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Detection of Pitch in Random Acoustic Signals
by Neural Networks

Nicola Cufaro Petroni, Franco Degrassi and Guido Pasquariello

ABSTRACT

By means of a backpropagation neural network a model has been built which is able
to distinguish between noises and tones endowed with a detectable pitch in a
(computer simulated) random acoustic environment where the information carried
by the signals is compressed to its essential part by the reduction of the Fourier
transform into templates of 12 numbers used as inputs. It is found that a neural
network able to detect a pitch is also able to recognize the presence of a residue
pitch in the signals of complex tones where the first (or the first two) harmonic has
been subtracted. Finally, the correlations between the concept of consonance and the
presence of a detectable pitch in the superposition of pairs of complex tones are
briefly investigated.

1. INTRODUCTION

The ultimate aim of this research is to try to account for the emergence of the
tonal sensitivity in the tighter connection possible with the physical phenomena of
the sound. However, we must immediately acknowledge that the results accounted
for in this paper describe only a very preliminary stage of this investigation and
that, for the time being, we are not trying to build a psychological model for tonal
relations: the aim of this paper is much more limited in scope and it is rather that
of building a model to test the ability of a neural network in extracting some
particular information from a particular random environment. This will account
also to a test of what sort of information is really contained in the simulated
random environment, so that this will also be a test to verify the hypotheses needed
to build it. It is clear, from the previous remarks, that in this paper the emphasis
will be on physics and information rather than on psychology and music, even if,
in our opinion, this will shed some light also on the birth of a tonal sensitivity.

In trying to approach an understanding of musical ideas about the tonal system
there are different levels of investigation: pitch, consonance, keys, tonal relations,
and so on. For the time being we will limit ourselves only to the first part of this
sequence and we will try to investigate how much in the higher levels is
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370 NICOLA CUFARO PETRONI ET AL.

explainable in terms of concepts of the lower levels. More precisely, we will try
to understand what conclusions it is possible to draw from the ability of individuat-
ing the presence of a pitch in an acoustic signal when this ability is considered as
a primary fact. In practice the idea is to embed an adaptive subject (in our case a
backpropagation neural network) in a random acoustic environment. The training
will consist in the fact that the network will learn to discriminate between signals
with or without a pitch. Of course the definition of the random acoustic environ-
ment will be crucial to establish the ability to generalize of the neural network,
and, on the other hand, it should also be an acceptable model of what we can find
in a natural acoustic environment.

The idea of pitch is a psychological one meaning the perceived height of an
acoustic signal: in a sense the perceptive difference between a noise and a tone is
that in the former you cannot distinguish a pitch, while in the latter you can. Of
course there is a continuum of possibilities between these two extreme situations
and a lot of ambiguous signals; however, the real world is full of signals perceived
with or without a clear pitch. In fact, among the signals coming from the natural
world there are some produced by specific physical systems with particular
boundary conditions (strings, plates, bells, tubes, voices,...) which at a different
degree can be described as a superposition of harmonic or quasi-harmonic partials.
This can, in a sense, be referred to as the fact that these signals contain a particular
information: the reference to a pitch or fundamental frequency (albeit not to the
lower frequency actually present in the signal). Others signals (coming for example
from wind, falling water, rustles,...) have no such characteristic and a height of the
signal can be perceived only with the utmost difficulty, if at all.

Can this particular information, encoded in the complex signals of the real
world, be detected by means of a simple model based on a neural network? In
which part of the signal is the essential of this information encoded? How much
can this ability in detecting a pitch be generalized to more complex situations?
These are the questions that we are trying to answer in this paper with the idea that
the ability in detecting the presence of a pitch can also say something on our tonal
sensitivity. Even if it is clear to everyone that the tonal system is not based (or at
least not only based) on the presence of a pitch, we can nevertheless say that the
reference to a tonic is one of the building blocks of the classical tonality. In this
paper we do not bring the discussion to the level of chords or sequences of chords
where much more complex problems are involved; but our opinion is that, at a
very elementary and physical level, one of the starting points in the building of the
tonal system is the ability of individuating a pitch in the acoustic signals.

