t) = x
]

= E

[∫ t+∆t

t

Z(s) ds

∫ t+∆t

t

Z(s′) ds′
∣∣∣∣ W (t) = x

]
=

∫ t+∆t

t

ds

∫ t+∆t

t

ds′E [Z(s)Z(s′)]

= D

∫ t+∆t

t

ds

∫ t+∆t

t

ds′δ(s− s′)

= D

∫ t+∆t

t

ds = D∆t

and hence we finally get

A(x, t) = 0 B(x, t) = D

that is the coefficients of the Wiener Fokker-Planck equation (7.91) �

From the previous proposition it follows thus that aW (t) defined as in (8.2) is a Wiener
process, and hence that its formal derivative Z(t) = Ẇ (t) is a Wienerian white noise.
This noise plays the role of a random force in the Langevin equation (8.1) that however
is still not well defined exactly because of the singular character of this white noise. To
correctly address this problem we will then remark – as already done in the Section 6.3
– that, while the derivative of a Wiener process W (t) does not exist, we can hope to
give a precise meaning to its differential dW (t) first understood as the limit for ∆t → 0
of the increment ∆W (t) = W (t+∆t)−W (t), and then as a shorthand notation coming
from the integral ∫ t

t0

dW (s) = W (t)−W (t0)

223



N. Cufaro Petroni: Probability and Processes

If we can manage to do that, we will be able to reformulate the equation (8.1) rather
in terms of differentials, than in terms of derivatives, in such a way that – by replacing
the problematic notation Z(t)dt = Ẇ (t)dt with dW (t) – its new layout will be

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t)

understood indeed as a shorthand notation for the finite, integral expression

X(t) = X(t0) +

∫ t

t0

a(X(s), s) ds+

∫ t

t0

b(X(s), s) dW (s)

We must say at once however that, while the first integral∫ t

t0

a(X(s), s) ds

can be considered as well defined based on the remarks already made in the Section 5.4,
it is instead still an open problem the meaning to give to the second integral∫ t

t0

b(X(s), s) dW (s) (8.3)

where the measure dW (s) should be defined using a Wiener process: a case not consid-
ered in our previous discussions. A coherent definition of this new kind of integrals will
be the topic of the next section and will be crucial to introduce the stochastic calculus

8.2 Stochastic integration

There are several kinds of stochastic integrals that turn out to be well defined under
a variety of conditions: in any case, when they exist, they always are rv ’s. We have
already discussed in the Proposition 5.8 a few elementary requirements needed to ensure
the ms-convergence of the simplest case of stochastic integral (5.8) defined according
to a generalized Riemann procedure with the measure dt. This definition can also be
easily generalized in a Lebesgue-Stieltjes form as∫ b

a

Y (t) dx(t)

where Y (t) is again a process, while now x(t) is a function that in general must be
supposed of bounded variation2. Under this hypothesis, and a set of rather wide re-

2A function w(x) defined on [a, b] is said of bounded variation if it exists C > 0 such that

n∑
k=1

|w(xk)− w(xk−1)| < C
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8.2 Stochastic integration

quirements on the process Y (t), it is possible to prove3 that the previous integral not
only exists in ms, but also converges in the sense of Lebesgue–Stieltjes for almost every
trajectory of Y (t). Basically the previous integral turns out to be well defined, in a
rather traditional sense, trajectory by trajectory. The problem is instead more hard
when the integrator x(t) becomes a stochastic process X(t), because in this case we can
not suppose that its trajectories are of bounded variation, so that the usual procedures
are no longer able to coherently ensure the convergence of the integral. The typical
case with which we will have to deal in the rest of these lessons is that in which the
integrator is precisely the Wiener process W (t): its trajectories in fact – being nowhere
differentiable – are not of bounded variation

8.2.1 Wiener integral

Take first the integrals ∫ b

a

y(t) dX(t) (8.4)

where y(t) is a non random function, while X(t) is a process: we have already hinted
that a trajectory by trajectory definition of (8.4) following a Lebesgue-Stieltjes proce-
dure can not be adopted because here, generally speaking, the process trajectories no
longer are of bounded variation: we can not presume indeed – as the Wiener process
shows – that the trajectories are differentiable, and hence we can not consider them
as bounded variation functions (see the footnote 2 in the present section). The most
widespread form of this kind of integrals occurs when the random integrator is a Wiener
process ∫ b

a

y(t) dW (t) (8.5)

and in this case we will call it Wiener integral. Even in its more general form (8.4),
however, this integral can be coherently defined when we are dealing with

• uncorrelated increments processes X(t) (the Wiener process, for example, has
independent, and hence uncorrelated, increments)

for every finite partition a = x0 < x1 < . . . < xn = b of [a, b]; in this case the quantity

V[w] = sup
D

n∑
k=1

|w(xk)− w(xk−1)|

where D is the set of the finite partitions of [a, b], is called the total variation of w. It is known that
the Lebesgue-Stieltjes integral ∫ b

a

f(x) dw(x)

can be coherently defined when w(x) is a function of bounded variation. Remark that every function
of bounded variation is (almost everywhere) differentiable: for more details see A.N. Kolmogorov,
S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover (New
York, 1999)

3J.L. Doob, Stochastic Processes, Wiley (New York, 1953)
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• Lebesgue square integrable functions y(t)

and in this case the following procedure (here only briefly summarized4) is followed:

1. we first define it in an elementary way for step functions φ(t)∫ b

a

φ(t) dX(t)

2. we then take a sequence of step functions φn(t) ms-convergent to y(t) (it is proven
that such a sequence exists and that its particular choice is immaterial)

3. we finally define the integral (8.4) as the ms-limit of the rv ’s sequence∫ b

a

φn(t) dX(t)

It is possible to show that this definition is perfectly consistent, and that, if y(t) is
also continuous, the integral (8.4) can also be calculated following a standard Riemann
procedure:

1. take a partition a = t0 < t1 < . . . < tn = b of the integration interval

2. choose the arbitrary points τj in every [tj, tj+1] and take

δ = max
j

{tj+1 − tj}

3. calculate finally the integral as the ms limit

lim
n,δ→0

-ms
n−1∑
j=0

y(τj)
[
X(tj+1)−X(tj)

]
When both these integrals do in fact exist, the second, more familiar, Riemann pro-
cedure leads to a result which coincides with that defined within the first procedure,
and this happens regardless of both the particular partition sequence selected, and the
choice of the points τj inside every sub-interval [tj, tj+1]. In particular in this way a
precise meaning is ascribed to the Wiener integrals (8.5)

8.2.2 Itō integral

The previous integral (8.4) is a particular case of the more general type∫ b

a

Y (t) dX(t) (8.6)

where both X(t) and Y (t) are now sp’s: the integral (8.3) at the end of the previous
section is an example of this kind. A consistent definition of (8.6) is not an elementary
one5 and requires a new procedure pioneered by K. Itō (1944) in the case of Wienerian

4J.L. Doob, Stochastic Processes, Wiley (New York, 1953)
5I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer (Berlin,

1991). B. Øksendal, Stochastic Differential Equations, Springer (Berlin, 2005)
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integrators ∫ b

a

Y (t) dW (t) (8.7)

and later extended to a wider class of integrators X(t), slightly narrower anyway than
that for the integrals of the Section 8.2.1. This new definition requires moreover for
the integrand process Y (t) a few general conditions, the most important of which for
the Itō integrals like (8.7) is its non-anticipativity w.r.t. a Wiener process W (t)

Definition 8.2. Take a Wiener process W (t), and the growing family of σ-algebras
Ft = σ{W (s), s ≤ t} generated by W (t) (its natural filtration): we will say that the
process Y (t) is non-anticipative w.r.t. W (t) if

• Y (t) is Ft-measurable for every t > 0

• Y (t) is independent from W (s)−W (t) for every s > t > 0

that is if Y (t) depends on the past (and the present) of W (t), but not on its future

This concept, which expresses a rather natural requirement of causality, is essential
for a rigorous definition of the Itō integral, and subsequently of the Itō stochastic
differential equations, in the sense that a number of important results can be deduced
only with this assumption. For the time being we will just remark that it is easy to
check that, if Y (t) is non-anticipative, then W (t) itself and the following processes∫ t

t0

h[W (s)] ds

∫ t

t0

h[W (s)] dW (s)

∫ t

t0

Y (s) ds

∫ t

t0

Y (s) dW (s)

are all non-anticipative
In the following we will always suppose, among others, that the integrand Y (t)

is non-anticipative w.r.t. W (t), and within these hypotheses we will define the Itō
integral according to a procedure similar to that adopted for the Wiener integral in
the Section 8.2.1:

1. we first define the elementary Itō integral for random step functions Φ(ω; t) (par-
ticular non-anticipative sp’s) ∫ b

a

Φ(ω; t) dW (ω; t)

2. we take then a sequence Φn(t) of such step functions converging in ms to the
given non anticipative sp Y (t) (we will not prove that such a sequence exists and
that its particular choice is immaterial)

3. tyhe Itō (8.7) integral is finally defined as the ms-limit of the following sequence
of rv ’s ∫ b

a

Φn(t) dW (t)
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Even in this case, of course, it is possible to prove that the limit is independent from the
particular sequence Φn(t) chosen, so that the definition is perfectly consistent, but this
new procedure, despite an apparent analogy with that defining the Wiener integral,
introduces two relevant changes:

• like the Wiener integral (8.5), by adopting an appropriate Riemann proce-
dure the Itō integral can also be calculated as

lim
n,δ→0

-ms
n−1∑
j=0

Y (tj)
[
W (tj+1)−W (tj)

]
(8.8)

but now the values Y (tj) of the integrand must always be taken in the left
endpoint of the interval [tj, tj+1], and not in an arbitrary τj within it: it is indeed
possible to show (1) that the value of the Riemann limit (8.8) depends on this
choice, and (2) that only with the choice Y (tj) it is possible to recover the correct
value of the Itō integral previously defined with the Itō procedure; we will show
later an explicit example of this behavior

• the definition of the Itō integral does not come into being without an additional
cost: in particular it entails a new stochastic calculus with rules that deviate
from those of the ordinary calculus; a whiff of this important innovation – an
innovation that we must learn to adapt to take advantage of it – can be found
in the Appendix H displaying the possible mistakes induced by a careless use of
the usual calculus: we will devote a sizable part of the subsequent sections to a
detailed review of these new rules

A few remarks about possible alternative definitions of stochastic integrals, like the
Stratonovich integral that famously would preserve the usual rules of calculus, can be
finally found in the Appendix L along with the motivations for not adopting them

8.3 Itō stochastic calculus

In the following sections we will calculate all the Itō integrals (8.7) as a ms-limit fo
the Riemann sums (8.8) for a Wiener process W (t) with diffusion coefficient D, and
arbitrary initial conditions W (t0) = w0, P -a.s. when t0 is the left endpoint of the
integration interval. It will be then expedient to adjust the results of the Propo-
sitions 6.16, 6.17 e 6.18: if W0(t) ∼ N (0, Dt) denotes the process with conditions
W0(0) = 0, P -a.s., we will have W (t) = W0(t − t0) + w0 defined for t ≥ t0 so that
W (t) ∼ N (w0, D(t− t0)), and

E [W (t)] = w0 V [W (t)] = D(t− t0) (8.9)

E [W (s)W (t)] = Dmin{s− t0, t− t0}+ w2
0 (8.10)

For short, moreover, for every Riemann partition t1 < . . . < tn we will adopt the
synthetic notations (j = 1, . . . , n)

Wj = W (tj) ∆Wj = Wj −Wj−1 ∆tj = tj − tj−1
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8.3 Itō stochastic calculus

8.3.1 Elementary integration rules

Lemma 8.3. If W (t) is a Wiener process with W (t0) = w0, P -a.s., then

Wj ∼ N (w0, D(tj − t0)) ∆Wj ∼ N (0, D∆tj) (8.11)

E
[
(∆Wj)

4
]
= 3D2(∆tj)

2 (8.12)

Proof: The first relation in (8.11) follows from fact that W (t) ∼ N (w0, D(t− t0)). As
for the second relation in (8.11), being the increments ∆W (t) Gaussian according to
the Proposition 6.16, and keeping into account (8.9) and (8.10), it will be enough to
remark that

E [∆Wj] = E [Wj −Wj−1] = w0 − w0 = 0

V [∆Wj] = E
[
(∆Wj)

2
]
= E

[
W 2

j +W 2
j−1 − 2WjWj−1

]
= w2

0 +D(tj − t0) + w2
0 +D(tj−1 − t0)− 2[w2

0 +D(tj−1 − t0)]

= D(tj − tj−1) = D∆tj

As for (8.12) first remark that if X ∼ N (0, σ2), an integration by parts leads to

E
[
X4
]

=

∫ +∞

−∞
x4 e

−x2/2σ2

σ
√
2π

dx = −σ2

∫ +∞

−∞
x3 d

dx

(
e−x2/2σ2

σ
√
2π

)
dx

= 3σ2

∫ +∞

−∞
x2 e

−x2/2σ2

σ
√
2π

dx = 3σ4 = 3E
[
X2
]2

and then that the result follows from (8.11), namely from ∆Wj ∼ N (0, D∆tj) �

Proposition 8.4. If W (t) is a Wiener process with W (t0) = w0, P -a.s., then∫ t

t0

W (s) dW (s) =
1

2

[
W 2(t)−W 2(t0)−D(t− t0)

]
(8.13)

E

[∫ t

t0

W (s) dW (s)

]
= 0 (8.14)

Proof: Remark first of all that the term 1
2
D(t−t0) in (8.13) is totally alien to the usual

formula of the integral calculus that is instead confined to the first two terms: this is
a first example of the quantitative changes introduced by the Itō stochastic calculus
w.r.t. the ordinary calculus

To prove (8.13) let us begin by remarking that in the present instance the Riemann
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sums (8.8) take the particular form

Sn =
n∑

j=1

Wj−1(Wj −Wj−1) =
n∑

j=1

Wj−1∆Wj

=
1

2

n∑
j=1

[
(Wj−1 +∆Wj)

2 −W 2
j−1 − (∆Wj)

2
]

=
1

2

n∑
j=1

[
W 2

j −W 2
j−1 − (∆Wj)

2
]
=

1

2

[
W 2(t)−W 2(t0)

]
− 1

2

n∑
j=1

(∆Wj)
2

so that the result will be secured if we will be able to prove that

lim
n

-ms
n∑

j=1

(∆Wj)
2 = D(t− t0) (8.15)

namely, according to the Theorem 4.6, that

lim
n

E

[
n∑

j=1

(∆Wj)
2

]
= D(t− t0) lim

n
V

[
n∑

j=1

(∆Wj)
2

]
= 0 (8.16)

The first result in (8.16) follows from the Lemma 8.3 because for every n it is

E

[
n∑

j=1

(∆Wj)
2

]
=

n∑
j=1

E
[
(∆Wj)

2
]
=

n∑
j=1

D(tj − tj−1) = D(t− t0)

and hence also its limit for n → ∞ has the same value. As for the second limit in (8.16)
remark first that from the previous result we have

V

[
n∑

j=1

(∆Wj)
2

]
= E

( n∑
j=1

(∆Wj)
2 −D(t− t0)

)2


= E

[
n∑

j=1

(∆Wj)
4 + 2

∑
j<k

(∆Wj)
2(∆Wk)

2

−2D(t− t0)
n∑

j=1

(∆Wj)
2 +D2(t− t0)

2

]

and then that the expectations can be calculated again by keeping into account the
Lemma 8.3 – in particular the formula (8.12) – and the increments independence in a
Wiener process that for j < k entails

E
[
(∆Wj)

2(∆Wk)
2
]
= E

[
(∆Wj)

2
]
E
[
(∆Wk)

2
]
= D2(tj − tj−1)(tk − tk−1)
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Rearranging now all the terms of the previous expression, and recalling that in the
Riemann procedure

n∑
j=1

(tj − tj−1) = t− t0 δ = max
j

{tj − tj−1}
n−→ 0

overall we will find

V

[
n∑

j=1

(∆Wj)
2

]
= 3D2

n∑
j=1

(tj − tj−1)
2 + 2D2

∑
j<k

(tj − tj−1)(tk − tk−1)

−2D2(t− t0)
n∑

j=1

(tj − tj−1) +D2(t− t0)
2

= 2D2

n∑
j=1

(tj − tj−1)
2 +D2

n∑
j,k=1

(tj − tj−1)(tk − tk−1)−D2(t− t0)
2

= 2D2

n∑
j=1

(tj − tj−1)
2 ≤ 2D2max

j
{tj − tj−1}

n∑
j=1

(tj − tj−1)

= 2δD2(t− t0)
n−→ 0

The convergence (8.15) then holds, and the result (8.13) is proved. To check fi-
nally (8.14) we just remark that from (8.13) it is

E

[∫ t

t0

W (s) dW (s)

]
=

1

2
E
[
W 2(t)− w2

0 −D(t− t0)
]
= 0

where we took advantage of the fact that W (t) ∼ N (w0, D(t− t0)) �

Exemple 8.5. In the Section 8.2.2 we stated without proof that the right value of an Itō
integral like (8.13) can also be recovered as a ms-limit of the Riemann sums (8.8) where
however the integrand must always be calculated in the left endpoints of the partition
intervals. Without going into details, we can now show that the result of the Riemann
procedure to calculate (8.13) would have been different if we had not taken the integrand
in the left endpoints, as for instance in

Sn =
n∑

j=1

W (τj) [W (tj)−W (tj−1)]

where now τj are arbitrary points in [tj−1, tj]. To prove without unnecessary complica-
tions that the ms-limit of the sequence Sn does in fact depend on the choice of the τj
it will be enough indeed to point out this dependence only for the limit of their expec-
tations E [Sn], because if the limit of the expectations is contingent on the choice of τj,
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then also the ms-limit of Sn must depend on them. We have in fact from (8.10)

E [Sn] = E

[
n∑

j=1

W (τj)
[
W (tj)−W (tj−1)

]]

=
n∑

j=1

(
E [W (τj)W (tj)]−E [W (τj)W (tj−1)]

)
=

n∑
j=1

[
w2

0 +D(τj − t0)− w2
0 −D(tj−1 − t0)

]
=

n∑
j=1

[
D(τj − t0)−D(tj−1 − t0)

]
= D

n∑
j=1

(τj − tj−1)

Take now a parameter α ∈ [0, 1] identifying the position of τj within the jth interval
according to

τj = αtj + (1− α)tj−1

then for every n we will have

E [Sn] = αD
n∑

j=1

(tj − tj−1) = αD(t− t0)

so that – taking for granted that we are entitled to exchange the Riemann ms-limit with
the expectation – we find

E
[
lim
n

-ms Sn

]
= lim

n
E [Sn] = αD(t− t0)

a result that apparently depends on α, namely on the location of τj within the interval
[tj−1, tj]: the right result for the Itō integral being in any case (8.14) – we will abstain
however from giving here an independent proof of this statement – this value turns out
to be recovered only with α = 0, namely when τj is the left endpoint of the interval
[tj−1, tj]

8.3.2 Expectations and covariances

Proposition 8.6. If G(t) and H(t) non-anticipative processes w.r.t. a wiener process
W (t), then

E

[∫ t

t0

G(s) dW (s)

]
= 0 (8.17)

E

[∫ t

t0

G(s) dW (s)

∫ t

t0

H(s′) dW (s′)

]
= D

∫ t

t0

E [G(s)H(s)] ds (8.18)

232
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Proof: The formula (8.17) generalizes (8.14): from both the non-anticipativity of G(t)
and the Lemma 8.3 we indeed have for the Riemann sums

E

[
n∑

j=1

Gj−1∆Wj

]
=

n∑
j=1

E [Gj−1] E [∆Wj] = 0

and taking as usual for granted that we are entitled to exchange the Riemann ms-limit
with the expectations, the result easily follows. As for the covariance formula (8.18),
from the non-anticipativity, the Lemma 8.3 and the increment independence we have

E

[
n∑

j=1

Gj−1∆Wj

n∑
k=1

Hk−1∆Wk

]

= E

[
n∑

j=1

Gj−1Hj−1(∆Wj)
2

]
+ E

[∑
k>j

(Gj−1Hk−1 +Gk−1Hj−1)∆Wj∆Wk

]

=
n∑

j=1

E [Gj−1Hj−1] E
[
(∆Wj)

2
]

+
∑
k>j

E [(Gj−1Hk−1 +Gk−1Hj−1)∆Wj] E [∆Wk]

=
n∑

j=1

E [Gj−1Hj−1] D∆tj

and the result follows again by exchanging the ms-limit with the expectation �

We can now look at the remarks on the Wiener white noise of the Proposition 8.1 from
a new, reversed standpoint3

Corollary 8.7. If W (t) with W (t0) = w0 is a Wiener process with diffusion coefficient
D, a process Z(t) such that E [Z(t)] = 0, and dW (t) = Z(t) dt, can only be a stationary
(Wienerian) white noise of intensity D

Proof: This is an immediate consequence of the (8.18): take two arbitrary, non-
anticipative processes G(t) and H(t) independent from Z(t), then – freely exchanging
expectations and integrals into (8.18) – from our hypotheses it follows that