It is well known (Zwicker and Fasti 1990) that frequency alone is not sufficient
to describe the pitch produced by pure tones: it depends, for example, on their
intensity. However, even for complex tones, the sensation of pitch can be con-
sidered as essentially connected to the nature of their spectrum, namely to the
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DETECTION OF PITCH 371

Fourier transform of the signal (of course we suppose, for the time being, that our
tones are steadily produced for a time long enough to have a determination of the
pitch: at present this is just a static study) and in particular to its modulus. By
stressing the relevance of the amplitude of the Fourier transform of the signal in
some sense we make the implicit hypothesis that the principal pitch perception
mechanism is the so-called place theory (Hall 1982) but the following discussion
will show that our idea is better described as a mixing of the place theory and the
more recent pattern recognition theories. In fact all the information connected to
the pitch (and to all the other characteristics of the signal) is encoded in the
Fourier transform, but this must be considered a highly redundant information if
we are interested uniquely to the pitch identification. Hence we will introduce a
few hypotheses in order to eliminate this redundancy by reducing the complete
Fourier transform to the features that we consider essential to the pitch iden-
tification. Of course this procedure of reduction will also introduce ambiguities in
the sense that, for example, the same reduced Fourier transform can be produced
starting from very different (harmonic and non-harmonic) initial Fourier trans-
forms: every operation of projection like this one will introduce similar am-
biguities, in the sense that in general we cannot uniquely retrieve the initial object
starting from a projected image of it. However, this work will also be considered
as a test of this choice for the representation of the acoustic signals: the reduction
of the Fourier transform will indeed be based on some hypotheses on what we
think to be (in a first approximation) unessential to the detection of a pitch and the
results of this work can hence also be seen as a verification of these hypotheses.
In other words, at this preliminary stage of the research, our aim is less the
excellence of the performance of the network in distinguishing between noises and
tones than to test how much information about the pitch is lost in the compression
of the signal to a. few numbers (the reduced Fourier transform); otherwise we
would have designed our system in a very different way. On the other hand, we
think that this preliminary inquire is important since, in later stages, it will be
relevant (also to save CPU time) to know what in a real signal can be considered
redundant for the pitch extraction, and hence what compression operations are
allowed with a negligible loss of information.

In order to build our representation, we will first of all discretize the continuous
set of all our frequencies. That will be done not only in order to realize computer
simulations, but also in order to individuate the discrete elements of our language:
the tones of a diatonic scale. In fact the discretization will be realized by means
of a series of tones all at the same well tempered distance of 100 0. The modulus
of the Fourier transforms will be reduced to templates of weights attributed only
to the frequencies of this well tempered series of tones.

Secondly, we will suppose that the phases of the different partial vibrations are
not essential for our aims, so that the number assigned to every diatonic tone of
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3 7 2 NICOLA CUFARO PETRONI ET AL.

our series will be a positive real number corresponding to the modulus of a
(complex) Fourier transform.

Finally we will suppose a complete octave equivalence by means of what we
will be able to reduce all our Fourier transform in just one octave interval [v,2,v),
the exact location of v being not relevant for our purposes. In this way we will
achieve a sort of reduction of all the frequencies to only 12 pitch classes contained
in the chosen octave.

Hence in this study a signal (harmonic or noisy) will be represented by means
of this reduced Fourier transform, namely by means of the template of 12 numbers
described above and the pitch detection will be considered as a problem of pattern
recognition on these templates. This point is important since one of the aims of
this research will be to investigate if a neural network, trained to discriminate
signals with a pitch from signals without a pitch, can also attribute a pitch to tones
lacking a few partials which are not included in the training set of examples.
Finally a second generalization to be investigated will be that of the trained net to
perceive superpositions of consonant or dissonant tones as reinforcing or disturbing
the pitch detection, respectively.