D

∫ t

t0

E [G(s)H(s)] ds = E

[∫ t

t0

G(s) dW (s)

∫ t

t0

H(s′) dW (s′)

]
= E

[∫ t

t0

ds

∫ t

t0

ds′G(s)H(s′)Z(s)Z(s′)

]
=

∫ t

t0

ds

∫ t

t0

ds′E [G(s)H(s′)Z(s)Z(s′)]

=

∫ t

t0

ds

∫ t

t0

ds′E [G(s)H(s′)]E [Z(s)Z(s′)]
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that can be true only if

E [Z(s)Z(s′)] = Dδ(s− s′)

namely if Z(t) is a stationary white noise of intensity D. Since on the other hand we
also ask dW (t) = Z(t)dt, the said white noise can only be Wienerian �

8.3.3 Stochastic infinitesimals

Proposition 8.8. Take a non-anticipative process G(t), then with k = 0, 1, . . . it is∫ t

t0

G(s) [dW (s)]2+k = lim
n
-ms

n∑
j=1

Gj−1(∆Wj)
2+k = δk0 D

∫ t

t0

G(s) ds

∫ t

t0

G(s) ds [dW (s)]1+k = lim
n
-ms

n∑
j=1

Gj−1 (∆Wj)
1+k ∆tj = 0

where δkℓ is the Kronecker symbol; from now on we will also adopt the shorthand
notation

[dW (t)]2+k = δk0Ddt [dW (t)]1+k dt = 0 k = 0, 1, . . . (8.19)

Proof: These results give a precise meaning to our statements of the Section 6.3 where
we had surmised that dW (t) behaves indeed as an infinitesimal of the order

√
dt. More

precisely the present proposition entitle us to neglect in the calculations all the terms
like dW (t) dt, [dW (t)]3 , . . . because they are infinitesimals of order higher than dt, but
it also urges us to keep the terms like [dW (t)]2 = Ddt that – against their semblance
– are in fact of the order dt

To avoid redundancy we will confine ourselves to prove only the non zero formula
[dW (t)]2 = Ddt, namely that∫ t

t0

G(s)
[
dW (s)

]2
= D

∫ t

t0

G(s) ds

neglecting instead to check – in a similar way – all the other vanishing results. The
Riemann procedure requires then to verify that

lim
n

-ms
n∑

j=1

Gj−1(∆Wj)
2 = D lim

n
-ms

n∑
j=1

Gj−1∆tj

namely, in an equivalent setting, that

lim
n

-ms
n∑

j=1

[
Gj−1(∆Wj)

2 −Gj−1D∆tj
]
= lim

n
En = 0 (8.20)

234
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where for short we have defined

En = E

∣∣∣∣∣
n∑

j=1

Gj−1

[
(∆Wj)

2 −D∆tj
]∣∣∣∣∣

2


= E

[
n∑

j=1

G2
j−1

[
(∆Wj)

2 −D∆tj
]2

+2
∑
j<k

Gj−1Gk−1

[
(∆Wj)

2 −D∆tj
][
(∆Wk)

2 −D∆tk
]]

Because of the non-anticipativity ofG(t), the termsG 2
j−1 are independent from (∆Wj)

2−
D∆tj, while the Gj−1Gk−1

[
(∆Wj)

2−D∆tj
]
turn out to be independent from (∆Wk)

2−
D∆tk; as a consequence – taking also advantage of the Lemma 8.3 – the second term
of En vanishes

E
[
Gj−1Gk−1

[
(∆Wj)

2 −D∆tj
][
(∆Wk)

2 −D∆tk
]]

= E
[
Gj−1Gk−1

[
(∆Wj)

2 −D∆tj
]]
E
[
(∆Wk)

2 −D∆tk
]
= 0

while for the first we have

E
[[
(∆Wj)

2 −D∆tj
]2]

= E
[
(∆Wj)

4
]
+ (D∆tj)

2 − 2D∆tjE
[
(∆Wj)

2
]

= 3(D∆tj)
2 + (D∆tj)

2 − 2(D∆tj)
2 = 2(D∆tj)

2

and hence overall we find

En = 2D2

n∑
j=1

(∆tj)
2 E

[
G2

j−1

]
≤ 2D2max

j
{∆tj}

n∑
j=1

∆tj E
[
G2

j−1

]
The result (8.20) is then secured if we plausibly require that

lim
n,δ→0

n∑
j=1

∆tj E
[
G2

j−1

]
=

∫ t

t0

E
[
G2(s)

]
ds < +∞

because in the Riemann limit it is maxj{∆tj} = δ → 0 �

Proposition 8.9. Take a Wiener process W (t) with W (t0) = w0, then for n = 1, 2, . . .
we have ∫ t

t0

W n(s) dW (s) =
W n+1(t)−W n+1(t0)

n+ 1
− nD

2

∫ t

t0

W n−1(s) ds (8.21)
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Proof: The result (8.21) generalizes (8.13) and can be easily deduced by taking advan-
tage of the shorthand notations about the order of infinitesimals in the Proposition 8.8:
we have indeed

dW n+1(t) = W n+1(t+ dt)−W n+1(t) =
[
W (t) + dW (t)

]n+1 −W n+1(t)

=
n+1∑
k=0

(
n+ 1

k

)
W n+1−k(t)[dW (t)]k −W n+1(t)

=
n+1∑
k=1

(
n+ 1

k

)
W n+1−k(t)[dW (t)]k

=

(
n+ 1

1

)
W n(t)dW (t) +

(
n+ 1

2

)
W n−1(t)

[
dW (t)

]2
= (n+ 1)W n(t)dW (t) +

(n+ 1)n

2
W n−1(t)Ddt

and therefore

W n+1(t)−W n+1(t0) =

∫ t

t0

dW n+1(s)

= (n+ 1)

∫ t

t0

W n(s) dW (s) +
(n+ 1)n

2
D

∫ t

t0

W n−1(s) ds

so that the formula (8.21) results immediately �

It is apparent then from the previous proposition that here too the usual results of the
ordinary calculus are complemented with an additional term explicitly depending on
the existence of a non vanishing diffusion coefficient D

8.3.4 Differentiation rules

Proposition 8.10. If g(x, t) is at least twice differentiable in x and once in t, and if
W (t) is a Wiener process, then within the notations

gx = ∂xg gxx = ∂2
xg gt = ∂tg

the following differentiation rule holds

dg
(
W (t), t

)
=

[
gt
(
W (t), t

)
+

D

2
gxx
(
W (t), t

)]
dt+ gx

(
W (t), t

)
dW (t) (8.22)
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Proof: Taking into account the Proposition 8.8 we have

dg
(
W (t), t

)
= g

(
W (t+ dt), t+ dt

)
− g
(
W (t), t

)
=

[
g
(
W (t+ dt), t+ dt

)
− g
(
W (t), t+ dt

)]
+
[
g
(
W (t), t+ dt

)
− g
(
W (t), t

)]
=

[
g
(
W (t), t+ dt

)
+ gx

(
W (t), t+ dt

)
dW (t)

+
1

2
gxx
(
W (t), t+ dt

)[
dW (t)

]2
+ . . .− g

(
W (t), t+ dt

)]
+
[
g
(
W (t), t

)
+ gt

(
W (t), t

)
dt

+
1

2
gtt
(
W (t), t

)
(dt)2 + . . .− g

(
W (t), t

)]
=

[
gx
(
W (t), t

)
+ gxt

(
W (t), t

)
dt+ . . .

]
dW (t)

+
1

2

[
gxx
(
W (t), t

)
+ gxxt

(
W (t), t

)
dt+ . . .

] [
dW (t)

]2
+ . . .

+gt
(
W (t), t

)
dt+

1

2
gtt
(
W (t), t

)
(dt)2 + . . .

= gx
(
W (t), t

)
dW (t) +

D

2
gxx
(
W (t), t

)
dt+ gt

(
W (t), t

)
dt

namely the stated result (8.22) �

Exemple 8.11. In a nutshell the stochastic differentiation requires that we consider[
dW (t)

]2
as an infinitesimal of the same order of dt, and not – as one could presume

from its external semblance – of higher order. In particular this entails the existence of
new terms that would not be otherwise acceptable. For instance, in a geometric Wiener
process (6.58) X(t) = eW (t), within our notation it is g(x, t) = ex and hence

dX(t) = d
(
eW (t)

)
= eW (t) dW (t) +

D

2
eW (t) dt

In the same way, for X(t) = W 2(t), namely if g(x, t) = x2, we get

dX(t) = d
(
W 2(t)

)
= 2W (t) dW (t) +Ddt

From these examples we understand first that the unconventional additional terms
in dt apparently follow from the second order terms in dW (t), and second that they
are branded by the presence of the diffusion coefficient D: when this possibly van-
ishes the process degenerates into deterministic trajectories, and we recover the usual
differentiation rules. Unsurprisingly these remarks– suitably tailored – can be ex-
tended to all the other formulas met hitherto in the stochastic calculus as for exam-
ple (8.13), (8.18), (8.19), (8.21) and (8.22)
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The new differentiation rules also prompt a generalization of the integration by parts
formulas: in the usual calculus we know for instance that

d
[
x(t)h(x(t), t)

]
= x(t) dh(x(t), t) + h(x(t), t) dx(t)

from which the following formula stems∫ b

a

h(x(t), t) dx(t) =
[
x(t)h(x(t), t)

]b
a
−
∫ b

a

x(t) dh(x(t), t)

This expression is reduced to the most familiar one when h(x, t) = h(t) does not depend
on x: in this case we have indeed

d
[
x(t)h(t)

]
= x(t) dh(t) + h(t) dx(t) =

[
x(t)ḣ(t) + ẋ(t)h(t)

]
dt

namely the well known formula∫ b

a

h(t)ẋ(t) dt =
[
h(t)x(t)

]b
a
−
∫ b

a

ḣ(t)x(t) dt

The stochastic calculus requires a modification of these results, but the differences
w.r.t. the usual formulas are perceptible only when h(x, t) also depend on x

Proposition 8.12. Integration by parts: If h(x, t) is at least twice differentiable in
x and once in t, and if W (t) is a Wiener process with W (t0) = w0, the integration by
parts rule is∫ t

t0

h
(
W (s), s

)
dW (s) =

[
W (s)h

(
W (s), s

)]t
t0
−
∫ t

t0

W (s) dh
(
W (s), s

)
−D

∫ t

t0

hx

(
W (s), s

)
ds (8.23)

Proof: From the differentiation rule (8.22) with g(x, t) = xh(x, t) we get

gt = xht gx = h+ xhx gxx = 2hx + xhxx

and therefore

d
[
W (t)h

(
W (t), t

)]
= dg

(
W (t), t

)
=

[
W (t)ht

(
W (t), t

)
+

D

2

(
2hx

(
W (t), t

)
+W (t)hxx

(
W (t), t

))]
dt

+
[
h
(
W (t), t

)
+W (t)hx

(
W (t), t

)]
dW (t)

= W (t)

[(
ht

(
W (t), t

)
+

D

2
hxx

(
W (t), t

))
dt+ hx

(
W (t), t

)
dW (t)

]
+h
(
W (t), t

)
dW (t) +Dhx

(
W (t), t

)
dt

= W (t)dh
(
W (t), t

)
+ h
(
W (t), t

)
dW (t) +Dhx

(
W (t), t

)
dt

and the formula follows by integration �
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8.4 Stochastic differential equations (SDE)

8.4.1 Stochastic differentials and Itō formula

Definition 8.13. We say that a process X(t) admits in [0, T ] the stochastic differ-
ential

dX(t) = A(t) dt+B(t) dW (t) (8.24)

when for every t0, t with 0 ≤ t0 < t ≤ T it can be represented as

X(t) = X(t0) +

∫ t

t0

A(s) ds+

∫ t

t0

B(s) dW (s)

where W (t) is a Wiener process with W (t0) = w0, and the processes A(t), B(t) are
such that

P

{∫ T

0

|A(t)| dt < +∞
}

= 1 P

{∫ T

0

|B(t)|2 dt < +∞
}

= 1

Proposition 8.14. Itō formula: If X(t) admits the stochastic differential (8.24),
and if g(x, t) is a function at least twice differentiable in x and once in t, then also
g
(
X(t), t

)
admits the following stochastic differential

d g
(
X(t), t

)
=

[
gt
(
X(t), t

)
+

D

2
B2(t)gxx

(
X(t), t

)]
dt+ gx

(
X(t), t

)
dX(t) (8.25)

=

[
gt
(
X(t), t

)
+ A(t)gx

(
X(t), t

)
+

D

2
B2(t)gxx

(
X(t), t

)]
dt+B(t)gx

(
X(t), t

)
dW (t)

Proof: The Itō formula (8.25) generalizes (8.22) that is recovered for A(t) = 0 and
B(t) = 1, namely when from (8.24) it is X(t) = W (t). To prove (8.25) remark first
that from (8.24) and (8.19) we have[

dX(t)
]2

=
[
A(t)dt

]2
+
[
B(t)dW (t)

]2
+ 2A(t)B(t)dW (t)dt = B2(t)Ddt

and then that, retracing the proof of (8.22) with X(t) instead of W (t), it is

dg
(
X(t), t

)
=

[
gx
(
X(t), t

)
+ gxt

(
X(t), t

)
dt+ . . .

]
dX(t)

+
1

2

[
gxx
(
X(t), t

)
+ gxxt

(
X(t), t

)
dt+ . . .

] [
dX(t)

]2
+ . . .

+gt
(
X(t), t

)
dt+

1

2
gtt
(
X(t), t

)
(dt)2 + . . .

= gx
(
X(t), t

)[
A(t) dt+B(t) dW (t)

]
+
D

2
B2(t)gxx

(
X(t), t

)
dt+ gt

(
X(t), t

)
dt

so that the Itō formula (8.25) immediately follows �
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8.4.2 The SDE ’s and their solutions

Definition 8.15. We call stochastic differential equation (SDE) the equation

dX(t) = a
(
X(t), t

)
dt+ b

(
X(t), t

)
dW (t) 0 ≤ t0 < t ≤ T (8.26)

X(t0) = X0 P -a.s.

where W (t) is a Wiener process with W (t0) = w0, and X0 a rv independent from
W (t). We also say that a process X(t) is a solution if it admits (8.26) as stochastic
differential, that is if

X(t) = X0 +

∫ t

t0

a
(
X(s), s

)
ds+

∫ t

t0

b
(
X(s), s

)
dW (s) (8.27)

This solution is said to be unique if, for every pais X1(t), X2(t) of solutions it is

P

{
sup

t0≤t≤T
|X1(t)−X2(t)| > 0

}
= 0

The solutions of (8.26) can be contrived by following several approximation procedures:

1. take the following sequence of approximating processes

X0(t) = X0

Xn(t) = X0 +

∫ t

t0

a
(
Xn−1(s), s

)
ds+

∫ t

t0

b
(
Xn−1(s), s

)
dW (s)

and investigate its (distribution) limit process for n → ∞; this is the recursive
procedure usually adopted to prove the theorems of existence and unicity;

2. produce the trajectories of the solution process with the recursive method gener-
ally used to generate simulations: take n arbitrary instants (usually equidistant)

t0 < t1 < . . . < tn = t ≤ T

build the samples starting with an initial value x0 according to the following
procedure

xj+1 = xj + a(xj, tj)∆tj + b(xj, tj)∆wj j = 0, 1, . . . , n− 1

where
xj = x(tj) ∆tj = tj+1 − tj ∆wj = w(tj+1)− w(tj)

and w(t) is a sample of the Wiener process W (t); the values ∆wj of ∆Wj are
drawn independently from the xj. For every value x0 and for every Wiener sample
w(t) we get a possible discretized trajectory. Go then to the limit n → ∞: the
solution exists if such a limit exists for almost every sample w(t) of the Wiener
process; this solution is moreover unique if for almost every sample w(t) of the
Wiener process the limit trajectory is unique
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Theorem 8.16. Theorem of existence and uniqueness: The solution X(t) of the
SDE (8.26) exists and is unique if the Lipschitz conditions are met, that is if there exist
two numbers k1 and k2 such that

|a(x, t)− a(y, t)|+ |b(x, t)− b(y, t)| ≤ k1|x− y|
|a(x, t)|2 + |b(x, t)|2 ≤ k2(1 + |x|2)

for every x, y and t ∈ [0, T ]. This solution is sample continuous and non anticipative
w.r.t. W (t)

Proof: Omitted6. The proof essentially consists in checking that the sequence of
processes Xn(t) generated wit the procedure 1 converges P -a.s. and uniformly in [0, T ].
Since however it may happen that the functions a(x, t) and b(x, t) do not conform to
the Lipschitz conditions, it is also usual to define the so-called weak solutions instead
of the strong solutions of the Definition 8.15: for more details we will only refer to
the literature cited for the proof �

Corollary 8.17. Change of variable: If X(t) is a solution of the SDE (8.26) and
g(x, t) is a function at least twice differentiable in x and once in t, then for the process
Y (t) = g

(
X(t), t

)
we find

dg
(
X(t), t

)
=

[
gt
(
X(t), t

)
+ a
(
X(t), t

)
gx
(
X(t), t

)
+

D

2
b2
(
X(t), t

)
gxx
(
X(t), t

)]
dt

+ b
(
X(t), t

)
gx
(
X(t), t

)
dW (t) (8.28)

that can always be put in the form of a new SDE for Y (t) whenever a function h(y, t)
can be found to implement the inverse transformation X(t) = h

(
Y (t), t

)
Proof: Just take advantage of the Itō formula (8.25) �

8.4.3 SDE ’s and Fokker-Planck equations

In the following sections we will suppose to take the expectations by keeping into
account all the initial conditions required on the involved processes (X(t), W (t) and
even others, if need be), namely by means of the corresponding conditional distributions

Proposition 8.18. Every solution of the SDE (8.26) is a Markov process

Proof: We will confine the discussion to an intuitive justification. Take the sample
trajectories of X(t) according to the procedure 2, and X(s) = y for s > t0: the
evolution of X(t) for t > s is apparently contingent only on the sample w(t) of W (t)
for t > s. Since on the other hand X(t) is non anticipative, the rv ’s X(t′) with t′ < s,

6I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer (Berlin,
1991). B. Øksendal, Stochastic Differential Equations, Springer (Berlin, 2005)
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and W (t) with t > s are independent: as a consequence, when y is known, the values
of X(t) with t > s, and those with t′ < s will be independent, so that X(t) will turn
out to be a Markov process �

Proposition 8.19. Take an ac solution X(t) of the SDE (8.26) with X(t0) = X0, P -a.s.,
then its pdf will be a solution of the Fokker–Planck equation

∂tf(x, t) = −∂x [A(x, t)f(x, t)] +
1

2
∂2
x [B(x, t)f(x, t)] f(x, t0) = f0(x)

where f0 is the pdf of X0, and

A(x, t) = a(x, t) B(x, t) = D b2(x, t) (8.29)

In particular the transition pdf f(x, t | x0, t0) results from the degenerate initial condi-
tion f(x, t0) = δ(x− x0), that is X(t0) = x0, P -a.s.