2. DESCRIPTION OF THE MODEL

Our model will be composed of an adaptive listener embedded in a random acous-
tic environment supplying external stimuli. This section will be devoted to the
description of these two constituting elements.

2.1 The Adaptive Listener

A very simple model for a real listener will be simulated by means of a back-
propagation neural network (Hecht-Nielsen 1989) which will undergo a supervised
training in the random acoustic environment. A backpropagation neural network
is a computing system composed of distributed and parallel processing elements
called neurons (by analogy with the natural neurons in a biological nervous
system) distributed in layers which are fully connected by so-called synapses. If
we consider, for example, the y-th neuron, the synapses arriving on it will con-
stitute a set Wy of real numbers, where the index i will vary on the set of indexes
of the neurons of the previous layer. These neurons of the previous layer will
transmit to the y-th neuron their outputs x, weighed by means of the synaptic
values, and the y-th neuron will compute a weighed sum of these inputs: Zj =
£,. Xj Wjj. Then Zj will become the argument of a function y,- = /fa) which will be
the output signal of the y-th neuron and which will be fanned out to all the neurons
of next layer weighed by means of the relative synapses. Hence, if we give some
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DETECTION OF PITCH 373

input values to the first layer of neurons, the activation of the processing elements
will propagate itself from layer to layer until to the final layer where the output
will be collected.

In the following we will use backpropagation networks whose neuron activa-
tions can take any real value in the interval [0,1]. The behaviour of the net as a
computing system is determined by the matrix wu of the synapses and by the form
of the functions ff. if these elements are fixed, the net implements a particular
function in the sense that, if the input layer is constituted of n neurons and the
output layer of m, for every input vector x = {x,}i=, „ we obtain an unique output
vector y = [y'j}j=1 m; namely we can say that the net implements the function
F(-;w):/?"->/?"".

However, the decisive feature of a backpropagation neural network is that it is
an adaptive computing device. This means that there are algorithms allowing a
progressive modification of the synapses and of the threshold values of the network
until a particular performance of the outputs is achieved. This is more often
implemented by means of a supervised training: the outputs y'(k) (k = 1,...,N) of
the network corresponding to a set of N input data x^ (k = 1,...,N) are compared
with a set of required outputs /*' supplied from the outside and the network
parameters are progressively modified so that the outputs will come nearer and
nearer to the required outputs. Of course here two questions arise: a) what near
means for our vectors y, and b) how to build an algorithm convergent toward the
required values.

The usual answer to the first question is: near means near in mean square. In
fact the problem in this form is correctly described as a problem of approximation
(Poggio and Girosi 1989): we have some information about the function/coming
from a set of N examples, namely N pairs [x{k\ yik)}k=l N and we must reconstruct
the function on the ground of these data. At this effect we require that the
following distance (mean square deviation)

be minimal.
As for the second question the usual answer is the so-called algorithm of the

backpropagation of errors (Hecht-Nielsen 1989; Rumelhart and McClelland 1986).
In short this means that the optimization of the result is achieved by means of a
sequence of iterations: at the end of every cycle the outputs y**' of the network
are compared with the required outputs _y(k) and the errors Ij*'-^'*')2 are taken into
account by means of some particular rule (the Delta rule, the Steepest descent
rule) in order to modify the synaptic values w so that in the next iteration a
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374 NICOLA CUFARO PETRONI ET AL.

smaller error is realized. Details about these algorithms can be found in the litera-
ture: all we need to say here is that they guarantee to achieve a good (if not per-
fect) approximation in mean square of the function/which is to be approximated.

However, we must remark that in this paper we consider the backpropagation
neural networks from a standpoint which is different from the usual one. In fact
we will suppose that X and Y are random vectors representing respectively a
random signal (or better its reduced Fourier transform) coming from the outer
world and the required answer which is also random. However, here something
more must be said about what exactly our neural network is now required to do.

Usually a neural network is supposed to approximate a given function; but,
even when between the random vectors X and Y there is a statistical dependence,
this does not mean at all a functional dependence. We will say that X and Y are
functionally dependent when there is some function/: R" —» Rm such that Y =f{X).
This requires that just one value Y be associated to every value X; but in general
this is not the way in which statistically-dependent random vectors behave, since
it can happen that to every value of X many values of Y are associated following
some distribution law.1 Hence, in the general case of statistical dependence, our
problem cannot be to find the functional relation between X and Y, since this
simply does not exist; rather the right position of the problem will be to estimate
Y by means of X, namely to find another random vector Y which is both a
function of X and the best approximation of Y. It is well known (Shiryayev 1984)
that the general answer to this problem is (for every component of our random
vectors)

Y;= E(Y.\X) = gi(X); i= l,...,n

where g{(x) = E(Yi\X=x).2 However, it is also well known that to find the functions
g{(x) = E(Yi\X=x) is not at all an easy task, and hence it is remarkable that a
backpropagation neural network, since it works exactly on the principle of the
mean square approximation, can be considered as computing system which im-
plements a good approximation of the function g{(x) = E(Y{\X=x). Of course in this
case we must think to our training examples as the values (xlk\ y(k))k=1 N of a
random sample (X™, F00)^/ N obtained by means of N repeated (and independent)
measurements of the couple of random vectors (X, Y), and to our training
procedure as a method to find the value of w which minimizes the value of (2.1).
However, in this case, differently from that of the simple approximation of
functions, we must also take into account situations in which we have x(t) = AT(0 and
yw ^ y , namely: to the same input data we can associate several different outputs.
The relevance of these remarks for our work is stressed by the fact that we use as
inputs sets of templates obtained as reduced Fourier transforms of a signal, and
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DETECTION OF PITCH 375

hence we must take into account the case in which identical (or almost identical)
templates, produced by very different signals, require totally different answers.
This, of course, will be much less important if we used the complete signals (or
spectra), but what we want to test is exactly how much the inevitable loss of infor-
mation produced in the projection of the signal into its reduced Fourier transform
is relevant with respect to the separation of the classes of noises and tones with a
pitch and hence the fact that the identification of these classes is now fuzzy is an
unavoidable feature of the model.

In other words the signal x(t) is just one possible trajectory of a stochastic
process %(t). We will suppose first of all that there is some functional F[-] defined
on the space of the trajectories x(t) and taking values in [0,1] which represents a
measure of the presence of a detectable pitch, so that Y = F[^(-)] e [0,1] will be
the random variable which we are interested in when we look for something indi-
cating the presence of a pitch. However, on the one hand we do not know the form
of F['], and on the other hand the complete signal (or its complete Fourier trans-
form) is somehow redundant with respect to the information needed to detect the
presence of a pitch. Hence by means of a suitable transformation T[*] we will
reduce our initial signal to somewhat much more simple: the reduced Fourier trans-
form, namely the random vector X = {X,}/=0 „ = r[^(p)] e [0,l]12. Of course now
we cannot hope to find still another functional relation3 between X and Y, but we
can at least think that (if our model is meaningful) they will be correlated so that
we can estimate Y through X. The best (in mean square) estimation is Y = E(HX)
and such conditional expectation is just what is supposed to be implemented by our
neural network.