Proof: We already know from the Theorem 8.16 and the Proposition 8.18 that a
solution of the SDE (8.26) is a sample continuous Markov process, and hence its
transition pdf is a solution of a Fokker–Planck equation (7.80). Take then X(t0) =
x0, P -a.s., and a function h(x) twice differentiable in x: from the change of variable
formula (8.28) we find

dh
(
X(t)

)
=

[
a
(
X(t), t

)
h′(X(t)

)
+

D

2
b2
(
X(t), t

)
h”
(
X(t)

)]
dt

+ b
(
X(t), t

)
h′(X(t)

)
dW (t)

Since moreover X(t) is non anticipative, we have

E
[
b
(
X(t), t

)
h′(X(t)

)
dW (t)

]
= E

[
b
(
X(t), t

)
h′(X(t)

)]
E [dW (t)] = 0

and hence integrating by parts

E
[
dh
(
X(t)

)]
= E

[
a
(
X(t), t

)
h′(X(t)

)
+

D

2
b2
(
X(t), t

)
h”
(
X(t)

)]
dt

=

∫ +∞

−∞

[
a(x, t)h′(x) +

D

2
b2(x, t)h”(x)

]
f(x, t | x0, t0) dx dt

=

∫ +∞

−∞

[
− ∂x [a(x, t)f(x, t |x0, t0)]

+
D

2
∂2
x

[
b2(x, t)f(x, t | x0, t0)

]]
h(x) dx dt

On the other hand it is also

E
[
dh
(
X(t)

)]
= dE

[
h
(
X(t)

)]
=

d

dt
E
[
h
(
X(t)

)]
dt

=

∫ +∞

−∞
h(x)∂tf(x, t |x0, t0) dx dt
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and comparing the two expressions the result for the transition pdf follows from the
arbitrariness of h(x). The equation for general, non degenerate initial conditions easily
results finally from that for the transition pdf �

Taking into account the role played by the coefficients A and B in the forward equations
(see Section 7.2.3), the Proposition 8.19 imply in fact that also the coefficients a and b
of the (8.26) are to be understood respectively as a drift velocity and a diffusion field

8.5 Notable SDE ’s

We already know that the law of a Markov process X(t) can be completely spec-
ified by its pdf ’s f(x, t) and f(x, t ; y, s): if moreover X(t) is a Gaussian process
(see Section 7.1.10) these pdf ’s are in their turn totally determined by E [X(t)] and
cov [X(t), X(s)]: we have indeed that

f(x, t) = N
(
E [X(t)] ,V [X(t)]

)
f(x, t; y, s) = N

(
b,A

)
where

b =

(
E [X(t)]
E [X(s)]

)
A =

(
V [X(t)] cov [X(s), X(t)]

cov [X(t), X(s)] V [X(s)]

)
These remarks will be instrumental in the following to calculate the distributions of
a few notable SDE ’s solutions. Remember finally that we will usually take initial
conditions in an arbitrary t0 ≥ 0, and in particular the degenerate condition W (s) = y
to select the transition pdf f(x, t|y, s)

8.5.1 SDE ’s with constant coefficients

The simplest SDE has constant coefficients a(x, t) = a, b(x, t) = b, namely

dX(t) = a dt+ b dW (t) X(t0) = X0 (8.30)

and its solution simply is

X(t) = X0 + a(t− t0) + b
[
W (t)− w0

]
The corresponding Fokker-Planck equation according to the Proposition 8.19 is

∂tf(x, t) = −a ∂xf(x, t) +
Db2

2
∂2
xf(x, t) f(x, t0) = f0(x)

where f0 is the pdf of X0. The solution X(t) turns out to be Gaussian if the initial
condition X0 is Gaussian (it is indeed a linear combination of Gaussian rv ’s), in par-
ticular if X0 = x0, P -a.s. It is apparent then that in this case the solution of (8.30)
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is nothing but a Wiener process slightly modified with a constant drift a and a rescal-
ing b of the diffusion coefficient D, and hence also the transition pdf f(x, t|x0, t0) is
N (x0+ a(t− t0) , Db2(t− t0)). Of course if in particular a = 0 and b = 1, X(t) exactly
coincides with a Wiener process complying with the Fokker-Planck equation (7.91).
Remark that another arbitrary initial condition X0 would instead produce a process
X(t) with the same Wienerian transition pdf, but with different, non Gaussian joint
laws

8.5.2 SDE ’s with time dependent coefficients

With time dependent coefficients a(t), b(t) the SDE (8.26) becomes

dX(t) = a(t) dt+ b(t) dW (t) X(t0) = X0, P -a.s. (8.31)

and its formal explicit solution is

X(t) = X0 +

∫ t

t0

a(t′) dt′ +

∫ t

t0

b(t′) dW (t′) (8.32)

Even in this case – being a Wiener integral apparently Gaussian – the solution is
Gaussian if X0 is Gaussian too, and in particular if X0 = x0. The corresponding
Fokker–Planck equation moreover is

∂tf(x, t) = −a(t)∂xf(x, t) +
D

2
b(t)2∂2

xf(x, t) f(x, t0) = f0(x)

To find the process distribution it will then be enough to have the transition pdf that is
selected by the degenerate initial condition X(t0) = x0,P -a.s.: all the other solutions
will then follow from the Chapman-Kolmogorov equation (7.16) with arbitrary initial
conditions f0(x)

Proposition 8.20. The solution X(t) of the SDE

dX(t) = a(t) dt+ b(t) dW (t) X(t0) = x0, P -a.s. (8.33)

is a Gaussian process with

m(t) = E [X(t)] = x0 +

∫ t

t0

a(t′) dt′ cov [X(s), X(t)] = D

∫ s∧t

t0

b2(t′) dt′ (8.34)

where s ∧ t = min{s, t}, and hence its transition pdf f(x, t|x0, t0) is N (m(t) , σ2(t))
with σ2(t) = V [X(t)] = cov [X(t), X(t)] deduced from (8.34)

Proof: To prove that X(t) of (8.32) is a Gaussian process we can take advantage of
the point 2 in the Proposition 4.20 by showing that every linear combination of the
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rv ’s X(t1), . . . , X(tn) is Gaussian too: we will neglect however to check that explic-
itly. Being X(t) a Gaussian process, to get its law it will then be enough to find its
expectation and covariance: from (8.32) with X0 = x0 the expectation is

m(t) = E [X(t)] = E [X0] +

∫ t

t0

a(t′) dt′ +

∫ t

t0

b(t′)E [dW (t′)] = x0 +

∫ t

t0

a(t′) dt′

while the covariance, taking t0 < s < t, follows from the previous results and is

cov [X(s), X(t)] = E
[(
X(t)−E [X(t)]

)(
X(s)−E [X(s)]

)]
= E

[∫ t

t0

b(t′) dW (t′)

∫ s

t0

b(s′) dW (s′)

]
Since moreover the increments of W (t) on non overlapping intervals are independent,
from (8.18) we have

cov [X(s), X(t)] = E

[∫ s

t0

b(t′) dW (t′)

∫ s

t0

b(s′) dW (s′)

]
+E

[∫ t

s

b(t′) dW (t′)

∫ s

t0

b(s′) dW (s′)

]
= D

∫ s

t0

b2(t′) dt′

that is (8.34) for arbitrary s and t. This also entails in particular that

σ2(t) = V [X(t)] = cov [X(t), X(t)] = D

∫ t

t0

b2(t′) dt′

so that in general X(t) ∼ N (m(t) , σ2(t)) and its pdf also apparently coincides with
the transition pdf f(x, t|x0, t0) �

8.5.3 SDE ’s with no drift and x-linear diffusion

Take now an x-linear diffusion coefficient b(x, t) = cx with c > 0, and for simplicity a
vanishing drift a(x, t) = 0: our SDE then becomes

dX(t) = cX(t) dW (t) X(t0) = X0 > 0, P -a.s. (8.35)

while the corresponding Fokker–Planck equation, with A(x, t) = a(x, t) = 0 and
B(x, t) = Db2(x, t) = Dc2x2, is now

∂tf(x, t) =
Dc2

2
∂2
x

[
x2f(x, t)

]
f(x, t0) = f0(x)
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To solve (8.35) it is expedient to change the variable according to the transformation
g(x) = ln x

Y (t) = g(X(t)) = lnX(t) Y (t0) = Y0 = lnX0

The new SDE for Y (t) can now be found from (8.28): since it is

g(x, t) = lnx gx(x, t) =
1

x
gxx(x, t) = − 1

x2
gt(x, t) = 0

from (8.28) immediately follows that

dY (t) = −Dc2

2
dt+ c dW (t) Y (t0) = Y0, P -a.s. (8.36)

Remark that the first term in the r.h.s. of this equation would not be there by adopting
the usual differentiation rules: this additional constant drift term, which would be
signally absent in the non stochastic calculus, is indeed a byproduct of the Itō formula.
The SDE (8.36) has now constant coefficients as in the equation (8.30) discussed in
the Section 8.5.1, and hence its solution simply is

Y (t) = Y0 −
Dc2

2
(t− t0) + c

[
W (t)− w0

]
(8.37)

namely a modified Wiener process plus an independent initial rv, so that going back
to the original variables with h(x) = ex we finally find

X(t) = h(Y (t)) = eY (t) = X0 e
−Dc2(t−t0)/2ec [W (t)−w0] (8.38)

Proposition 8.21. The process Y (t) (8.37) solution of the SDE (8.36) with Gaussian
initial condition Y0 ∼ N (y0, σ

2
0) is Gaussian with distribution at time t

Y (t) ∼ N

(
y0 −

Dc2

2
(t− t0) , σ

2
0 +Dc2(t− t0)

)
(8.39)

and with autocovariance

cov [Y (s), Y (t)] = σ2
0 +Dc2min{t− t0 , s− t0} (8.40)

Proof: The process Y (t) is apparently Gaussian if Y0 is Gaussian because (8.37) always
turns out to be a linear combination of Gaussian rv ’s. Remark that on the other hand
X(t) in (8.38) is still Markovian, but it is not Gaussian, as we will see later. Nevertheless
we will be able to find the transition pdf of X(t), and thus all its other distributions
from the Chapman-Kolmogorov equations. The law of Y (t) (8.37) is thus completely
determined by E [Y (t)] and cov [Y (s), Y (t)]: from (8.37) we first have

E [Y (t)] = y0 −
Dc2

2
(t− t0) (8.41)
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For the autocovariance it is expedient to define Ỹ0 = Y0−y0 and the centered processes
W̃ (t) = W (t)− w0 and

Ỹ (t) = Y (t)−E [Y (t)] = Y0 − y0 + c[W (t)− w0] = Ỹ0 + cW̃ (t)

From (8.9) and (8.10) we then have

E
[
W̃ (t)

]
= 0 E

[
W̃ (s)W̃ (t)

]
= Dmin{s− t0 , t− t0}

so that – keeping also into account the independence of Y0 and W (t) – we eventually
find the required form (8.40) for the autocovariance:

cov [Y (s), Y (t)] = E
[
Ỹ (s)Ỹ (t)

]
= E

[
(Ỹ0 + cW̃ (s))(Ỹ0 + cW̃ (t))

]
= E

[
Ỹ 2
0

]
+ c2E

[
W̃ (s)W̃ (t)

]
= σ2

0 +Dc2 min{t− t0 , s− t0}

This also entails that V [Y (t)] = σ2
0 + Dc2(t − t0) and hence the form (8.39) for the

distribution of Y (t) �

Proposition 8.22. The distribution of X(t) solution of the SDE (8.35) with log-normal
initial conditions X(t0) = X0 = eY0 ∼ lnN (y0, σ

2
0) is the log-normal

X(t) ∼ lnN

(
y0 −

Dc2

2
(t− t0) , σ

2
0 +Dc2(t− t0)

)
(8.42)

and, with x0 = ey0, we also have

E [X(t)] = x0 e
σ2
0/2 V [X(t)] = x2

0 e
σ2
0

(
eσ

2
0+Dc2(t−t0) − 1

)
(8.43)

cov [X(s), X(t)] = x2
0 e

2σ2
0

(
eDc2(t−t0)∧(s−t0) − 1

)
(8.44)

The log-normal transition pdf is easily recovered from (8.42) by taking σ0 = 0, that is
by choosing a degenerate initial condition

Proof: The process X(t) = eY (t) is the exponential of the Gaussian process Y (t)
discussed in the Proposition 8.21 with distribution (8.39), and hence its distribution at
the time t is the log-normal (8.42). From (3.65) it is then straightforward to calculate
the expectation and the variance listed in (8.43). As for the autocovariance we remark
first that X(s)X(t) = eY (s)+Y (t), and that from the Proposition 4.20 it follows that the
rv ’s Y (s) + Y (t) always are Gaussian. From (8.41) we have moreover

E [Y (s) + Y (t)] = 2y0 −
Dc2

2
(s+ t− 2t0)
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while from the Proposition 3.29 and from (8.40) we have

V [Y (s) + Y (t)] = V [Y (s)] + V [Y (t)] + 2cov [Y (s), Y (t)]

= 4σ2
0 +Dc2 [(s+ t− 2t0) + 2min{t− t0 , s− t0}]

By summarizing we have then that

X(s)X(t) ∼ lnN

(
2y0 −

Dc2

2
(s+ t− 2t0) ,

4σ2
0 +Dc2 [(s+ t− 2t0) + 2(t− t0) ∧ (s− t0)]

)
so that from (3.65) it is

E [X(s)X(t)] = e2y0+2σ2
0+Dc2(t−t0)∧(s−t0) = x2

0 e
2σ2

0 eDc2(t−t0)∧(s−t0)

and finally from (8.43) we can deduce the autocovariance (8.44) All these results also
entail that the transition pdf f(x, t|x0, t0) of the process X(t) is the log-normal

lnN

(
lnx0 −

Dc2

2
(t− t0) , Dc2(t− t0)

)
that is recovered for σ0 = 0, namely with the degenerate initial condition X(t0) = x0 =
ey0 : taking then advantage of the Chapman-Kolmogorov equations and of the chain
rule we are therefore in a position to find also the complete law of the process. Remark
that now, since X(t) is no longer a Gaussian process, the said global law of the process
could not be deduced only from the knowledge of E [X(t)] and cov [X(s), X(t)], so
that our explicit form of the transition pdf plays a crucial role in the characterization
of the process X(t) �

8.5.4 SDE ’s with x-linear drift and constant diffusion

Take now a(x, t) = −αx with α > 0, and b(x, t) = 1: our SDE will then be

dX(t) = −αX(t)dt+ dW (t) X(t0) = X0 P -a.s. (8.45)

With the usual coefficient transformations

A(x, t) = a(x, t) = −αx B(x, t) = Db2(x, t) = D

we then find the Fokker-Planck equation of an Ornstein-Uhlenbeck process

∂tf(x, t) = α∂x
[
xf(x, t)

]
+

D

2
∂2
xf(x, t) f(x, t0) = f0(x) (8.46)
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that has been put forward in the Proposition 7.40: we already know its solutions, but
we will deduce them again here as an application of the stochastic calculus. To find
the solution of (8.45) consider the transformed process

Y (t) = X(t) eα(t−t0) Y (t0) = X0

whose SDE follows from (8.28) with g(x, t) = xeα(t−t0): since it is

gx(x, t) = eα(t−t0) gxx(x, t) = 0 gt(x, t) = αxeα(t−t0)

we find that Y (t) is a solution of the SDE

dY (t) = eα(t−t0) dW (t) (8.47)

with time dependent coefficients like (8.31) so that

Y (t) = X0 +

∫ t

t0

eα(s−t0)dW (s)

Recalling then that X(t) = e−α(t−t0)Y (t), the solution of (8.45) will be

X(t) = X0 e
−α(t−t0) +

∫ t

t0

e−α(t−s)dW (s) (8.48)

which is Gaussian if X0 is Gaussian, in particular when X0 = x0 , P -a.s.

Proposition 8.23. The process X(t) solution of the SDE (8.45) with Gaussian initial
conditions X0 ∼ N (x0, σ

2
0) is a Gaussian Ornstein-Uhlenbeck process with

X(t) ∼ N
(
x0 e

−α(t−t0) , σ2
0 e

−2α(t−t0) + β2
(
1− e−2α(t−t0)

) )
(8.49)

cov [X(s), X(t)] =
(
σ2
0 − β2

)
e−α(s+t−2t0) + β2e−α|t−s| (8.50)

where β2 = D/2α. The Gaussian transition pdf is easily recovered from (8.49) by
taking σ0 = 0, that is by choosing a degenerate initial condition

Proof: Since X(t) with our initial conditions is a Gaussian process, it will be enough
to find its expectation and its autocovariance. From (8.17) we first have

E [X(t)] = E [X0] e
−α(t−t0) = x0 e

−α(t−t0) (8.51)

Then for the autocovariance, from (8.17), (8.18) and the independence of the Wiener
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ingtegrals on non overlapping intervals, we have

cov [X(s), X(t)] = E [ (X(t)−E [X(t)]) (X(s)−E [X(s)]) ]

= E

[(
(X0 − x0)e

−α(t−t0) +

∫ t

t0

e−α(t−t′)dW (t′)

)
·(

(X0 − x0)e
−α(s−t0) +

∫ s

t0

e−α(s−s′)dW (s′)

)]
= V [X0] e

−α(s+t−2t0) +E

[∫ t

t0

e−α(t−t′)dW (t′)

∫ s

t0

e−α(s−s′)dW (s′)

]
= σ2

0 e
−α(s+t−2t0) +D

∫ s∧t

t0

e−α(t+s−2t′)dt′

= σ2
0 e

−α(s+t−2t0) +De−α(t+s) e
2α(s∧t) − e2αt0

2α
=
(
σ2
0 − β2

)
e−α(s+t−2t0) + β2e−α|t−s|

since it is easy to check that s + t − 2(s ∧ t) = |t − s|. The process X(t) is thus
completely specified, and in particular its variance is

V [X(t)] = cov [X(t), X(t)] = σ2
0 e

−2α(t−t0) + β2
(
1− e−2α(t−t0)

)
(8.52)

From these results we can also deduce the transition pdf choosing the initial con-
dition X0 = x0 , P -a.s., that is σ2

0 = 0: in this case from (8.49) we easily find
X(t) ∼ N

(
x0e

−α(t−t0), β2(1− e−2α(t−t0))
)
in agreement with the aforementioned tran-

sition pdf (7.56) of the Ornstein-Uhlenbeck process. Remark the relative easy of this
derivation from the SDE (8.45) w.r.t. the less elementary procedures needed to solve
the corresponding Fokker-Planck equation 7.40 �
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Chapter 9

Dynamical theory of Brownian
motion

In 1930 L.S. Ornstein and G.F. Uhlenbeck addressed again the problem of elaborating
a suitable model for the Brownian motion, and they refined in more detail the Langevin
dynamical equation to investigate the phenomenon at time scales shorter than those
considered by Einstein and Smoluchowski in 1905-6. We will now give an account
of the Ornstein-Uhlenbeck theory adapted to our notations, and we will look into
the conditions under which the Einstein-Smoluchowski theory continues to be a good
approximation

9.1 Free Brownian particle

In the Ornstein-Uhlenbeck theory the position of the Brownian particle is a process
X(t) that is supposed to be differentiable, so that the velocity V (t) = Ẋ(t) always
exists. Resuming then the discussion of the Section 6.4.2 we will be able to write down
the Newton equation of a free, spherical Browniana particle, with mass m and diameter
a, as the following system of differential equations

Ẋ(t) = V (t) (9.1)

mV̇ (t) = −6πηaV (t) +B(t) (9.2)

where, as was argued in the Section 8.1, B(t) is a Wiener white noise, while η is the
environment viscosity. The equation (9.2) indicates in particular that there are two
kind of forces acting on the particle: a viscous resistance proportional to the velocity
V (t), and a random force embodied by a white noise. Given the singular character of
B(t) we know however that our system is better presented in terms of SDE ’s, namely
as

dX(t) = V (t) dt (9.3)

dV (t) = −αV (t) dt+ dW (t) (9.4)
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where we have defined

α =
6πηa

m
(9.5)

while W (t) is now a Wiener noise with a suitable diffusion coefficient D affecting the
velocity equation (9.4). Remark that the equations (9.3) and (9.4) are uncoupled
because X(t) only appears in the first one: this will enable us to deal with them one
by one, first solving (9.4) for V (y), and then using it in (9.3)

Proposition 9.1. Take t0 = 0 and degenerate initial conditions X(0) = x0 and V (0) =
v0: then the velocity V (t) of a free Brownian motion is a Gaussian Ornstein-Uhlenbeck
process with

E [V (t)] = v0 e
−αt (9.6)

cov [V (s), V (t)] = β2
(
e−α|s−t| − e−α(s+t)

)
β2 =

D

2α
(9.7)

If moreover k is the Boltzmann constant and T the absolute temperature, we find

β2 =
kT

m
(9.8)

The position X(t) instead is not Markovian, but is a Gaussian process with

E [X(t)] = x0 +
v0
α

(
1− e−αt

)
(9.9)

cov [X(s), X(t)] =
β2

α2

[
2α(s ∧ t)− 2 + 2e−αs + 2e−αt

−e−α|s−t| − e−α(s+t)
]

(9.10)

Proof: A simple change in the notation makes clear that the SDE (9.4) coincides with
the SDE (8.45) discussed in the Section 8.5.4 so that, with our initial conditions, the
solutions of our system are

X(t) = x0 +

∫ t

0

V (s) ds (9.11)

V (t) = v0 e
−αt +

∫ t

0

e−α(t−s) dW (s) (9.12)

That V (t) in (9.12) is then an Ornstein-Uhlenbeck process with expectation (9.6) and
autocovariance (9.7) has already been shown in the Section 8.5.4, while the other
general features of such a process have been presented in the Sections 7.1.9 and in the
Proposition 7.40

As for the relation (9.8) we should remember that, according to the Proposition 7.27,
when t → +∞ the velocity distribution converges to the stationary law N (0, β2). As
a consequence, at the thermodynamical equilibrium, we can resort to the equipartition
of energy

1

2
kT =

1

2
mβ2
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9.1 Free Brownian particle

that immediately entails (9.8)
From (9.11) it follows that the position process X(t) is Gaussian and hence, ac-

cording to the Section 7.1.10, its distribution can be worked out from its expectation
and autocovariance. For the expectation from (9.11) it is

E [X(t)] = x0 +

∫ t

0

E [V (s)] ds = x0 + v0

∫ t

0

e−αsds = x0 +
v0
α

(
1− e−αt

)
namely (9.9). Then for the autocovariance we first prove that

cov [X(s), X(t)] =

∫ s

0

∫ t

0

cov [V (s′), V (t′)] ds′dt′ (9.13)

Using indeed for convenience the centered processes

Ṽ (t) = V (t)−E [V (t)] = V (t)− v0e
−αt (9.14)

X̃(t) = X(t)−E [X(t)] =

∫ t

0

V (s) ds− v0
α

(
1− e−αt

)
=

∫ t

0

Ṽ (s) ds (9.15)

we easily find that (9.13) holds:

cov [X(s), X(t)] = E
[
X̃(s)X̃(t)

]
=

∫ s

0

∫ t

0

E
[
Ṽ (s′)Ṽ (t′)