2.2 The random acoustic environment

In order to build our random acoustic environment we will first of all discretize the
frequency axis. The fundamental objects representing our acoustic signals will be
a complex function of the frequency v, namely the Fourier transform §(y) of our
signal x(t) considered as a function of the time t. We will limit ourselves only to
a sequence of discrete values of the frequency, namely

v, = vwl2v0; k = 0,±l,±2,...

which are 100 0 (namely a well tempered semitone) apart so that they constitute
a sort of (extended^ well tempered keyboard. If our signal has a continuous
spectrum, namely if its Fourier transform is a continuous function of v, we will
approximate it by means of a discrete (in general non-harmonic) spectrum by
assigning a weight §k only to the points vk. We then introduce our hypothesis about
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376 NICOLA CUFARO PETRONI ET AL.

the octave equivalence: we will assimilate all the frequencies v t which are one or
more octaves apart, and we will take just one of these frequencies as a represen-
tative of the corresponding pitch class and finally we will attribute to this
frequency the combined weight of all the elements of this class. As representatives
of the 12 pitch classes we will choose the frequencies v,=2"I2v0; (/=0, 1.....11) and
we will attribute to every one of these the weights of the elements of the same
pitch class. For every v t it is easy to see that the corresponding pitch class
representative v/t (with lk = 0, 1, ... 11) is defined by the relation lk = k mod 12,
where n mod m indicates the (positive) remainder of the division n/m, while to a
given / e {0, 1,... 11} will correspond the following sequence of values of k: kt(j)
= I + 12;; 0"=0,±1,±2,...). Hence to every v,; (/=0,l,...,ll) we will associate the
weight (namely the share of the signal energy which is attributed to this pitch
class)

_ , m
 ( 2-2 )

M \ |£ i """" '

and the 12 component vector x={x,}l=J0 „ will be considered as our reduced
Fourier transform. Let us remark that with this definition the 12 numbers of every
template representing a signal are normalized, namely that Tfyxf2 = 1. This means
in practice that we consider signals with the same total energy in order to eliminate
every dependence on the loudness (intensity) of the signal. In order to avoid formal
complications we will also suppose that all our signals are limited in band (a fair
supposition because of the human audibility limits) so that we will not consider all
the infinite sequence of the vk: more precisely, if for example v0 = 622.3 Hz
(which corresponds to the E5b) and we take k = -60, -59,..., 0, 1,.... 59, we will
have 120 well tempered frequencies running from about 20 Hz through about 20
kHz. With this limitation the series in (2.2) becomes a finite sum so that no
problem of convergence will arise.

When our signal is periodic (along an infinite interval of time) the Fourier
transform reduces itself to a Fourier series and is described by means of a discrete
harmonic (or quasi-harmonic, if the signal is produced through a fairly limited
interval of time) spectrum. If v(1) is the fundamental frequency of this spectrum,
the sequence of the harmonic partials is v(n) = n v("; n > 1, and it is clear that in
general these frequencies will not exactly coincide with one of our well-tempered
vt. Even if v(1) coincides with one among the vt, the remaining partials will not in
general behave in the same simple way. Hence, even in the case of periodic
signals, we must somehow approximate our spectrum in order to define the right
template of weights for the 12 pitch classes. Indeed we will attribute the modulus
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DETECTION OF PITCH 377

of the amplitude of the n-th partial component to the nearest (in 0) well tempered
frequency v^,. It is very easy to verify that kn-k{ turns out to coincide with the
integer number nearest to 12 log2 n. Finally, by means of the octave equivalence,
we will project the frequencies v^ on the correspondent pitch classes by means of
the rule ln = kn mod 12, and we will attribute to every pitch class the usual super-
position of the weights of the corresponding partials.

For the sake of simplicity we will consider only harmonic signals whose
fundamental frequency is one of the well tempered frequencies (namely v(1)

coincides with one of the vt) and we will characterize the pitch class V,, of every
partial v(n) in musical notation with its location along a diatonic scale relative to
the fundamental pitch class v,;. In other words we will have:

Table 2.1.