]
ds′dt′

=

∫ s

0

∫ t

0

cov [V (s′), V (t′)] ds′dt′

From (9.13) and (9.7) we thus have

cov [X(s), X(t)] = β2

∫ s

0

∫ t

0

(
e−α|s′−t′| − e−α(s′+t′)

)
ds′dt′

and (9.10) follows from a tiresome but elementary integration
To prove finally that X(t) is not Markovian, we will explicitly calculate its tran-

sition pdf and we will show that it does not comply with the Chapman-Kolmogorov
conditions. To find first the two-times joint, Gaussian pdf of X(t) let us call for short
b(t), a2(t) and r(s, t) respectively the expectation, the variance and the correlation co-
efficient as they are deduced from (9.9) and (9.10): we see then the the one-time pdf
f(x, t) is N (b(t), a2(t)), while the two-times pdf f(x, t; y, s) is N (b,A) with

b =

(
b(s)
b(t)

)
A =

(
a2(s) a(s)a(t)r(s, t)

a(s)a(t)r(s, t) a2(t)

)
The transition pdf f(x, t | y, s) with s < t follows now from the Proposition 3.40 and
is N (A(s, t)y +B(s, t) , C2(s, t)) where we have defined

A(s, t) = r(s, t)
a(t)

a(s)
B(s, t) = b(t)− r(s, t)

a(t)

a(s)
b(s)

C2(s, t) = a2(t)[1− r2(s, t)]
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A tedious, direct calculation – whose details we will neglect here – would show that to
meet the Chapman-Kolmogorov condition (7.17) we should have

r(s, u)r(u, t) = r(s, t) s < u < t (9.16)

while from (9.10) it is

r(s, t) =
2αs− 2 + 2e−αs + 2e−αt − e−α(t−s) − e−α(t+s)

√
2αs− 3 + 4e−αs − e−2αs

√
2αt− 3 + 4e−αt − e−2αt

s < t

and it is possible to check that (9.16) – and hence the Chapman-Kolmogorov condition
– does not hold: we can conclude then that in the Ornstein-Uhlenbeck theory the
position process X(t) is not Markovian. This result is in apparent disagreement with
the Einstein-Smoluchowski theory that, as elucidated in the Section 6.4.1, consider the
Brownian position as a Wiener process, namely as a Markov process �

9.2 Ornstein-Uhlenbeck vs Einstein-Smoluchowski

To better compare the Einstein-Smoluchowski theory of the Chapter 6.4 with that of
Ornstein-Uhlenbeck presented here we must remark at once that in the two approaches
the symbol D takes two different meanings, so that we will accordingly be obliged to
adopt two separate notations:

• in the Einstein-Smoluchowski theory we will dub DX the diffusion coefficient of
the Wiener process WX(t) that directly represents the position of the Brownian
particle; since moreover the variance of such a position linearly grows in time as
DXt, we also find that its physical dimensions are

[DX ] =
mt2

sec

while from (6.76) we know that its value in terms of physical constants is

DX =
kT

3πηa

• in the Ornstein-Uhlenbeck approach, instead, we will now label as DV the diffu-
sion coefficient of the Wiener noise WV (t) affecting the velocity equation (9.4), so
that β2 = DV /2α is the asymptotic velocity variance and the physical dimensions
will be

[DV ] =
mt2

sec3

while from (6.76), (9.5), (9.7) and (9.8) we also know that its value is

DV = 2αβ2 =
12πηakT

m2
= α2DX
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9.3 Ornstein-Uhlenbeck Markovianity

We can then compare the two theories by remarking first of all that in the Ornstein-
Uhlenbeck model the position variance is deduced from (9.10) and is

V [X(t)] =
β2

α2

(
2αt− 3 + 4e−αt − e−2αt

)
while the Einstein-Smoluchowky result is asymptotically recovered as

V [X(t)] ≃ 2β2

α
t =

DV

α2
t = DX t αt ≫ 1

This apparently suggests that the Einstein-Smoluchiwski theory should be deemed a
good approximation of that of Ornstein-Uhlenbeck either for large times t (after a
transient delay) or for large values of the viscous drag coefficient α (over-damped
regime)

Proposition 9.2. Within the notations of the Proposition 9.1, if α → +∞ keeping
β2/α finite, then the Ornstein-Uhlenbeck position process X(t) with initial condition
X(0) = x0 converges in distribution – in the sense of the Definition 5.4 – to a Wiener
process WX(t) with diffusion coefficient DX = 2β2/α = DV /α

2 and WX(0) = x0

Proof: From (9.9) and (9.10) we see in fact that, in the over-damped limit α → +∞
for every fixed s, t, the expectation and the covariance of the position process X(t)
converge to

E [X(t)] → x0 cov [X(s), X(t)] → DX(s ∧ t)

and since X(t) is Gaussian it also converges in distribution to a Wiener process WX(t)
with diffusion coefficientDX and initial conditionWX(0) = x0. Remark that to suppose
an over-damped regime is equivalent to take a very short transient delay �

By summarizing, from now on we will take for granted that in an over-damped regime,
or anyway after a transient delay t ≫ 1/α, the position of a free Brownian motion is
well described by a Wiener process obeying to the (trivial) SDE

dX(t) = dWX(t) (9.17)

Remark in particular that the position X(t) diffuses isotropically because we see
from (9.6) that the initial velocity v0 is quickly wiped out by the background noise
so that, after a short delay, E [V (t)] → 0 for t ≫ 1/α. The present discussion about
the Brownian motion in the over-damped regime will be resumed in a more general
setting later on in the Proposition 9.7

9.3 Ornstein-Uhlenbeck Markovianity

We have seen in the Proposition 9.1 that in the Ornstein-Uhlenbeck theory the veloc-
ity V (t) is a Markov process, while the position X(t) is not. From a mathematical
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standpoint this follows from the fact that V (t) satisfies the Langevin SDE (9.4), and
hence is Markovian according to the Proposition 8.18, while the relation (9.3) only en-
tails that X(t) has a stochastic differential contingent on another process autonomous
w.r.t. the position. From the discussion of Section 7.1.1, however, we also know that
it is in general possible to recover a process Markovianity by adding the information
needed to this end: typically this means that we should consider vector processes with
several components in order to supply all the required additional information. In our
discussion a clue comes from the remark that in the Newtonian dynamics the state of
the system is not determined by the position x(t) alone, and must instead be described
in the phase space by the pair x(t), v(t) of position and velocity. This hints that we
should rather consider the phase space vector process

Z(t) =

(
X(t)
V (t)

)
so that the system of our two equations (9.3) and (9.4) can be given as a unique vector
SDE

dZ(t) = a(Z(t)) dt+ C dW (t) (9.18)

where we took

a(z) = a(x, v) =

(
v

−αv

)
C =

(
0 0
0 1

)
(9.19)

while W (t) is now a vector Wiener process with

W (t) =

(
WX(t)
WV (t)

)
To not overload our discussion we we did not previously mentioned the vector SDE ’s
like (9.18), that generally speaking take the form

dZ(t) = a(Z(t), t) dt+ C(Z(t), t) dW (t) (9.20)

but we will here give for granted that – with some burdening in the notations – most of
the results stated in the previous sections hold even for the SDE ’s of the type (9.20).
The solution of (9.18) with the degenerate initial condition

Z(0) = z0 =

(
x0

v0

)
(9.21)

apparently is the vector Z(t) whose components are the solutions (9.11) and (9.12)
previously found, but in this new formulation a new trait comes to the fore that has
been neglected in the discussion of the Section 9.1: the need to calculate also the
cross-correlation of the two processes X(t) and V (t), and more generally their joint
distribution in addition to their respective marginals
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9.3 Ornstein-Uhlenbeck Markovianity

Proposition 9.3. The cross-covariance of the Ornstein-Uhlenbeck processes X(t) and
V (t) is

cov [X(s), V (t)] =
β2

α

[
1 +

|t− s|
t− s

(
e−α|t−s| − 1

)
− 2e−αt + e−α(t+s)

]
(9.22)

Proof: By using again the centered processes (9.14) and (9.15) we first find that

cov [X(s), V (t)] = E
[
X̃(s)Ṽ (t)

]
= E

[
Ṽ (t)

∫ s

0

Ṽ (t′) dt′
]

=

∫ s

0

E
[
Ṽ (t)Ṽ (t′)

]
dt′ =

∫ s

0

cov [V (t), V (t′)] dt′

and then from (9.7) we can write

cov [X(s), V (t)] = β2

∫ s

0

(
e−α|t−t′| − e−α(t+t′)

)
dt′

The result (9.22) finally follows from a boring elementary integration �

Proposition 9.4. The solution Z(t) of the SDE (9.18) with initial conditions (9.21)
is a Gaussian vector Markov process; the joint law of its two components at the time t
is N (b,A) with

b =

(
E [X(t)]
E [V (t)]

)
=

(
x0 + v0 (1− e−αt) /α

v0 e
−αt

)
(9.23)

A =

(
V [X(t)] cov[X(t), V (t)]

cov[X(t), V (t)] V [V (t)]

)

=
β2

α2

(
2αt− 3 + 4e−αt − e−2αt α (1− 2e−αt + e−2αt)
α (1− 2e−αt + e−2αt) α2 (1− e−2αt)

)
(9.24)

We will skip instead for short to provide the explicit form of the joint distribution of
the pair Z(s),Z(t) that at any rate can be worked out along similar lines

Proof: Since Z(t) satisfies the (9.18), a generalization of the Proposition 8.18 entails
that such a solution too is a vector Markov process. As for its distribution, we also know
from the Proposition 9.1 that the two components X(t) and V (t) of Z(t) individually
are Gaussian processes, but this occurrence – to be sure – is not enough to entail
that such components also are jointly gaussian. For the time being we will take that
conclusion for granted without a proof by postponing to the next proposition the outline
of a possible checking procedure, and we will confine ourselves here to remark just that
in this event the expressions (9.23) and (9.24) for the vector of the means and the
covariance matrix of Z(t) follow from (9.22), (9.7) and (9.10) �
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Even the Proposition 8.19 establishing a correspondence between SDE ’s and Fokker-
Planck equations can be suitably generalized to the case of vector processes of the
type (9.20), and in this case the Fokker-Planck equation will of course take the form
of a multivariate equation like (7.80) whose coefficients – at least when there is only
one Wiener noise – are found from the following rules that generalize (8.29)

A(x, t) = a(x, t) B(x, t) = DC(x, t)CT(x, t) (9.25)

where CT denotes the transposition of C

Proposition 9.5. The joint pdf ’s of the r-vec Z(t) solution of the SDE (9.18) with
initial conditions (9.21) abides by the following phase space Fokker-Planck equation

∂tf(x, v, t) = −v∂xf(x, v, t) + α ∂v [vf(x, v, t)] +
D

2
∂2
vf(x, v, t) (9.26)

f(x, v, 0) = f0(x, v)

Proof: It would be enough to write down a bivariate Fokker-Planck (7.80) keeping
into account (9.25) and (9.19). Remark that while according to the Proposition 9.1 the
velocity V (t) is an Ornstein-Uhlenbeck process and hence its pdf satisfies a Fokker-
Planck equation of the type (8.46) – that could also be recovered from (9.26) with an
x-marginalization – the position X(t) on the contrary is not individually a Markov
process and hence its pdf is not the solutions of some partial differential equation: in
particular a v-marginalization of (9.26) to recover this supposed equation would not
lead to any coherent result

The equation (9.26) also enables us to design a procedure to directly check our
claim in the Proposition 9.4 that the vector process Z(t) is in fact Gaussian: being
Z(t) Markovian it is enough indeed to prove that the transition pdf is Gaussian. To this
end we could simply write down explicitly (what we did not for short in the previous
proposition) the presumed Gaussian bivariate pdf ’s of Z(t) from (9.23) and (9.24),
then the corresponding transition pdf and finally verify by direct calculation that it is
the solutions of (9.26) with degenerate initial conditions f(x, v, 0) = δ(x−x0)δ(v−v0).
We will neglect however the details of this proof �

9.4 Brownian particle in a force field

Let us suppose now that our Brownian particle is embedded in an external force field,
so that the system of equations (9.3) and (9.4) becomes

dX(t) = V (t) dt (9.27)

dV (t) = γ (X(t), t) dt− αV (t) dt+ dWV (t) (9.28)

where γ(x, t) is a new term with the dimensions of an acceleration brought in to reckon
our force field. This new system can again be rephrased as a unique vector SDE of the
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type (9.18) for Z(t) with the following coefficients

a(z) = a(x, v) =

(
v

γ(x, t)− αv

)
C =

(
0 0
0 1

)
(9.29)

so that Z(t), as a solution of (9.18), still is a vector Markov process, but now the two
equations of the system are apparently coupled in a way no longer allowing to solve
them individually one after the other. A complete investigation of this problem would
consequently put forward more difficulties w.r.t. the previous free case, so that instead
of the general solutions we will rather investigate the possibility of extending – under
suitable conditions – the approximate approach already presented in the Section 9.2.
According to the Proposition 9.2 we know indeed that for a free Brownian motion a
Wiener process on the configuration space (positions x) under suitable conditions is a
good approximation for the position of the vector Markov process Z(t) on the phase
space x, v. When instead the Brownian motion occurs in a force field such a Markovian
approximation on the configuration space has been found by Smoluchowski and we will
outline in the following its main features

We start first by supposing that the force field i constant

γ(x, t) = γ0

so that the two equations of our system become

dX(t) = V (t) dt (9.30)

dV (t) = [γ0 − αV (t)] dt+ dWV (t) (9.31)

and being no longer coupled they can be easily solved as in the free case. The extra
constant γ0 can indeed be reabsorbed with the following redefinition of the velocity
process

Vγ(t) = V (t)− γ0
α

that now, instead of (9.31), satisfies the equation

dVγ(t) = −αVγ(t) dt+ dWV (t)

that formally coincides with the Ornstein-Uhlenbeck equation (9.4) for V (t) in the
free case. The solution Vγ(t) is then again of the form (9.12), and hence we deduce
from (9.6) that, with an arbitrary initial condition and for times t ≫ 1/α, Vγ(t) will
asymptotically vanish, and consequently the velocity V (t) will tend to the constant
γ0/α. We can then conclude that – after a short transient delay – the position X(t) of
the vector Markov process Z(t) will comply with the equation

dX(t) =
γ0
α

dt+ dWX(t) (9.32)

that generalizes that of the free case (9.17), and whose solution simply is a Wiener
process superposed to a constant drift γ0t/α
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The next step consists then in the remark that this discussion hints to an extension
of the previous result to the case of a field γ(x, t) varying slowly w.r.t the time scale
1/α characteristic of the model, so that it can be deemed roughly constant. We get in
this way the Smoluchowski equation

dX(t) =
γ(X(t), t)

α
dt+ dWX(t) (9.33)

that constitutes the ground for an approximate theory where the dynamics only ap-
pears as a drift term in a SDE, and the position becomes a Markov process. The
Smoluchowski equation defines thus in a configuration space a dynamical theory with
many important outcomes

Exemple 9.6. Elastic restoring force: The Smoluchowski approximation provides
acceptable solutions when the force field is a linear (elastic) restoring force

γ(x, t) = −ω2x (9.34)

so that the equations of the Ornstein-Uhlenbeck theory are

dX(t) = V (t) dt (9.35)

dV (t) = −ω2X(t) dt− αV (t) dt+ dWV (t) (9.36)

that is in a vector notation

dZ(t) = a(Z(t), t) dt+ C(Z(t), t) dW (t)

a(z) = a(x, v) =

(
v

−ω2x− αv

)
C =

(
0 0
0 1

)
The solutions of (9.35) and (9.36) can be explicitly calculated 1, but they are rather
cumbersome and we will skip an explicit description of them. It is instead more in-
teresting to point out that the account provided by the solution of the corresponding
Smoluchowski equation

dX(t) = −ω2

α
X(t) dt+ dWX(t) (9.37)

is indeed rather simple and accurate 2. The equation (9.37) – with a suitable coefficient
redefinition – looks in fact again as an Ornstein-Uhlenbeck equation (8.45) for the po-
sition X(t) that now becomes a Gaussian Markov process with law N (x0e

−ω2t/α, β2(1−
e−2ω2t/α)) and with

β2 =
αDX

2ω2
=

kT

mω2

1S. Chandrasekhar, Rev. Mod. Phys. 15 (1943) 1
2The behavior of a Brownian motion under the effect of an elastic restoring force has also been

empirically investigated with a few clever experiments by E. Kappler, Ann. Phys. 11 (1931) 233,
confirming the idea that the Smoluchowski approximation holds well when the drag α is large
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where k is the Boltzmann constant and T the temperature. This process also has an
asymptotic, invariant distribution N (0, β2) accounting for a situation where – either
after a transient delay, or in an overdamped regime – our particle no longer diffuses
endlessly because of the contrast exercised by the binding restoring force

The scope of the Smoluchowski approximation (9.33) is not confined only to the case
of the elastic restoring forces: a more comprehensive formulation, anticipated at the
end of the Section 9.2, is presented in the next proposition where it has been deemed
expedient to define the new velocity field

c(x, t) =
γ(x, t)

α

Proposition 9.7. Under reasonable regularity conditions on c(x, t), if X(t) and V (t)
are the solutions of the SDE system

dX(t) = V (t) dt X(0) = x0

dV (t) = αc(X(t), t) dt− αV (t) dt+ αdW (t) V (0) = v0

while Y(t) is the solution of the SDE

dY (t) = c(Y (t), t) dt+ dW (t) Y (0) = x0

then, for every given v0, we have

lim
α→∞

X(t) = Y (t) P -a.s.

uniformly in t in every compact of [0,+∞)

Proof: Omitted3 �

9.5 Boltzmann distribution

In the Smoluchowski equation for a Brownian particle in a force field

dX(t) =
γ(X(t), t)

α
dt+ dW (t) (9.38)

the external dynamics embodied by γ(x, t) only appears in the form of the drift velocity
c = γ/α, while it is completely missing in the diffusion term b = 1. In the present sec-
tion we will consider the case of time-independent force fields endowed with a potential
energy ϕ(x) such that

mγ(x) = −ϕ′(x) (9.39)

3E. Nelson, Dynamical Theories of Brownian Motion, Princeton UP (Princeton, 1967)
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As a consequence the equation (9.38) becomes

dX(t) = −ϕ′(X(t))

αm
dt+ dW (t)

On the other hand from (6.76) and (9.5) we get

1

αm
=

D

2kT
=

Dβ

2

where the thermodynamic parameter 1/kT traditionally designated as β (a notation
that we deemed better to maintain here) must not be misinterpreted as the homonym
parameter of the Ornstein-Uhlenbeck process of the previous sections. As a conse-
quence the Smoluchowski equation takes the form

dX(t) = −D

2
βϕ′(X(t)) dt+ dW (t)

and hence from the Proposition 8.19 with a(x, t) = −D
2
βϕ′(x), and b(x, t) = 1 we find

the following Fokker-Planck equation for our Brownian motion in a potential ϕ(x)

∂tf(x, t) =
D

2
∂x[βϕ

′(x)f(x, t)] +
D

2
∂2
xf(x, t) (9.40)

Proposition 9.8. When it exists, the stationary solution of the equation (9.40) is the
Boltzmann distribution

f(x) =
e−βϕ(x)

Z(β)
(9.41)

where the normalization constant

Z(β) =

∫ +∞

−∞
e−βϕ(x) dx (9.42)

is also called partition function

Proof: To check first that the Boltzmann distribution is a solution of (9.40) it is
enough to remark from (9.41) that ∂tf = 0, and then that ∂xf = −βϕ′f . If conversely
f(x) is a stationary solution of (9.40), we first have ∂tf = 0 and then from (9.40) we
find that f(x) must satisfy the first order equation

βϕ′(x)f(x) + f ′(x) = C

where C is an integration constant. Since on the other hand f(x) must be an integrable
pdf, the function f(x) must vanish for x → ±∞. Assuming then that f with its first
derivative vanishes at the infinity fast enough to make the left hand side of our equation
infinitesimal as a whole for x → ±∞, we will get C = 0 and hence the stationary f
must in fact satisfy the equation

βϕ′(x)f(x) + f ′(x) = 0

whose solution can be obtained with elementary methods and, after normalization,
coincides with the Boltzmann distribution (9.41) �
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Exemple 9.9. Elastic restoring force (continuation): Resuming the discussion
of the Example 9.6 with γ as in (9.34), we unsurprisingly find from (9.39) that ϕ is
the harmonic oscillator potential

ϕ(x) =
1

2
mω2x2 (9.43)

and hence, within the notation adopted in this section, the Smoluchowski equation (9.37)
becomes

dX(t) = −D

2
βmω2X(t) dt+ dW (t) (9.44)

From the Proposizione 9.8 we then find the Boltzmann distribution

Z(β) =

√
2π

βmω2
=

√
2πkT

mω2

f(x) =
e−

1
2
βmω2x2√
2π

βmω2

=
e−mω2x2/2kT√

2πkT
mω2

that apparently coincide with the stationary solution N
(
0, kT

mω2

)
of the Ornstein-Uh-

lenbeck equation (9.37) investigated in the previous section

Exemple 9.10. Weight: Take now a negative constant acceleration γ(x) = −g for a
process confined to the positive half-line x ≥ 0. Supposing that x represent the height
of a corpuscle above a floor placed in x = 0, this model will describe the distribution
of the Brownian particles under the effect of the weight. We thus obtain from (9.39) a
potential ϕ(x) = mgx, while the Smoluchowski equation (9.38) becomes

dX(t) = −D

2
βmg dt+ dW (t)

namely has constant coefficient, a case already discussed in the Section 8.5.1 but for the
fact that now we must impose the additional condition x ≥ 0, that is f = 0 for x < 0,
so that now the solution can no longer be Gaussian. The corresponding Fokker-Planck
equation (9.40) is

∂tf(x, t) =
D

2
βmg ∂xf(x, t) +

D

2
∂2
xf(x, t) x ≥ 0

and from the Proposition 9.8 we get the stationary solution

Z(β) =
1

βmg
=

kT

mg

f(x) = βmg e−βmgxϑ(x) =
mg

kT
e−mgx/kTϑ(x)

where ϑ is the Heaviside function (2.13): the invariant distribution is then an exponen-
tial E(βmg) = E

(
mg
kT

)
accurately accounting for the upward thinning halo of minute

particles in a fluid suspension
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Figure 9.1: Gauss and Student stationary distributions respectively for the Smolu-
chowski equations (9.44) and (9.47). The temperature T is chosen in such a way that
2kT = mω2a2, entailing in particular that the Student law is in fact a Cauchy. The en-
ergy units instead are conventionally fixed in order to make comparable the superposed
curves

The Proposition 9.8 also enables us to solve a simple problem of reverse engineering:
find the potential ϕ acting on a Brownian particle and resulting in a given Boltzmann
stationary distribution (9.41)

Exemple 9.11. Student distributions: The family T(β) of Boltzmann pdf ’s

f(x) =
1

aB
(

1
2
, βmω2a2−1

2

) ( a2

a2 + x2

) 1
2
βmω2a2

=
e−βϕ(x)

Z(β)
(9.45)

generalizes that of the Student distributions Tn introduced in the Section 3.5.2: here
a > 0 is a characteristic length, ω > 0 is a parameter epitomizing the external potential
intensity and

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

is the Riemann beta function. These distributions are well defined when βmω2a2 > 1,
namely if mω2a2 > kT : this points out that our stationary solutions exist only if the
said balance between the potential strength ω and the temperature T is conformed to.
From (9.45) we see at once that

ϕ(x) =
1

2
mω2a2 ln

(
1 +

x2

a2

)
Z(β) = aB

(
1

2
,
βmω2a2 − 1

2

)
(9.46)

so that the Smoluchowski equation becomes

dX(t) = −D

2
βmω2X(t)

a2

a2 +X2(t)
dt+ dW (t) (9.47)
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9.5 Boltzmann distribution

Student

Gauss

a
x

Figure 9.2: The drift velocities (9.48) respectively for the Smoluchowski equa-
tions (9.44) and (9.47). We adopted the same parameter values used in the Figure 9.1

It is illuminating to look to analogies and differences between the Student stationary
solution of the Soluchowski equation (9.47), and the Gaussian stationary solution of
the Smoluchowski equation (9.44). In the Figure 9.1 two examples of these stationary
pdf ’s are portrayed along with the potentials ϕ(x) yielding them: in both these instances
the parameters a, ω and T have the same values. The two potentials (9.43) and (9.46)
approximately coincide near to x = 0, but for x → ±∞ they diverge with distinctly
different speed: in the harmonic case the potential (9.43) grows as x2, while in the
Student instance (9.46) it only increases as lnx. From a physical standpoint it is exactly
this feature that results in the difference between the two stationary distributions: the
harmonic potential (9.43), being more strong and binding, provides indeed Gaussian
stationary distributions that visibly are more piled up in x = 0 than the Student laws
(look also in the Figure 9.1 at the different behavior of the tails)

Since finally in the Smoluchowski approximation the dynamical effects only appear
in the drift velocities a(x), it is also telling to compare their expressions

−D

2
βmω2x − D

2
βmω2x

a2

a2 + x2
(9.48)

respectively derived from the Smoluchowski equations (9.44) and (9.47). We displayed
their behaviors in the Figure 9.2: both the velocity fields drag the Brownian particle
toward the center x = 0 from every other location on the x axis; while however in
the Gaussian case (9.44) the pull is always the same at every distance from x = 0,
for the Student laws (9.47) it attains a maximum value at a distance a from the center
and then asymptotically vanishes. Here again the juxtaposition shows in what sense the
harmonic potential (9.43) must be deemed more binding than potential (9.46) producing
the Student distributions
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Appendix A

Consistency (Sect. 2.3.4)

Consistency conditions are instrumental in the two Kolmogorov theorems 2.35 and
2.37, but they are also crucial in the supposedly more elementary discussion about
copulas at the end of the Section 2.3.4. In the following we will show that compliance
with these conditions is not at all a foregone conclusion, even in the very simple context
we will restrict to: that of discrete distributions on finite sets of integer numbers

Take first a trivariate, discrete distribution on the set {0, 1}× {0, 1}× {0, 1} of the
0 -1 triples that (with a notation taken from the Section 2.1) will be denoted as

pijk = P {i, j, k} i, j, k ∈ {0, 1}
Such a distribution always is well define provided that

0 ≤ pijk ≤ 1
∑
i,j,k

pijk = 1 (A.1)

Here and in the following it will be understood that the summation indices always take
the values 0 and 1. From pijk it is then possible to deduce – as in the Section 2.3.3 –
the three bivariate, marginal distributions on {0, 1} × {0, 1}

p
(1)
jk =

∑
i

pijk p
(2)
ik =

∑
j

pijk p
(3)
ij =

∑
k

pijk

and the three univariate, marginal (Bernoulli) distributions on {0, 1}

p
(1,2)
k =

∑
i,j

pijk p
(2,3)
i =

∑
j,k

pijk p
(1,3)
j =

∑
i,k

pijk

Apparently this procedure also entails by construction the consistency of the three
levels of distributions because the extra marginalization relations

p
(1,2)
k =

∑
j

p
(1)
jk =

∑
i

p
(2)
ik

p
(2,3)
i =

∑
k

p
(2)
ik =

∑
j

p
(3)
ij

p
(1,3)
j =

∑
k

p
(1)
jk =

∑
i

p
(3)
ij
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are always trivially satisfied. We are interested now in finding to what extent – if at all
– this consistency can be preserved when we start instead backward from the lowest
level, namely from some univariate distributions

Start then now with three arbitrary, univariate Bernoulli distributions on {0, 1}
(upper indices are now gone, because we are no longer supposing a priori to have
deduced them from some other given multivariate distribution)

pi =

{
P i = 1

1− P i = 0
0 ≤ P ≤ 1

qj =

{
Q j = 1

1−Q j = 0
0 ≤ Q ≤ 1

rk =

{
R k = 1

1−R k = 0
0 ≤ R ≤ 1

and ask first if it would be possible to find three bivariate distributions pij, qjk e rik
having the given Bernoulli as their marginals in the sense that∑

j

pij =
∑
k

rik = pi
∑
i

pij =
∑
k

qjk = qj
∑
j

qjk =
∑
i

rik = rk (A.2)

This is a linear system of 12 equations in the 12 unknowns pij, qjk and rik, but we
should also remember that in order to be acceptable our solutions must take values in
[0, 1] in compliance with the conditions∑

ij

pij =
∑
jk

qjk =
∑
ik

rik = 1

Only 9 among the 12 equations (A.2) are however linearly independent1, so that in
general we expect ∞3 solutions, with three free parameters p, q, r to be chosen – if
possible – in a way giving rise to acceptable solutions. It is easy to check now that, for
given P,Q,R of the initial distributions, the solutions can be put in the form

p11 = p
p10 = P − p
p01 = Q− p
p00 = 1− P −Q+ p


q11 = q
q10 = Q− q
q01 = R− q
q00 = 1−R−Q+ q


r11 = r
r10 = P − r
r01 = R− r
r00 = 1− P −R + r

and that in their turn they are acceptable distributions provided that P,Q,R, p, q, r
comply with the following restrictions

0 ≤ P ≤ 1 0 ≤ Q ≤ 1 0 ≤ R ≤ 1 (A.3)

0 ≤ p ≤ P ∧Q 0 ≤ q ≤ Q ∧R 0 ≤ r ≤ P ∧R (A.4)

1The rank of the coefficient matrix is indeed 9, and it coincides with the rank of the same matrix
augmented with the column of the constant terms
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which can always be easily met (here x ∧ y = min{x, y}). In conclusion, however
taken the numbers P,Q,R in [0, 1] (namely, for every choice of the initial univariate
distributions), we can always find (infinite) bivariate distributions consistent with the
given univariate

Go on now to the next level: take 6 numbers P,Q,R, p, q, r in compliance with
the conditions (A.3) and (A.4) (namely: take arbitrary, but consistent univariate and
e bivariate distributions pi, qj, rk and pij, qjk, rik) and ask if it is always possible to
find also a trivariate distribution pijk which turns out to be consistent with these given
univariate and bivariate. In short ask if we can always find 8 numbers pijk in compliance
with the limitations (A.1), and satisfying the 12 equations∑

k

pijk = pij
∑
i

pijk = qjk
∑
j

pijk = rik (A.5)

The system (A.5) apparently is overdetermined (12 equations and 8 unknowns), but
we could check that both the coefficient matrix, and that augmented with the column
of the constant terms

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1





1 1 0 0 0 0 0 0 p
0 0 1 1 0 0 0 0 P − p
0 0 0 0 1 1 0 0 Q− p
0 0 0 0 0 0 1 1 1− P −Q+ p
1 0 0 0 1 0 0 0 q
0 1 0 0 0 1 0 0 Q− q
0 0 1 0 0 0 1 0 R− q
0 0 0 1 0 0 0 1 1−Q−R + q
1 0 1 0 0 0 0 0 r
0 1 0 1 0 0 0 0 R− r
0 0 0 0 1 0 1 0 P − r
0 0 0 0 0 1 0 1 1− P −R + r


have the same rank 7. Hence – according to the Rouché-Capelli theorem – the sys-
tem (A.5), albeit overdetermined, turns out to be compatible, and in fact has infinite
solutions with one free parameter s. It is possible to show then that the solutions of
the system (A.5) take the form

p111 = 1− P −Q−R + p+ q + r − s
p110 = P +Q+R− 1− q − r + s
p101 = P +Q+R− 1− p− q + s
p100 = 1−Q−R + q − s
p011 = P +Q+R− 1− p− r + s
p010 = 1− P −R + r − s
p001 = 1− P −Q+ p− s
p000 = s

(A.6)
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and we must ask now if – for every choice of the numbers P,Q,R, p, q, r in compliance
with the conditions (A.3) and (A.4) – is it possible to find some s ∈ [0, 1] such that (A.6)
are acceptable according to the limitations (A.1). Surprisingly enough the answer to
this question is in the negative, and we will show that by means of a counterexample

Since it would be easy to check that the sum of the pijk in (A.6) always adds up
to 1, we are left with the problem of looking if all these 8 can be in [0, 1], at least for
some choice of s. Suppose then – in compliance with the condition (A.3) and (A.4) –
to take in particular

P = Q = R =
1

2
p = q =

2 +
√
2

8
≈ 0.426777 r =

1

4
(A.7)

namely the following consistent family of bivariate and univariate distributions
p11 =

2+
√
2

8

p10 =
2−

√
2

8

p01 =
2−

√
2

8

p00 =
2+

√
2

8


q11 =

2+
√
2

8

q10 =
2−

√
2

8

q01 =
2−

√
2

8

q00 =
2+

√
2

8


r11 =

1/4
r10 =

1/4
r01 =

1/4
r00 =

1/4

(A.8)

p1 = p0 =
1/2 q1 = q0 =

1/2 r1 = r0 =
1/2

With this choice the (A.6) become



p111 =
1+

√
2

4
− s ≈ 0.603553− s

p110 = −
√
2
8
+ s ≈ −0.176777 + s

p101 = −
√
2
4
+ s ≈ −0.353553 + s

p100 =
2+

√
2

8
− s ≈ 0.426777− s

p011 = −
√
2
8
+ s ≈ −0.176777 + s

p010 =
1
4
− s = 0.25− s

p001 =
2+

√
2

8
− s ≈ 0.426777− s

p000 = s

and it is easy to see that there exists no value of s ∈ [0, 1] such that all the pijk lie in
[0, 1]: to this end it is enough to remark that we should choose s ≥ 0.353553 in order
to have p101 ≥ 0, and that in this case it would be p010 ≤ 0.25−0.353553 = −0.103553.
In short: there are consistent families of univariate and bivariate distributions not
allowing a consistent trivariate one

For later convenience, it is useful to remark here that the same conclusions could
have been drawn for a given set of univariate and conditional distributions, instead
of joint, bivariate distributions. It is easy to understand indeed that, from a formal
point of view to give the set (A.8) it is equivalent to give the set of the univariate and
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conditional probabilities pi|j = pij/pj, qj|k = qjk/qk, ri|k = rik/rk, namely
p1|1 =

2+
√
2

4

p1|0 =
2−

√
2

4

p0|1 =
2−

√
2

4

p0|0 =
2+

√
2

4


q1|1 =

2+
√
2

4

q1|0 =
2−

√
2

4

q0|1 =
2−

√
2

4

q0|0 =
2+

√
2

4


r1|1 =

1/2
r1|0 =

1/2
r0|1 =

1/2
r0|0 =

1/2

(A.9)

p1 = p0 =
1/2 q1 = q0 =

1/2 r1 = r0 =
1/2

that again can fit no trivariate distribution in a unique probability space
It is crucial to point out moreover that the previously underlined circumstance

does not pertain to the nature of the probability spaces, but it is rather a feature of
the families of distributions. If indeed we would suppose a priori to be inside a given,
unique probability space (Ω,F ,P ), and if we take only the distributions defined from
triples of events A,B,C ∈ F through relations such as

p111 = P {ABC} p110 = P
{
ABC

}
. . .

p11 = P {AB} p10 = P
{
AB
}

. . . q11 = P {BC} . . .

p1 = P {A} p0 = P
{
A
}

q1 = P {B} . . .

it would be easy to show that they would always be perfectly consistent. The pointed
out impossibility of finding trivariate laws consistent with arbitrary given bivariate and
univariate ones appears instead only when we consider families of distributions without
a priori connecting them with a unique probability space. From the example produced
in the present appendix we can say indeed that families of univariate and bivariate
laws with parameters of the type (A.7), while perfectly consistent among them, are
not derivable as marginals of a unique trivariate, and hence can not be described as
probabilities of events in a unique probability space. On the other hand it would
be useful to remember that, while laws and distributions are directly connected with
empirical observations, the probability spaces (albeit very important to give rigor to
the theory) are theoretical constructs introduced with the aim of describing how the
probabilities are combined: and in principle the model for these combinations could be
different from that of the probability spaces defined in the Chapter 1

The relevance of this last remark is better understood, however, if we consider a
point which has been so far left in the background: it is all too natural indeed to ask
why should we worry about the paradoxical behavior of a family of distributions so
carefully tailored to be baffling as that in (A.8) or (A.9): has ever been observed in the
reality some physical system displaying such an awkward behavior? Could not be this
just an anomalous, but practically irrelevant case? Even the answer to this question,
however, is rather surprising: the distributions (A.8), or (A.9) have not at all been
chosen in a captious or malicious way, and are instead of a considerable conceptual
interest. We will show now indeed that the conditional distributions2 (A.9) are the

2It is expedient here to use the conditional distributions (A.9) rather than the joint bivariate
distributions (A.8) because in quantum mechanics we can not calculate joint distributions when the
observables do not commute, while the corresponding conditional distributions are always available
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quantum mechanical distributions (calculated with the usual procedures based on the
square modulus of scalar products) of the possible values of the three observables
α̂ ·S, β̂ ·S, and γ̂ ·S projecting the spin S = (σx, σy, σz) of the Pauli matrices on three

versors α̂, β̂ and γ̂ lying in the x, z plane at angles 0, π/4,
π/2 with the z axis, in an

initial eigenstate of σy

The Cartesian components v̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) of a versor in a three-
dimensional space depend on both the angle θ ∈ [0, π] between v̂ and the z axis, and
the angle ϕ ∈ [0, 2π] between its projection ont the x-y plane and the x axis. As a
consequence the versors of our example have the following components

α̂ = (0, 0, 1) β̂ =
(√

2/2, 0,
√
2/2

)
γ̂ = (1, 0, 0)

the spin projections are

α̂ ·S = σz =

(
1 0
0 −1

)
β̂ ·S =

√
2

2
(σx + σz) =

√
2

2

(
1 1
1 −1

)
γ̂ ·S = σx =

(
0 1
1 0

)
while the system is supposed to be in an eigenstate of

σy =

(
0 −i
i 0

)
It is easy to check now that the previous four observables have eigenvalues ±1, that
the orthonormal systems of eigenvectors of the spin projections are

|α+⟩ =
(

1
0

)
|α−⟩ =

(
0
1

) | β+⟩ =
√

2−
√
2

2

(
1√
2− 1

)
| β−⟩ =

√
2−

√
2

2

(
1

−
√
2− 1

) | γ+⟩ = 1√
2

(
1
1

)
| γ−⟩ = 1√

2

(
1
−1

)
and finally that the two orthonormal eigenvectors of σy (possible states of our system)
are

| y+⟩ = 1√
2

(
1
i

)
| y−⟩ = 1√

2

(
1
−i

)
Take now | y+⟩ as the system state: if we call pi, qj e rk the distributions respectively

of α̂ ·S, β̂ ·S and γ̂ ·S, we first find in agreement with (A.9)

p1 = |⟨α+|y+⟩|2 = 1/2
p0 = |⟨α−|y+⟩|2 = 1/2

q1 = |⟨β+|y+⟩|2 = 1/2
q0 = |⟨β−|y+⟩|2 = 1/2

r1 = |⟨γ+|y+⟩|2 = 1/2
r0 = |⟨γ−|y+⟩|2 = 1/2
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As for the conditional distributions pi|j, qj|k, ri|k they will be then calculated from the
usual quantum procedure as |⟨α±|β±⟩|2, |⟨β ±|γ±⟩|2, |⟨α±|γ±⟩|2, so that, by using
the explicit form of our eigenvectors, we get the following conditional probabilities

p1|1 = |⟨α +|β+⟩|2 = 2+
√
2

4

p1|0 = |⟨α +|β−⟩|2 = 2−
√
2

4

p0|1 = |⟨α−|β+⟩|2 = 2−
√
2

4

p0|0 = |⟨α−|β−⟩|2 = 2+
√
2

4
q1|1 = |⟨β +|γ+⟩|2 = 2+

√
2

4

q1|0 = |⟨β +|γ−⟩|2 = 2−
√
2

4

q0|1 = |⟨β −|γ+⟩|2 = 2−
√
2

4

q0|0 = |⟨β −|γ−⟩|2 = 2+
√
2

4
r1|1 = |⟨α +|γ+⟩|2 = 1/2
r1|0 = |⟨α +|γ−⟩|2 = 1/2
r0|1 = |⟨α−|γ+⟩|2 = 1/2
r0|0 = |⟨α−|γ−⟩|2 = 1/2

which are nothing else than (A.9), and hence could not possibly fit any trivariate
distribution in a unique probability space. In other words, the systems of (univariate
and conditional) distributions coming from quantum mechanics can not in generale be
coherently shoehorned into a (unique) classical probabilistic model

In short, our example shows that there are quantum systems that do not allow a
coherent description within the framework of a unique probability space, and conse-
quently brings to the fore the probabilistic roots of the quantum paradoxes. It is well
known, on the other hand, that the probabilistic models of the quantum mechanics are
not centered around a probability space (Ω,F ,P ), but are rather related to states as
vectors in some Hilbert space with all the aftereffects we know. The discussion in the
present appendix, however, hints also that having conditional distributions not con-
sistent with a unique probability space is an open possibility even independently from
quantum models (albeit these seem today to be the only available concrete examples).
In other words, there is more in the multivariate families of laws than there is within
the framework of Kolmogorov probability spaces, so that the possibility of having con-
ditional distributions which behave in a quantum way is already allowed in the usual
probability if we drop any reference to probability spaces. The inconsistencies recalled
here are indeed known since longtime and have motivated many inquiries to find gen-
eral conditions for the existence of Kolmogorovian models for given families of laws: in
this perspective the celebrated Bell inequalities (proved in the 60’s within a discussion
about the Einstein-Podolski-Rosen paradox) can be considered as an example of such
conditions that apparently are not always satisfied by the quantum systems
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Appendix B

Inequalities (Sect. 3.3.2)

In the present appendix we will draw attention on a few important integral inequalities
that – in their probabilistic formulation – will be used in the text

Proposition B.1. Jensen inequality: If g(x) is a convex (downward) Borel function,
and if X is an integrable rv, it is

g (E [X]) ≤ E [g(X)]

Proof: Jensen inequality is a rather general property instrumental in the proof of the
subsequent propositions. If g(x) is downward convex, for every x0 ∈ R it exists a
number λ(x0) such that

g(x) ≥ g(x0) + (x− x0)λ(x0) , ∀x ∈ R

By replacing then x0 with E [X], and computing the functions in X we get

g(X) ≥ g(E [X]) + (X −E [X])λ(E [X])

and the result follows by taking the expectation of both sides of this equation �

Corollary B.2. Lyapunov inequality: If X is a rv we have

E [|X|s]1/s ≤ E
[
|X|t

]1/t
0 < s ≤ t

In particular it is

E [|X|] ≤ E
[
|X|2

]1/2 ≤ · · · ≤ E [|X|n]1/n ≤ . . .

Proof: Take r = t/s ≥ 1 and Y = |X|s and then use Jensen inequality with the
convex function g(x) = |x|r to get|E [Y ] |r ≤ E [|Y |r], namely

E [|X|s]t/s ≤ E
[
|X|t

]
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and the result follows at once. The subsequent inequality chain is just a particular
case. A relevant implication of the Lyapunov inequality is that if a rv X has a finite
absolute moment of order r (E [|X|r] < +∞), then all the absolute moments of an
order lesser than r are also finite; this instead is not true in general for the absolute
moments of order larger than r �

Proposition B.3. Hölder inequality: Take two numbers p, q with

1 < p < +∞ 1 < q < +∞ 1

p
+

1

q
= 1

and the rv’s X, Y with E [|X|p] < +∞ and E [|Y |q] < +∞: then the product XY is
also integrable, and we have

E [|XY |] ≤ E [|X|p]1/pE [|Y |q]1/q

Remark that the well known Schwarz inequality

E [|XY |]2 ≤ E
[
X2
]
E
[
Y 2
]

is a particular case of the Hölder inequality for p = q = 2.

Proof: Omitted1: we will recall just the proof of the Schwarz inequality. Consider
first the case E [X2] ̸= 0 and E [Y 2] ̸= 0 and take

X̃ =
X√
E [X2]

Ỹ =
Y√
E [Y 2]

so that E
[
X̃2
]
= 1 and E

[
Ỹ 2
]
= 1. Since

(
|X̃| − |Ỹ |

)2 ≥ 0, and hence

2 |X̃ Ỹ | ≤ X̃2 + Ỹ 2

we have
2E

[
|X̃ Ỹ |

]
≤ E

[
X̃2
]
+E

[
Ỹ 2
]
= 2

namely

E
[
|X̃ Ỹ |

]2
≤ 1 = E

[
X̃2
]
·E
[
Ỹ 2
]

and the result follows by making use of the definitions of X̃ and Ỹ in terms of X and
Y . When instead at least one of the expectations vanishes, for instance if E [X2] = 0,
from 5 of Proposition 3.26 we get X = 0 P -a.s., and hence from 3 of the same
proposition we have also E [|XY |] = 0. It is straightforward then to see how the result
follows even in this case �

1A.N. Shiryaev, Probability, Springer (New York, 1996)
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Proposition B.4. Minkowski inequality: Given the number p with

1 ≤ p < +∞

and two rv’s X, Y such that E [|X|p] < +∞ and E [|Y |p] < +∞, then also E [|X + Y |p] <
+∞ and we have

E [|X + Y |p]1/p ≤ E [|X|p]1/p +E [|Y |p]1/p

Proof: Omitted2 �

2A.N. Shiryaev, Probability, Springer (New York, 1996)
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Appendix C

Bertrand’s paradox (Sect. 3.5.1)

In the first chapter of his classic book Calcul des Probabilités (Paris, 1889) Joseph
Bertrand dwells for a long time on the definition of probability, and in particular he
remarks that the random models with an uncountable number of possible results are
prone to particularly insidious misunderstandings. If for example we ask what is the
probability that a real number chosen at random between 0 and 100 is larger than
50, our natural answer is 1

2
. Since however the real numbers between 0 and 100 are

also bijectively associated to their squares between 0 and 10 000, we also feel that
our question should be equivalent to ask for the probability that our random number
turns out to be larger than 502 = 2500. If however we take at random a number
between 0 and 10 000, intuitively again the probability of exceeding 2 500 would now
be 3

4
instead of 1

2
. The two problems look equivalent, but their two answers (apparently

both legitimates) are different: what is the root of this paradox? Bertrand states –
correctly – that the two questions are fallacious because the locution at random is too
careless, as a few other examples could show: he listed many telling cases, but we
will linger for a while only on the following one which is widely acknowledged as the
Bertrand paradox

Looking at the Figure C.1, take at random a chord on the radius 1 circle Γ: what is
the probability that its length exceeds that of the edge of an inscribed equilateral trian-
gle (namely

√
3)? Three acceptable answers are possible, but they are all numerically

different (in the following we will always make reference to the Figure C.1):

1. To take a chord at random is equivalent to choose the location of its middle
point (its orientation would be an aftermath), and to get the chord longer than
the triangle edge it is necessary and sufficient to take this middle point inside
the concentric circle γ with radius 1

2
inscribed in the triangle. The required

probability is then the ratio between the area π
4
of γ and the area π of Γ, and

consequently we have p1 =
1
4

2. By symmetry the position of one chord endpoint along the circle is immaterial
to our calculations: then, for a given endpoint, the chord length will only be
contingent on the angle (between 0 and π) with the tangent line τ in the chosen
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Figure C.1: Paradosso di Bertrand.

endpoint. If then we draw the triangle with one vertex in the chosen endpoint, the
chord at random will exceed its edge if the angle with the tangent falls between
π
3
and 2π

3
, and the corresponding probability will be p2 =

1
3

3. Always by symmetry, also the random chord direction does not affect the required
probability. Fix then such a direction, and remark that the chord will exceed

√
3

if its intersection with the orthogonal diameter falls within a distance from the
center smaller than 1

2
: this happens with probability p3 =

1
2

To find our paradox origin we must remember that taking a number at random usually
means that this number is uniformly distributed in some interval. It is possible to
show however that what is considered as uniformly distributed in every one of the
three proposed solutions can not be at the same time uniformly distributed in the
other two: in other words, in our three solutions – by differently choosing what is
uniformly distributed – we surreptitiously adopt three different probability measures,
and consequently it is not astonishing that the three answers mutually disagree

To be more precise let us define (see Figure C.1) the three rv pairs representing the
coordinates describing the position of our chord in the three proposed solutions:
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1. the Cartesian coordinates (X, Y ) of the chord middle point

2. the angles (A,B) respectively giving the position of the fixed endpoint and the
chord orientation w.r.t. the tangent

3. the polar coordinates (R,Θ) of the chord-diameter intersection

In every instance however there is the concealed (namely not explicitly acknowledged)
hypothesis that the corresponding pair of coordinates is uniformly distributed, but
these three assumptions are not mutually consistent, as we will see at once, because
they require three different probability measures on the probability space where all our
rv ’s are defined. In particular the three solutions respectively assume the following
uniform, joint distributions (here χ[a,b](x) is an indicator):

1. the joint, uniform pdf on R2

fXY (x.y) =
1

π
χ[0,1](x

2 + y2) (C.1)

of the pair (X, Y ): here the two rv ’s are not independent

2. the joint, uniform pdf on R2

fAB(α, β) =
1

2π2
χ[0,2π](α)χ[0,π](β) (C.2)

of the pair (A,B) with independent components

3. and finally the joint, uniform pdf on R2

fRΘ(r, θ) =
1

2π
χ[0,1](r)χ[−π,π](θ) (C.3)

of the pair (R,Θ) again with independent components

Surely enough if we would adopt a unique probability space for our three solutions,
the three numerical results would be exactly coincident, but in this case only one of
the three rv pairs could be uniformly distributed, while the other joint distributions
should be derived from the results of the Section 3.47 for the functions of rv ’s. The
crucial point is that there are indeed a few precise transformations allowing to go from
a pair of our rv ’s to the other: by using these transformations we can show that if a
pair is jointly uniform, then the other two can not have the same property

Without going into the details of every possible combination we will confine our-
selves to discuss just the relations between the solutions (1) and (3). The transfor-
mations between the Cartesian coordinates (X, Y ) and the polar ones (R,Θ) are well
knwn: {

x = r cos θ
y = r sin θ

{
r =

√
x2 + y2 r > 0

θ = arctan y
x

−π < θ ≤ π
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with a Jacobian determinant

J(r, θ) =

∣∣∣∣ ∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

∣∣∣∣ = ∣∣∣∣ cos θ sin θ
−1

r
sin θ 1

r
cos θ

∣∣∣∣ = 1

r

As a consequence, if (X, Y ) have the jointly uniform pdf (C.1), then the joint law of
the pair (R,Θ) must be deduced from (3.63) and will not be uniform: it will have
instead the pdf

f
(1)
RΘ(r, θ) =

r

π
χ[0,1](r)χ[−π,π](θ)

apparently different from the fRΘ in (C.3). By taking advantage of this distribution

f
(1)
RΘ it is easy to see now that also the probability in the framework of the solution (3)
would be

p3 =

∫ 1
2

0

r

π
dr

∫ π

−π

dθ =
1

4

in perfect agreement with the solution (1)
It is important to remark in conclusion that – as already pointed out at the be-

ginning of this appendix – the Bertrand-type paradoxes arise only when we consider
probability measures on uncountable sets. To clarify this last point it would be enough
to resume our initial problem of calculating the probability p(1) that a real number X
taken at random in [0, 100] exceeds 50: this we would readily concede to be p(1) = 1

2
.

The paradox appears when we try to calculate the probability p(2) that the square of
our real number X2 taken at random in [0, 10 000] exceeds 502 = 2500, because in this
case we are spontaneously bent to think that it should now be p(2) = 1

4
. But the fact

is – as in the previous examples – that if X is uniform in [0, 100], then X2 can not be
uniform in [0, 10 000], and vice-versa. In this case however it is easy to see that the
paradox does not show up when we ask for the probability (p(1) = 1

2
) of choosing at

random an integer number larger than 50 among the (equiprobable) numbers from 1 to
100. In this case in fact we would have the same answer (p(2) = 1

2
) also for the question

of calculating the probability of choosing at random a number larger than 2 500 among
the squared integers 1, 4, 9, . . . , 10 000, because now our set is again constituted of just
100 equiprobable integers
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Appendix D

Lp spaces of rv ’s (Sect. 4.1)

The symbol Lp(Ω,F ,P ), or even Lp, denotes the set of rv ’s defined on (Ω,F ,P )
with E [|X|p] < +∞ and p > 0. These sets can be equipped of geometric structures
especially suitable for the applications. Remark first that,for every p > 0, we can
always give them a metric, namely a distance between two rv ’s defined as

d(X, Y ) = E [|X − Y |p]1/p

In this case Lp is a metric space. If moreover p ≥ 1, the Minkowski inequality (Proposi-
tion B.4) enables us to state that Lp is also a vector space such that linear combinations
of its elements again are in Lp. On these vector spaces Lp it is also possible to define
a norm, namely a length of the vectors X ∈ Lp defined as

∥X∥p = E [|X|p]1/p

and hence also the convergence toward X of the sequences (Xn)n∈N as the numerical
convergence toward zero ∥Xn−X∥p → 0. since these normed spaces are also complete1,
they are Banach spaces, where the distance is implemented through the norm as

d(X,Y ) = ∥X − Y ∥p

Remark that from the Lyapunov inequality (Corollary B.2) we immediately conclude
that

∥X∥1 ≤ ∥X∥p ≤ ∥X∥q 1 ≤ p ≤ q < +∞

As a consequence, if 1 ≤ p ≤ q and X ∈ Lq, then also X ∈ Lp, and therefore

L1 ⊇ Lp ⊇ Lq 1 ≤ p ≤ q < +∞
1In a normed space (E , ∥ · ∥) a sequence (xn)n∈N is a Cauchy sequence when

lim
n,m

∥xn − xm∥ = 0

A normed space is said to be complete if every Cauchy sequence of elements of E converges toward
another element of E . In this case (E , ∥ · ∥) is also called a Banach space.
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Among the Banach spaces Lp with p ≥ 1, an especially relevant role is played by then
case p = 2, namely by the space L2(Ω,F ,P ): it is easy to show in fact that in this
case the norm ∥ · ∥2 can be implemented through a scalar product

⟨X, Y ⟩ = E [XY ]

in the sense that in L2 we have

∥X∥2 =
√

⟨X,X⟩ =
√
E [X2]

The spaces equipped with a scalar product, when they are also complete, take the name
of Hilbert spaces. The existence of a scalar product in a probability space allows
not only to use of functional analysis methods, but also to extend notions borrowed
from the geometry. We will say for instance that two rv ’s X, Y ∈ L2 are orthogonal
when ⟨X,Y ⟩ = E [XY ] = 0, and we will say that a set of rv ’s in L2 is an orthogonal
system when however taken among them two different rv ’s they are orthogonal. If
moreover the elements of an orthogonal system are also normalized, that is ∥X∥2 = 1
for every element, then the set constitutes an orthonormal system. Remark finally
that, if two rv ’s are not correlated we find

⟨X,Y ⟩ = E [XY ] = E [X]E [Y ]

so that they are orthogonal iff at least one has a vanishing expectation
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Appendix E

Moments and cumulants
(Sect. 4.2.1)

If all the moments mn = E [Xn] of a rv X exist and are finite, the Theorem 4.11
states that we can write down the power expansion of the chf φ(u) of X; moreover
the Theorems 4.12 and 4.13 say that the chf φ(t) uniquely determines the pdf f(x)
of X (that for simplicity’s sake we suppose to be ac). It makes then sense to aske the
following question known as moments problem: can we trace back in a unique way
the pdf f(x) of a rv X from the knowledge of its moments (mn)n∈N? In particular the
problem of uniqueness can be stated as follows: given two pdf ’s f(x) and g(x) such
that ∫ +∞

−∞
xnf(x) dx =

∫ +∞

−∞
xng(x) dx , n ≥ 1

can we conclude that f(x) = g(x) for every x? As a matter of fact it is possible to
show with counterexamples1 that in general the answer is in the negative: it is possible
indeed to explicitly produce different distributions that have the same sequence of
momenta. it will therefore be important to establish under what sufficient conditions
the moment problem admits one, and only one solution

Theorem E.1. Take a rv rv X and its moments mn = E [Xn] and µn = E [|X|n]: if
all the absolute moments µn are finite and if

lim
n

µ
1/n
n

n
< +∞

then the moments mn prescribe in a unique way the law of X. These sufficient con-
ditions are in particular definitely met when the distribution of X is concentrated in a
limited interval

The formula 4.18 of the Theorem 4.11 about the series expansion of the chf of a
rv X can moreover be extended to the chf φ(u) of r-vec X = (X1, . . . , Xn) taking the

1A.N. Shiryaev, Probability, Springer (New York, 1996)
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form

φ(u1, . . . , un) =
∑
{k}

i|k|

k1! . . . kn!
uk1
1 · . . . · ukn

n mn(k1, . . . , kn)

where for short we have set {k} = {k1, . . . , kn} and |k| = k1 + . . .+ kn, while

mn(u) = mn(k1, . . . , kn) = E
[
Xk1

1 · . . . ·Xkn
n

]
are the mixed moments of the components of X. Also this expansion is of course cut
down to a finite sum with an infinitesimal remainder (Taylor formula) if the moments
do not exist from a certain order onward

It is helpful now to define also the logarithmic characteristic of the rv X

η(u1, . . . , un) = lnφ(u1, . . . , un)

that is sometimes used instead of the chf. This is indeed often easier to handle than the
φ and its properties can be more straightforward to study. For example for a Gaussian
rv N(b, a2) it is

η(u) = ibu− a2u2

2

while for a Cauchy C(a, b) it is

η(u) = ibu− a|u|

and for a Poisson P(α) we have

η(u) = α(eiu − 1)

Also a logarithmic characteristic of a r-vec admits (with the required clarifications on
the existence of the moments) a series expansion of the type

η(u1, . . . , un) =
∑
{k}

i|k|

k1! . . . kn!
uk1
1 · . . . · ukn

n cn(k1, . . . , kn)

but its coefficients cn(k1, . . . , kn), called cumulants, no longer are just the expectation
values of rv ’s products. By comparing the two expansions it is however possible to
deduce the relations between the cumulants and the mixed moments of the components
of X: for instance we find (here the choice of the non zero indices is arbitrary and only
illustrative)

cn(1, 0, 0, . . . , 0) = mn(1, 0, 0, . . . , 0)
cn(1, 1, 0, . . . , 0) = mn(1, 1, 0, . . . , 0)−mn(1, 0, 0, . . . , 0)mn(0, 1, 0, . . . , 0)
cn(1, 1, 1, . . . , 0) = mn(1, 1, 1, . . . , 0)−mn(1, 1, 0, . . . , 0)mn(0, 0, 1, . . . , 0)

−mn(1, 0, 1, . . . , 0)mn(0, 1, 0, . . . , 0)
−mn(0, 1, 1, . . . , 0)mn(1, 0, 0, . . . , 0)
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+2mn(1, 0, 0, . . . , 0)mn(0, 1, 0, . . . , 0)mn(0, 0, 1, . . . , 0)

The complete relations are rather involved and we will ignore them2, but we will remark
that the value of the cumulants with more than one non zero index is a measure of the
correlation between the corresponding components Xk. If for instance the Xk are all
independent the chf is factorized and hence η(u1, . . . , un) is the sum of n terms, each
dependent on one uk only. In this case it is easy to see from the cumulant expansion
that the cn with more than one non zero index identically vanish

Finally, while – because of Lyapunov inequality E [Xn]2 ≤ E [X2n] – the moments
can not be all zero from a certain order onward (all the moments contain relevant
information), for the cumulants this is possible at least in special cases. It is possible
to show in particular3 that if η(u) is a polynomial, its degree can not exceed 2: see
for example the logarithmic characteristic of N(b, a2). As a consequence either all the
cumulants vanish except the first two, or the number of non zero cumulants is infinite

2For a calculation procedure of the cumulants see for example C.W. Gardiner, Handbook of
Stochastic Methods, Springer (Berlin, 1997)

3A.N. Shiryaev, Probability, Springer (New York, 1996)
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Appendix F

Binomial limit theorems (Sect. 4.3)

The earliest versions of the limit theorems (beginning of the XVIII century) basically
pertained to sequences of binomial rv ’s and were proved by exploiting the analytic
properties of these particular distributions. The modern variants discussed in the
Chapter 4 instead, while validating substantially the same results, cover much more
general contexts and use more advanced demonstration techniques. In this appendix
we will briefly summarize some of the said archaic forms of the limit theorems that
still retain their suggestive power

The oldest theorem due to J. Bernoulli1 starts by remarking that if the rv ’s of the
sequence (Xn)n∈N are iid B (1; p) – they may represent the results of white and black
ball drawings according to the Bernoulli model of the Sections 2.1.2 and 3.2.4 – the
sums Sn = X1 + . . .+Xn are binomial B (n; p): as a consequence we know that

E [Sn] = np V [Sn] = np(1− p)

This leads to the remark that the expectation of the rv empirical frequency Sn/n also
coincide with the probabilità p of drawing a white ball in every single trial:

E

[
Sn

n

]
= p

The frequency Sn/n however is a rv, not a number as p is, and hence its random value
will not in general coincide with p in a single n-tuple of drawings. It is important
then to assess how far the rv frequency Sn/n deviates from its expectation (that is
from the probability p) in order to appraise the confidence level of a possible estimation
of p (in general not known) through the empirical value of the frequency Sn/n. It is
apparent indeed that the unique quantity available to the empirical observations is a
frequency counting, and not the value p of an a priori probability. We could say that
the foundational problem of the statistics is to determine under what conditions a
measurement of the empirical frequency Sn/n allows a reliable estimation of p. We will
show now in what sense the difference between frequency and a priori probability can
be deemed to be small when n is large enough

1J. Bernoulli, Ars Coniectandi, Thurneysen (Basilea, 1713)
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Theorem F.1. Bernoulli Law of Large Numbers: Take a sequence Sn binomial
rv’s B (n; p): then it is

Sn

n

P−→ p

Proof: From the Chebyshev inequality (3.42), and from the properties of the binomiali
rv ’s B (n; p) we have

P

{∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ϵ

}
≤ 1

ϵ2
V

[
Sn

n

]
=

1

n2ϵ2
V [Sn] =

np(1− p)

n2ϵ2
=

p(1− p)

nϵ2
≤ 1

4nϵ2

that immediately leads to the required result according to the Definition 4.1 �

Also the original De Moivre2 version of theCentral Limit Theorem was confined
to sequences of binomial rv ’s B

(
n; 1

2

)
, and even the subsequent Laplace3 variants still

exploited the properties of sequences of B (n; p) rv ’s with 0 < p < 1. These limit
theorems were presented under multiple guises, but here we will restrict ourselves to
the most popular only. Take a sequence of iid Bernoulli rv ’s Xn ∼ B (1; p): we know
that Sn = X1, . . . , Xn ∼ B (n; p), and that from (3.35) and (3.36) the standardized
sums

S∗
n =

Sn − np
√
npq

(F.1)

will take the n+ 1 (non integer) values

xk =
k − np
√
npq

k = 0, 1, . . . , n

We have then from from (2.1)

P {S∗
n = xk} = P {Sn = k} = pn(k) =

(
n

k

)
pk qn−k = pn

(
np+ xk

√
npq
)

The classical formulation of the binomial limit theorems in point consists in asymptot-
ical (n → ∞) results that allow to express the probabilities of the rv S∗

n in terms of
Gauss functions. We will not give them in their rigorous form that is rather tortuous4,
but we will summarize only the essential results

A first result known as Local Limit Theorem (LLT) is the rigorous formulation
of the statement that, for large values of n, the values pn(k) = pn

(
np+xk

√
npq
)
of the

binomial distribution are well approximated by a Gaussian function

e−(k−np)2/2npq

√
2πnpq

=
1

√
npq

e−x2
k/2

√
2π

2A. De Moivre, The Doctrine of Chances, Woodfall (London, 1738)
3P.S. de Laplace, Théorie analytique des probabilités, Courcier (Paris, 1812)
4A.N. Shiryaev, Probability, Springer (New York, 1996)
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It must be said however that this approximation is good only if k is not too far from
the expectation np of Sn, namely if xk is not too far from 0. More precisely the LLT
states that, for large values of n, there exist two sequences of positive numbers An and
Bn such that

P {Sn = k} ≃ e−(k−np)2/2npq

√
2πnpq

if |k − np| ≤ An

P {S∗
n = xk} ≃ 1

√
npq

e−x2
k/2

√
2π

if |xk| ≤ Bn

The approximation instead is not so good if we move away from the center toward the
tails of the distribution, namely if k is too far from np and xk is too far from 0

To remove these restrictions we move on to a second formulation known as Integral
Limit Theorem (ILT). To this end remark first that, for given p end n, the numbers
xk equidistant with

∆xk = xk+1 − xk =
1

√
npq

For n → ∞ and xk not too far from 0, the LLT entitles us to write

P {S∗
n = xk} = pn

(
np+ xk

√
npq
)
≃ e−x2

k/2

√
2π

∆xk

Since ∆xk → 0 for n → ∞, the set of points xk tend to cover all the real line, and
hence, in a suitable sense, for large n and arbitrary a < b, we could expect that the
value of

P {a < S∗
n ≤ b} =

∑
k:a<xk≤b

pn
(
np+ xk

√
npq
)
≃

∑
k:a<xk≤b

e−x2
k/2

√
2π

∆xk

is well approximated by the integral∫ b

a

e−x2/2

√
2π

dx = Φ(b)− Φ(a)

where Φ(x) is the standard error function (2.16). The ILT states indeed that, for every
−∞ ≤ a < b ≤ +∞, and for n → ∞ we always find

P {a < S∗
n ≤ b} →

∫ b

a

e−x2/2

√
2π

dx = Φ(b)− Φ(a)

that is, with α = np+ a
√
npq and β = np+ b

√
npq,

P {α < Sn ≤ β} → Φ

(
β − np
√
npq

)
− Φ

(
α− np
√
npq

)
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From a technical standpoint the difference between the two formulations of the binomial
limit theorems is that, while in the LLT we compare the individual values of the
a (discrete) standardized binomial distribution with those of a (continuous) standard
normal function, in the ILT we compare sums of the said binomial with integrals of the
standard Gaussian pdf on arbitrary intervals: this has the effect of making relatively
negligible the local tail effects and hence of producing an unqualified convergence

The usual proofs of these two theorems resort to rather convoluted analytical argu-
mentations that we will neglect5: we will instead once more highlight the advantages
of the chf ’s by giving an undemanding proof of the convergence in distribution of the
standard binomials S∗

n in (F.1) to a standard normal N (0, 1). If indeed X1, . . . , Xn are
iid Bernoulli rv ’s B (1; p), taken

Yk =
Xk − p
√
npq

=
Xk√
npq

−
√

p

nq

we can write

S∗
n =

n∑
k=1

Yk

and since from (4.3) and (4.8) we find

φYk
(u) = E

[
eiuYk

]
= e−iu

√
p/nqφXk

(
u

√
npq

)
= p eiu

√
q/np + q e−iu

√
p/nq

the S∗
n chf turns out to be

φS∗
n
(u) = E

[
eiuS

∗
n
]
=

n∏
k=1

E
[
eiuYk

]
=

(
p eiu

√
q/np + q e−iu

√
p/nq

)n

From a power expansion of the exponentials we then have

φS∗
n
(u) =

[
p

(
1 + iu

√
q

np
− u2

2

q

np

)
+ q

(
1− iu

√
p

nq
− u2

2

p

nq

)
+ o

(
1

n

)]n
=

[
1− u2

2n
+ o

(
1

n

)]n
n−→ e−u2/2

and hence from the Lévy Theorem 4.16 we get S∗
n

d−→ N(0, 1)

5A.N. Shiryaev, Probability, Springer (New York, 1996)
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Appendix G

Non uniform point processes
(Sect 6.1.1)

In the limiting procedure adopted to define the point processes in the Section 6.1.1 we
have supposed the point distributions on every finite interval U [−τ/2,

τ/2] to be always
uniform. This assumption however is not unavoidable and could be suitably revised
imagining that the intensity of the dots shower may vary according to the place

To scrutinize this idea remember first that, in the uniform case considered up to now
the rv N enumerating the points falling in a given interval of width ∆t > 0 turns out to
be distributed according a Poisson law P(α) with α = λ∆t, so that E [N ] = α = λ∆t.
Keeping then into account that

α = E [N ] → 0 when ∆t → 0

and adopting the notation ∆ν = α = E [N ] = average number of points falling in an
interval of width ∆t, we can also write

λ =
∆ν

∆t
−→ dν

dt
∆t → 0

in compliance with the idea that λ represents the average number of points per unit
time. A constant λ, as previously supposed, would embody the idea of a uniform points
density, but we are also free to suppose that λ(t) is in fact a time dependent density,
so that

λ(t) =
dν(t)

dt
namely dν(t) = λ(t) dt

and hence

α = ∆ν =

∫ t+∆t

t

λ(s) ds (G.1)

If now N is the number of random points falling into [t, t + ∆t], retracing the same
steps previously trodden for the uniform case we could show once again1 that N is

1A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw Hill
(Boston, 2002)
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distributed according to a Poisson law P(α), but for the fact that now the value of
α will be (G.1) and will be contingent not only on the interval width ∆t, but also on
its time location t. This entails in particular that – at variance with those of a simple
Poisson process – the increments of a non uniform counting process (also known in
the literature with the name of non-homogeneous counting processes) are no longer
stationary because their distribution depends not only on their width ∆t but also on
their location t. Remark finally that λ(t) is a density (measuring the average number
of points per unit time), but it is not a pdf. Typically we find indeed that∫ +∞

−∞
λ(t) dt = +∞

in agreement with the fact that such an integral represents the total (infinite) number
of the points thrown on the entire time axis. In the main text we always suppose that
a constant intensity λ, but the possible generalizations can always be easily elaborated
by adopting the previous remarks as a stepping stone
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Appendix H

Stochastic calculus paradoxes
(Sect. 6.4.2)

To show the mistakes one can incur by carelessly enforcing the usual rules of the
calculus when dealing with stochastic processes, let us try to extend the Langevin
heuristic procedure outlined in the Section 6.4.2 to a slightly different problem: the
shot noise produced in the vacuum tubes by the random arrivals of individual electrons

The random current I(t) produced by the electrons will be modeled here as a shot
noise with h(t) = ϑ(t)qe−at, so that, by keeping into account (6.66) with a Poisson
white noise of intensity λ, our process will be

I(t) =
∞∑
k=1

h(t− Tk) = [h ∗ Ṅ ](t) =

∫ +∞

−∞
h(t− s)Ṅ(s) ds

= qe−at

∫ t

−∞
easṄ(s) ds

By making use also of the white noise (6.65) derived from the compensated Poisson
process in the Example 6.21, from the usual differentiation rules we then get

İ(t) = −qae−at

∫ t

−∞
easṄ(s) ds+ qṄ(t)

= −aI(t) + qṄ(t) = [λq − aI(t)] + q
˙̃
N(t) (H.1)

This is now a first order differential equation akin to that of Langevin (6.78), where

however the role of the zero average fluctuating force B(t) is played by q
˙̃
N(t), a process

that again will be supposed uncorrelated with I(t). To study the I(t) fluctuations we
will look at the behavior of its variance

V [I(t)] = E
[
I2(t)

]
−E [I(t)]2

and to do that we take the expectation of (H.1)

d

dt
E [I(t)] = λq − aE [I(t)]

297



N. Cufaro Petroni: Probability and Processes

so that we have

E [I(t)] =
λq

a
+ Ce−at (H.2)

where C is ab integration constant. To get the variance we must now calculateE [I2(t)]:
multiplying (H.1) by I(t), from the usual calculus rules we find first

1

2

dI2(t)

dt
= I(t)İ(t) = λqI(t)− aI2(t) + qI(t)

˙̃
N(t) (H.3)

and then taking the expectation

1

2

d

dt
E
[
I2(t)

]
= λqE [I(t)])− aE

[
I2(t)

]
(H.4)

From (H.2) we thus have

d

dt
E
[
I2(t)

]
+ 2aE

[
I2(t)

]
= 2λqE [I(t)] = 2λq

(
λq

a
+ Ce−at

)
and with another integration constant A

E
[
I2(t)

]
=

(
λq

a

)2

+ C
2λq

a
e−at + Ae−2at

The variance of our random current will finally be

V [I(t)] = E
[
I2(t)

]
−E [I(t)]2 =

(
λq

a

)2

+ C
2λq

a
e−at + Ae−2at −

(
λq

a
+ Ce−at

)2

and therefore asymptotically in time we paradoxically find

lim
t→+∞

V [I(t)] = 0 (H.5)

namely, after a transient delay, the fluctuations just vanish, while we could have reason-
ably expected a convergence toward some constant non-zero variance. Let us scrutinize
this baffling result in more detail

Take again the – delusory undisputable – relation adopted in (H.3):

dI2(t)

dt
= 2I(t)İ(t)

and, in the light of the discussion of Section 6.3, retrace its usual justification. Habit-
ually with an infinitesimal dt we write

d
[
I2(t)

]
= I2(t+ dt)− I2(t) =

[
I(t) + dI(t)

]2 − I2(t) = 2I(t)dI(t) +
[
dI(t)

]2
(H.6)

and then, assuming that dI(t) = İ(t)dt, we just neglect the second order term
[
İ(t)dt

]2
to attain the result. Here however – since I(t) is not differentiable – we are no longer
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entitled to say that
[
dI(t)

]2
coincides with some

[
İ(t)dt

]2
, that is with an infinitesimal

of order larger than dt. We must rather go back to the equation (H.1) sidestepping the
utilization of derivatives

dI(t) = λqdt− aI(t)dt+ qdÑ(t) (H.7)

plug that into (H.6)

d
[
I2(t)

]
= 2I(t)

[
λqdt− aI(t)dt+ qdÑ(t)

]
+
[
λqdt− aI(t)dt+ qdÑ(t)

]2
=

[
2λqI(t)− 2aI2(t)

]
dt+

[
λq − aI(t)

]2
(dt)2

+2qI(t) dÑ(t) + 2q
[
λq − aI(t)

]
dÑ(t) dt+ q2

[
dÑ(t)

]2
and finally, taking the expectations, neglect the higher order terms in dt (remember

that according to (6.72) E
[
dÑ2

]
= λdt is of the first order in dt) to find

dE
[
I2(t)

]
=
(
2λqE [I(t)]− 2aE

[
I2(t)

])
dt+ λq2dt

Instead of (H.4) we therefore have

1

2

d

dt
E
[
I2(t)

]
= λqE [I(t)]− aE

[
I2(t)

]
+

λq2

2

with the new additional term λq2/2, so that from (H.2), retracing the steps leading to
the puzzling result (H.5) we now attain a solution with the right asymptotic behaviors
for t → +∞

E [I(t)] =
λq

a
+ Ce−at −→ λq

a

E
[
I2(t)

]
=

(
λq

a

)2

+
λq2

2a
+ C

2λq

a
e−at + Ae−2at −→

(
λq

a

)2

+
λq2

2a

V [I(t)] = E
[
I2(t)

]
−E [I(t)]2 −→ λq2

2a
> 0

This shows that our remarks about the stochastic infinitesimals discussed in the Sec-
tion 6.3 – even if inaccurate and intuitive – play a pivotal role to get an acceptable
result

The way Langevin – even relying on a non-rigorous mathematical formulation –
managed to avoid the previous mistakes and to get the correct results deserves some
scrutiny. It is interesting to remark indeed that, at variance with (H.3), the two rela-
tions (6.79) and (6.80) for the position process X(t), even if only symbolic, are basically
correct: to show that we notice first that the dissimilarity between the two formula-
tions (6.77) and (6.78) of the dynamical equations conceals indeed a few important
details. Their diversity rests in fact on the idea that X(t) is differentiable, namely that
a process Ẋ(t) = V (t) exists such that

X(t) =

∫ t

0

V (s) ds
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and then that the Newton equation

mẌ(t) = −6πηaẊ(t) +B(t) (H.8)

is equivalent to the system

Ẋ(t) = V (t)

mV̇ (t) = −6πηaV (t) +B(t) (H.9)

Here however, since the random force B(t) directly affects V (t) only, the velocity
process – at variance with X(t) – will turn out to be not differentiable, so that the
Langevin equation (H.9) (with I(t) replaced by V (t)) will have the same form of the
equation (H.1) adopted for the shot noise. This apparently entails first that if Langevin
had used (H.9) along with the formula

dV 2(t)

dt
= 2V (t)V̇ (t) (H.10)

he would have reached about V (t) the same paradoxical conclusions drawn from (H.5)
for the shot noise: after a transient delay the Brownian particle would have stopped,
with V (t) = 0 not only on average, but even P -a.s. namely with a zero variance. His
argument starts instead from the Newton equation (H.8) for the position process X(t),
and avails himself of the – symbolic, but essentially error-free – relations

d

dt

[
X2(t)

]
= 2X(t)Ẋ(t) (H.11)

d2

dt2
[
X2(t)

]
= 2Ẋ2(t) + 2X(t)Ẍ(t) = 2V 2(t) + 2X(t)Ẍ(t) (H.12)

in order to find the Einstein result (6.82). We have then to explain why the equa-
tions (H.11) and (H.12) may be rather safely used, while (H.10), as we have seen,
would lead to paradoxes

First of all let us remark that, being X(t) differentiuable, it is dX(t) = Ẋ(t)dt =
V (t)dt, so that the infinitesimal dX(t) is of the first order in dt, and hrnce (H.11) holds
allowing us to write

d

dt

[
X2(t)

]
= 2X(t)Ẋ(t) = 2X(t)V (t) (H.13)

The equation (H.12), instead, while basically correct, remains purely symbolic because
it involves a derivative Ẍ(t) = V̇ (t) that does not exist. To understand then why this
is nonetheless acceptable we must remark that

d
[
X(t)V (t)

]
= X(t+ dt)V (t+ dt)−X(t)V (t)

=
[
X(t) + dX(t)

] [
V (t) + dV (t)

]
−X(t)V (t)

=
[
X(t) + V (t)dt

] [
V (t) + dV (t)

]
−X(t)V (t)

= V 2(t)dt+X(t)dV (t) + V (t)dV (t)dt
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On the other hand dV (t) is an infinitesimal of the order O
(
dt1/2

)
because (as we will

better see in the Section 8.1), the fluctuating force B(t) of the Langevin equation (H.9)
is a Wienerian white noise Ẇ (t), so that putting (H.9) in the form

mdV (t) = −6πηaV (t)dt+ dW (t)

we find that dV (t) is an infinitesimal of the same order of dW (t), namely O
(
dt1/2

)
.

We can therefore safely maintain that dV (t)dt is an infinitesimal of higher order, more
precisely O

(
dt3/2

)
, so that at first order we can write

d
[
X(t)V (t)

]
= V 2(t)dt+X(t)dV (t)

and hence, symbolically at least and not wrongly, we can state that

d

dt

[
X(t)V (t)

]
= V 2(t) +X(t)V̇ (t) = V 2(t) +X(t)Ẍ(t)

so that (H.12) will be fully vindicated through (H.13)
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Appendix I

Pseudo-Markov processes
(Sect. 7.1.2)

We will provide here a simple example1 of a non-Markovian process whose transition
probabilities nevertheless abide by the Chapman-Kolmogorov condition: processes of
this kind are also caled pseudo-Markovian. Consider a process defined on a discrete
and finite time (t = 1, 2, 3) and taking only two values (0 and 1): it will be represented
then just as a finite sequence X = (X1, X2, X3) of three 0/1 rv ’s. The trajectories of
this rudimentary (but legitimate) process are reduced to the 8 = 23 possible triplets
of 0, 1 symbols, and its distribution can be given by choosing in a consistent way the
probabilities allotted to these 8 samples. By adopting the shorthand notations

p1,2,3(x1, x2, x3) = P {X1 = x1, X2 = x2, X3 = x3}
p1,2(x1, x2) = P {X1 = x1, X2 = x2} . . . p1(x1) = P {X1 = x1} . . .

p3|2,1(x3|x2, x1) = P {X3 = x3 |X2 = x2, X1 = x1} . . .

p3|2(x3|x2) = P {X3 = x3 |X2 = x2} . . .

we will therefore specify in the Table I.1 the joint distribution p1,2,3(x1, x2, x3) of our
process by simply assigning a probability to every single sample. This completely
defines in fact the law of the process because all the other lower-order marginal distri-
butions can then be deduced from the Table I.1 as in the following examples

p1,2(0, 0) = p1,2,3(0, 0, 0) + p1,2,3(0, 0, 1) =
1/4

p1,2(1, 0) = p1,2,3(1, 0, 0) + p1,2,3(1, 0, 1) =
1/4

p2,3(0, 0) = p1,2,3(0, 0, 0) + p1,2,3(1, 0, 0) =
1/4

p2(0) = p1,2,3(0, 0, 0) + p1,2,3(1, 0, 0) + p1,2,3(0, 0, 1) + p1,2,3(1, 0, 1) =
1/2

p2(1) = p1,2,3(0, 1, 0) + p1,2,3(1, 1, 0) + p1,2,3(0, 1, 1) + p1,2,3(1, 1, 1) =
1/2

1This example is presented as an exercise in N.G. van Kampen, Stochastic Processes in
Physics and Chemistry, North-Holland (Amsterdam, 1992), p. 79, but its origin goes back to a P.
Lévy note (C. R. Acad. Sci. Paris 228 (1949) 2204) taken up again first by W. Feller (Ann. Math.
Stat. 30 (1959) 1252) and then by E. Parzen (Stochastic Processes, Holden-Day (San Francisco,
1962) p. 203)
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X1 X2 X3 p1,2,3

0 0 0 0
0 0 1 1/4
0 1 0 1/4
0 1 1 0
1 0 0 1/4
1 0 1 0
1 1 0 0
1 1 1 1/4

Table I.1: Probabilities attributed to the 8 samples of the process X = (X1, X2, X3)

X1 X2 p1,2

0 0 1/4
0 1 1/4
1 0 1/4
1 1 1/4

X2 X3 p2,3

0 0 1/4
0 1 1/4
1 0 1/4
1 1 1/4

X1 X3 p1,3

0 0 1/4
0 1 1/4
1 0 1/4
1 1 1/4

X1 p1

0 1/2
1 1/2

X2 p2

0 1/2
1 1/2

X3 p3

0 1/2
1 1/2

Table I.2: Bivariate and univariate marginal distributions of X = (X1, X2, X3) deduced
from the Table I.1

The marginal distributions resulting from this procedure are collected in the Table I.2
We are able now to calculate also the conditional distributions and to check first of all
that our process X is not Markovian: we have indeed

p 3| 2,1(0 | 0, 0) =
p1,2,3(0, 0, 0)

p1,2(0, 0)
=

0
1/4

= 0

p 3| 2(0 | 0) =
p 2,3(0, 0)

p 2(0)
=

1/4
1/2

= 1/2

so that, at least in one instance, it is p 3|2,1 ̸= p 3|2, and hence the process is not
Markovian. That notwithstanding it is also easy to see that the transition probabilities
p 2|1, p 3|2 and p 3|1 satisfy the Chapman-Kolmogorov equations, namely – according to
the Definition 7.6 – that they are Markovian transition probabilities. We can indeed
deduce from the Table I.2 that in any event it is

p 2|1(x2 |x1) = p 3|2(x3 |x2) = p 3|1(x3 |x1) =
1/2 x1, x2, x3 = 0, 1
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X1 X2 X3 p̃1,2,3

0 0 0 1/8
0 0 1 1/8
0 1 0 1/8
0 1 1 1/8
1 0 0 1/8
1 0 1 1/8
1 1 0 1/8
1 1 1 1/8

Table I.3: Distribution of the Markov process X̃ sharing its transition probabilities
with X

and hence that the Chapman-Kolmogorov equations always hold:

1∑
x2=0

p 3|2(x3 |x2)p 2|1(x2 |x1) =
1/2 ·1/2 +1/2 ·1/2 = 1/4 +

1/4 =
1/2 = p 3|1(x3 |x1)

This surprising result is discussed in further detail in the Section 7.1.2, where it is
pointed out that it can be understood by remembering that – on the same sample
trajectory space – a process could possibly be endowed with several global distribu-
tions, all different but sharing the same family of Markovian transition laws: among
these processes however only one – if any – can exhibit the Markov property. In the
present example – on the space of the 8 sample trajectories (x1, x2, x3) – the process X
with the law specified in the Table I.1 has not the Markov property, but its transition
distributions are Markovian: this enables us then, through the chain rule of the Propo-
sition 7.4, to define another process X̃ (on the same trajectories, but with a different
distribution p̃ ) that will turn out to be Markovian. The joint distribution of this new

process X̃ for every value of the triplet x1, x2, x3 = 0, 1 is indeed calculated from

p̃1,2,3(x1, x2, x3) = p 3|2(x3 |x2)p 2|1(x2 |x1)p1(x1) =
1/2 ·1/2 ·1/2 = 1/8

and is summarized in the Table I.3, while its bivariate and univariate distributions stay
unchanged w.r.t. those of the initial process X
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Appendix J

Fractional Brownian motion
(Sect. 7.1.10)

It has been pointed out in the text that there are instances of – even rather elementary –
transition pdf ’s that are not Markovian in the sense that they do not satisfy the Chap-
man-Kolmogorov equation (7.17). In this case this transition pdf – while possibly
being the legitimate conditional pdf of some conjectural stochastic process – in no way
can play the role of the transition pdf of a Markov process: in other words we are not
entitled to use the chain rule in order to retrieve the global law of the process from this
transition pdf alone. We also remarked however in the Section 7.1.10 that to find the
process distribution we can possibly make up for the lack of Markovianity by means of
Gaussianity. Let us remember then that a relevant case of a Gaussian, non Markovian
process is the so-called fractional Brownian motion1 Y (t) that in some respects can
be considered as a generalization of the usual Wiener process

Starting from the remark that it is easy to check with a direct calculation that for
s, t > 0 it is

min{s, t} =
t+ s− |t− s|

2
=

|t|+ |s| − |t− s|
2

we recall first that the autocovariance (6.47) of a Wiener process W (t) is

CW (s, t) = Dmin{s, t} = D
|t|+ |s| − |t− s|

2

and that all the joint laws of W (t) could also be deduced by plugging this autoco-
variance into the characteristic function (7.63). In order to define the Gaussian laws
of the fractional Brownian motion Y (t) we then generalize the previous setting taking
mY (t) = 0 and the new autocovariance function

CY (s, t) =
D

2

(
|t|2H + |s|2H − |t− s|2H

)
1For further details see G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random

Processes, Chapman&Hall/CRC (Boca Raton, 2000), ch. 7, and the classical paper B.B. Mandel-
brot and J.W. van Ness (SIAM Review 10 (1968) 422). An updated tutorial can be retrieved from
the web page of A. Dieker http://www.columbia.edu/∼ad3217/fbm.html
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where H, called Hurst index , is a real number with 0 < H < 1. It is therefore apparent
that the autocovariance of the usual Wiener process is retrieved when in particular
H = 1/2, while for all the other values of H it is possible to prove that CY is non-
negative definite so that it can legitimately be used to define the distribution of the
Gaussian process Y (t) called fractional Brownian motion. Of course the particular
properties of the process Y (t) change according to the value of H and can be examined
in detail – even if we will neglect to do it – because all the finite, joint distributions
of the process are explicitly known. In particular the value of the Hurst index H is
associated to the correlation of the Y (t) increments, and hence also to the regularity
of the trajectories. It is possible to show indeed that – omitting the Wiener case
H = 1/2 that comes up with independent increments – a value H > 1/2 entails a
positive correlation among the increments, while a value H < 1/2 hints to a negative
correlation. From an intuitive standpoint we could say that the former behavior (either
increasing or decreasing) of the trajectory affects the latter one: when H > 1/2 the
positive correlation entails more regular trajectories (the former behavior tends to be
confirmed), while if H < 1/2 the negative correlation produces the opposite effect (the
former behavior is contradicted by the latter one) giving rise to reinforced chaos
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Appendix K

Ornstein-Uhlenbeck equations
(Sect. 7.2.4)

We will give here an explicit derivation of the coefficients of the forward equation for
an Ornstein-Uhlenbeck process X(t), and we will show that its pdf ’s are solutions of
the Fokker-Planck equation (7.94) put forward in the Proposition 7.40. Remark also
that the sample continuity of the Ornstein-Uhlenbeck processes directly follows from
the vanishing of the jump term

We will start precisely by proving that the jump term (7.64) vanishes so that X(t)
is sample continuous. Remark indeed that from (7.56) we have

1

∆t
f(x, t+∆t | y, t) =

e
− [(x−y)+y(1−e−α∆t)]2

2β2(1−e−2α∆t)

∆t
√

2πβ2(1− e−2α∆t)

=
α e

− (x−y)2

2β2(1−e−2α∆t)

α∆t
√

2πβ2(1− e−2α∆t)
e
− y2(1−e−α∆t)2+2y(x−y)(1−e−α∆t)

2β2(1−e−2α∆t)

=
e
− (x−y)2α∆t

2β2(1−e−2α∆t)

1
α∆t

(α∆t)
3
2

√
2πβ2 1−e−2α∆t

α∆t

α e
− y2(1−e−α∆t)+2y(x−y)

2β2(1+e−α∆t)

and since it is easy to see that

lim
∆t→0

α e
− y2(1−e−α∆t)+2y(x−y)

2β2(1+e−α∆t) = αe
− y(x−y)

2β2 lim
∆t→0

1− e−2α∆t

2α∆t
= 1

we can carry out the limit in two steps sopping first at the halfway expression

ℓ(x|y, t) = αe
− y(x−y)

2β2 lim
∆t→0

e
− (x−y)2

4β2
1

α∆t

(α∆t)
3
2

√
4πβ2

and then, for z = 1
α∆t

→ +∞, performing the elementary limit

ℓ(x|y, t) = αe
− y(x−y)

2β2√
4πβ2

lim
z→+∞

z
3
2 e

− (x−y)2

4β2
z
= 0
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As a consequence the Ornstein-Uhlenbeck equation will be of the Fokker-Planck type
and we are left only with the task of calculating its coefficients A and B. Within a
slightly changed notation, from (7.65) we first have that

A(x, t) = lim
ϵ→0+

lim
∆t→0+

1

∆t

∫
|z−x|<ϵ

(z − x)f(z, t+∆t |x, t) dz

an then, by taking

y =
z − xe−α∆t√
β2(1− e−2α∆t)

a± =
x(1− e−α∆t)± ϵ√
β2(1− e−2α∆t)

from (7.56) it follows

A(x, t) = lim
ϵ→0+

lim
∆t→0+

1

∆t

[√
β2(1− e−2α∆t)

∫ a+

a−

ye−
y2

2

√
2π

dy

−x(1− e−α∆t)

∫ a+

a−

e−
y2

2

√
2π

dy

]
Taking now into account the Gaussian primitive functions∫

e−
y2

2

√
2π

dy = Φ(y) + const

∫
ye−

y2

2

√
2π

dy = −e−
y2

2 + const

where Φ(x) is the error function (2.16), we also get

A(x, t) = lim
ϵ→0+

lim
∆t→0+

√αβ2

π

1− e−2α∆t

2α∆t

e−
a2−
2 − e−

a2+
2

√
∆t

−αx
1− e−α∆t

α∆t
(Φ(a+)− Φ(a−))

]
Since on the other hand for every ϵ > 0 it is

lim
∆t→0+

a± = ±∞ lim
∆t→0+

(Φ(a+)− Φ(a−)) = 1 lim
u→0

1− e−u

u
= 1

we will have

lim
∆t→0+

1− e−α∆t

α∆t
(Φ(a+)− Φ(a−)) = 1 lim

∆t→0+

√
αβ2

π

1− e−2α∆t

2α∆t
=

√
αβ2

π

while the other term takes the form

e−
a2−
2 − e−

a2+
2

√
∆t

= e
− x2(1−e−α∆t)2

2β2(1−e−2α∆t)
e
− ϵ2

2β2(1−e−2α∆t)

√
∆t

(
e

ϵx(1−e−α∆t)

β2(1−e−2α∆t) − e
− ϵx(1−e−α∆t)

β2(1−e−2α∆t)

)

= e
− x2(1−e−α∆t)

2β2(1+e−α∆t)
e
− ϵ2

4β2α∆t
2α∆t

1−e−2α∆t

√
∆t

(
e

ϵx

β2(1+e−α∆t) − e
− ϵx

β2(1+e−α∆t)

)
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so that with u = 1
∆t

the limits are

lim
∆t→0+

e
− x2(1−e−α∆t)

2β2(1+e−α∆t)

(
e

ϵx

β2(1+e−α∆t) − e
− ϵx

β2(1+e−α∆t)

)
= e

ϵx
2β2 − e

− ϵx
2β2

lim
∆t→0+

2α∆t

1− e−2α∆t
= 1

lim
∆t→0+

e
− ϵ2

4β2α∆t

√
∆t

= lim
u→+∞

u
1
2 e

− ϵ2u
4αβ2 = 0

and hence for every ϵ > 0 it follows

lim
∆t→0+

e−
a2−
2 − e−

a2+
2

√
∆t

= 0

Collecting then all the factors we finally find

A(x, t) = −αx

A similar approach, whose details we will neglect here for short, leads finally to establish
that the diffusion coefficientB is indeed constant: more precisely, with the notation
D = 2αβ2, we have

B(x, t) = D = 2αβ2

so that on the whole the Fokker-Planck equation of the Ornstein-Uhlenbeck process
takes the form (7.94)

∂tf(x, t) = α∂x[xf(x, t)] + αβ2∂2
xf(x, t) = α∂x[xf(x, t)] +

D

2
∂2
xf(x, t)

In particular the transition pdf (7.56) will be the solution associated to the condition
f(x, t) = δ(x− y) at the time t
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Appendix L

Stratonovich integral (Sect. 8.2.2)

It is important to recall that there are several definitions of stochastic integral different
from that of Itō, and in particular the approach due to R.L. Stratonovich deserves a few
clarifications: This alternative definition is chiefly based on a Riemann procedure of the
type (8.8), where however the values of the integrand Y (t) are taken in the midpoind
of the interval [tj, tj+1], instead than in its left end tj, according to the prescription∫ b

a

Y (t) ◦ dW (t) = lim
n,δ→0

-ms
n−1∑
j=0

Y

(
tj + tj+1

2

)[
W (tj+1)−W (tj)

]
Remark the new notation “◦” introduced here to tell apart this integral from the
analogous Itō integral. The main appeal of this definition lies in the fact that by its
adoption the usual rules of the calculus remain unchanged, and this is likely to be the
reason why the Stratonovich integral has long been very popular among the physicists.
Unfortunately however in no way it enjoys the same properties of its Itō counterpart:
rather its convergence and mathematical consistence are not without problems so that
its inherent qualities remain quite uncertain. Moreover there is no general rule that
allows passing from one definition to another, except for the following result1

Proposition L.1. (E. Wong, M. Zakai - 1969) If X(t) is a solution of the Itō
EDS (8.26), and if g(x, t) is a continuous differentiable function, within a few regularity
assumptions that we will neglect here, the Itō and the Stratonovich integrals P -a.s.
verify the following relation∫ b

a

g(X(t), t) ◦ dW (t) =

∫ b

a

g(X(t), t) dW (t) +
1

2

∫ b

a

gx(X(t), t) b(X(t), t) dt

in the sense that the l.h.s. exists iff the r.h.s. exists, and in this case the two coincide.
Here of course b(x, t) is the diffusion coefficient of the Itō EDS (8.26)

1For further details see C.W. Gardiner, Handbook of Stochastic Methods, Springer
(Berlin, 1997); T. Neckel, F. Rupp, Random differential equations in scientific com-
puting, Versita (London, 2013)
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Proof: Omitted2 �

Remark in particular that, according to the previour proposition, the Itō and the
Stratonovich integrals coincide if g(x, t) = g(t) is x-independent. When moreover X(t)
is a solution of the Itō EDS (8.26) (according to (8.27)), taking h(x, t) = b(x, t) it is
easy to see from the Proposition L.1 that X(t) also is (always in an integral sense) a
solution of the following Stratonovich EDS

dX(t) = ã(X(t), t) dt+ b(X(t), t) ◦ dW (t)

ã(x, t) = a(x, t)− 1

2
b(x, t) bx(x, t)

The previous results may apparently be used to give – at least in these particular
instances – a consistent definition of the Stratonovich integral (and EDS ) relying on
the corresponding Itō definitions that, as for them, are well posed. We will keep away
however from going along this path and we will always base our considerations on the
Itō integral – calculated from the procedure explained in the Section 8.2.2 – with all
its resulting modifications about the calculus rules

2See T. Neckel, F. Rupp, Random differential equations in scientific computing,
Versita (London, 2013), p. 159
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additivity, 17
algebra, 13
almost surely (P -a.s.), 19
atom, 14
autocorrelation, 136
autocovariance, 136

Bernoulli trials, 29
Borel set, 15
Brownian motion, 165, 176

fractional, 307
geometric, 172

Buffon’s needle, 92

cadlag, 32
chain rule, 186
characteristic function, 106

Bernoulli B (1; p), 107
binomial B (n; p) laws, 107
Cauchy C(a), 108
degenerate δb, 107
Erlang En(a), 116
exponential E(a), 108
Gaussian N(b, a2), 108
Laplace L(a), 108
Poisson P(α), 107
uniform U (a, b), 107

combination, 12
composition of laws, 115
consistence, 51
convergence

P -a.s., 103
Cauchy test, 137
degenerate, 117
in Lp, 103
in ms, 103, 137

in distribution, 103
in general, 104
in probability, 103
pointwise, 60
weak, 104

convex combination, 40
convolution, 99

discrete, 68
correlation coefficient, 80, 136
covariance, 80
covariance spectrum, 146
cumulant, 109, 288
cylinder, 15

decomposition, 14
decomposition of laws, 115
diffusion coefficient, 166
diffusion matrix, 207
disposition, 11
distribution, 25

Bernoulli B (1; p), 25, 35
binomial B (n; p), 25, 35
Boltzmann, 262
Cauchy C(b, a), 39
chi-squared χ2

n, 101
degenerate δb, 34
discrete, 34
Erlang En(a), 116, 150
exponential E(a), 38
finite dimensional, 64
Gaussian, 37
bivariate, 45
multivariate N(b,A), 44
standard N(0, 1), 38
univariate N(b, a2), 37

joint, 63
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Laplace L(a), 38
log-normal lnN(b, a2), 98
marginal, 63
multinomial B (n; p1, . . . , pr), 30
normal, see Gaussian, 37
Poisson P(α), 26, 35
singular, 39
Student Tn, 101
uniform U (a, b), 37

distribution function, 32, 57
absolutely continuous, 35
generalized, 33
generalized multivariate, 43
joint, 63
marginal, 46, 63
multivariate, 43

distribution of a rv, 56
drift vector, 207

equation
backward, 212
Chapman-Kolmogorov, 187
Fokker-Planck, 171, 214, 219
forward, 208, 212
Kolmogorov, 213
Langevin, 181
Liouville, 215
Smoluchowski, 260

equiprobability, 9
estimation in ms, 94
events, 12

conditionally independent, 23
independent, 22
negligible, 19

expectation, 71, 72
Bernoulli B (1; p), 77
binomial B (n; p), 77, 79
chi-squared χ2

n, 101
conditional, 89
w.r.t. a rv, 89
w.r.t. a r-vec, 91

degenerate δb, 77
Erlang En(a), 116

exponential E(a), 78
Gaussian N (b, a2), 77
Laplace L(a), 78
log-normal lnN(b, a2), 98
Poisson P(α), 77
Student Tn, 101
uniform U (a, b), 77

filtration, 227
formula

Bayes, 22
inversion, 110
multiplication, 21
total probability, 20

Fourier transform, 106
frequency, 291
function

beta, 205, 264
Borel, 55
bounded variation, 224
error, 38
gamma, 101
Heaviside, 34
non-negative definite, 110, 111

generating function, 218

Hurst index, 308

increments, 133
independent, 189
process, 133
stationary, 140

indicator, 55
inequality

Chebyshev, 85
Hölder , 278
Jensen, 277
Lyapunov, 277
Minkowski, 279
Schwarz, 278

infinitely divisible laws, 191
integral

Itō, 226
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Lebesgue, 72
over a set, 73

Lebesgue-Stieltjes, 73
stochastic, 139, 224
Stratonovich, 313
Wiener, 225

integration by parts, 238

Kolmogorov axioms, 19

Lévy density, 207
law, 25
law of a rv, 56
law of large numbers, 94

Bernoulli, 292
strong, 119
weak, 117

limit theorems, 190
Lipschitz conditions, 241
logarithmic characteristic, 288

marginalization, 46
Markov property, 183
master equation, 154, 211, 213
matrix

correlation, 80
covariance, 80, 85
non-negative definite, 44

mean lifetime, 91
measurability, 55
measure, 19

absolutely continuous, 35
finite, 19
Lebesgue, 19
Lebesgue-Stieltjes, 33
probability, 19
σ-additive, 19
σ-finite, 19
Wiener, 53

memoryless, 92
metric, 285
mixture, 40
mode, 80
modification, 134

moment, 73
absolute, 73

moments problem, 109, 287
Monte Carlo, method, 94, 119

norm, 285

orthogonality, 286

partition, 11
partition function, 262
permutation, 11
positive and negative parts, 71
power spectrum, 144, 146
probability, 9, 17, 19

a posteriori, 22
a priori, 22
classical definition, 9, 17
conditional, 20
finite, 17
joint, 20
space, 19

probability density, 35, 58
Cauchy C(b, a), 39
conditional, 88
conditioned, 86
Erlang En(a), 116
exponential E(a), 38
Gaussian
univariate N(b, a2), 37

joint, 65
Laplace L(a), 38
log-normal, 172
log-normal lnN(b, a2), 98
marginal, 65
multivariate, 44
Student Tn, 101
Student χ2

n, 101
uniform, 37

process, 62, 133
canonical, 135
Cauchy, 201
centered, 136
continuous, 137
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counting, 151
non homogeneous, 296
non uniform, 295

differentiable, 138
diffusion, 207, 214
equivalent, 134
equivalent, wide sense, 134
ergodic, 142, 195
Gaussian, 136, 171, 206
growth, 154
increments, 152, 175
Wiener, 166

independent increments, 152, 189
indistinguishable, 134
jump-diffusion, 207
Lévy, 191, 196
Markov, 183
non-anticipative, 227
Ornstein-Uhlenbeck, 178, 203, 248
point, 149
Poisson
compensated, 158
compound, 159
simple, 151, 199

Poisson impulses, 174
pseudo-Markov, 303
pure jump, 213
sample continuous, 197
separable, 135
stationary, 140, 191
strict sense, 140
wide sense, 141

time homogeneous, 193
Wiener, 165, 166, 200
geometric, 172
standard, 166

random element, 61
random sequence, 62
random variable, 55

absolutely continuous, 58
absolutely integrable, 72
canonical, 59

complex, 62
continuous, 58
degenerate, 56, 58
discrete, 58
extended, 61
identical P -a.s., 57
identically distributed, 57, 66
independent, 66
indistinguishable, 57
integrable, 72
simple, 56
standardized, 121
uncorrelated, 80

random vector, 62
canonical, 59
discrete, 65
Gaussian, 66, 113
bivariate, 84

random walk, 165
regression, 95
renewals, 149
reproductive properties

Cauchy C(a, b), 116
degenerate δb, 115
Gaussian N(b, a2), 101, 115
Poisson P(α), 115

σ-algebra, 14
Borel, 15
generated by a rv, 60
generated by subsets, 14
independent, 22

sampling
with replacement, 11
without replacement, 11

scalar product, 286
self-similarity, 167
sequence of rv ’s, 62
shot noise, 163, 297
space

Banach, 285
Hilbert, 286
probabilizable, 14
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sample, 10, 19
standard deviation, 80
statistics, 17, 291
stochastic differential, 176, 239
stochastic differential equation, 240

strong solution, 241
weak solution, 241

stochastic process, 62, 133
subadditivity, 19

theorem
Bayes, 22
Bochner, 110
continuity, 111
existence and uniqueness, 241
Kolmogorov on R∞, 51
Kolmogorov on RT , 52
Lebesgue, 61
Lebesgue-Nikodym, 40
limit
central for iid rv ’s, 121
central for independent rv ’s, 122
integral, 293
local, 292

P. Lévy, 111
Poisson, 126
for binomial rv ’s, 124
for multinomial r-vec’s, 125

Radon–Nikodym, 35
uniqueness, 109
Wiener-Khinchin, 145

transition pdf, 168
transition probability, 152

variance, 80
Bernoulli B (1; p), 83
binomial B (n; p), 83
chi-squared χ2

n, 101
degenerate δb, 83
Erlang En(a), 116
exponential E(a), 83
Gaussian N (b, a2), 84
Laplace L(a), 84
log-normal lnN(b, a2), 98

Poisson P(α), 83
Srudent Tn, 101
uniform U (a, b), 83

vector of the means, 85
Venn diagrams, 12

weighed average, 71
white noise, 173
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