Relative location Pitch class

I fundamental
Itf 1 semitone above the fundamental
II 2 semitone above the fundamental
III b 3 semitone above the fundamental
III 4 semitone above the fundamental
IV 5 semitone above the fundamental
IV# 6 semitone above the fundamental
V 7 semitone above the fundamental
VI b 8 semitone above the fundamental
VI 9 semitone above the fundamental
VII b 10 semitone above the fundamental
VII 11 semitone above the fundamental

With this notation the attribution of pitch classes to partials is given in Table 2.2.
As can be seen from Table 2.2, we will consider the partials of a periodic signal
contained in the first 5 octaves in order to be sure that no pitch class will have
exactly zero amplitude: some exactly zero amplitude (a case never found in prac-
tice) could become a too evident feature of the harmonic spectra so that the simu-
lation could be inherently biased. Remark also that the proposed attribution can be
found also in every book of musical acoustics (Hall 1982). Finally, Table 2.3
shows the list of the partials attributed to every location in the diatonic scale with
respect to the fundamental frequency.

Following Table 2.3 it is now possible to attribute a weight x, to every pitch
class. For example, if v,, (with /, e {0,1,...,11}) is the pitch class of the first partial
of our periodic signal, and if {<j>,,}n=131 are the amplitudes of the partials contained
in the first 5 octaves, we will attribute to the pitch class v(1 the weight
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378 NICOLA CUFARO PETRONI ET AL.

Table 2.2.

n 12 log2 n kn-k{ Relative location

0 I
12 I
19 V
24 I
28 III
31 V
34 VII b
36 I
38 II
40 III
42 IV0
43 V
44 VIb
46 VII b
47 VII
48 I
49 I)J
50 II
51 IHb
52 III
53 IV
54 IV U
54 IVU
55 V
56 VIb
56 VIb
57 VI
58 VII b
58 VII b
59 VII
59 VII

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0.00
12.00
19.02
24.00
27.86
31.02
33.69
36.00
38.04
39.86
41.51
43.03
44.40
45.69
46.88
48.00
49.05
50.04
50.97
51.86
52.71
53.51
54.28
55.02
55.73
56.40
57.06
57.69
58.29
58.88
59.45

JL
M

where, as in the previous case, M represents the total energy of the signal defined

as
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DETECTION OF PITCH 379

Table 2.3.

Relative location Attributed partials

I

mii
mb
in
IV
IV ft
V
VI b
VI
VII b
VII

31
1 7 ^ . 2

1, 2, 4, 8, 16
17
9,18
19
5, 10, 20
21
11,22,23
3, 6, 12, 24
13, 25, 26
27
7, 14, 28, 29
15, 30, 31

n=\

The other attributions of weights will be done in an analogous way, and hence the
reduced Fourier transform will be defined even in the case of periodic signals.

3. SIMULATION

In this section we will discuss in some detail how our model has been simulated
on a computer. In particular we will spend some time in the description of the
production of the samples, namely of the random signals that we need in order to
train and to test the performances of the neural network. Since this is connected
to the simulation of a realistic acoustic environment, it will be very important to
design a fair way of producing our samples.

3.1 Production of the samples

Our first problem will be that of the way in which we will pick up at random a
periodic signal. It is well known that every periodic signal x(t), under not very
restrictive analytical conditions, can be represented by means of a trigonometric
Fourier series (Courant and Hilbert 1953, Vol. I)

n=0
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380 NICOLA CUFARO PETRONI ET AL.

If now we want to pick up at random a periodic signal we can consider the
stochastic process ^(0 given by the random trigonometric series

n=0

by substituting respectively the numbers rn, 6n with the sequence of independent
random variables ^n, £„ (!;„ > 0; 0 < C,n < 2n; V n e N). It must be remarked here
that, since in all our simulations we will produce only a finite number of terms of
every Fourier series, all our series will be finite and hence will trivially converge.
However, we want to stress that a realistic signal can be approximately represented
by this model only when our finite sums are the first part (the first 31 terms) of
a convergent series. Hence it is important to know how the terms of convergent
series behave if we want to simulate the periodic signals in an acceptable way. For
example, if 2; is a random variable uniformly distributed in [0,1], and we define the
following sequence of independent random variables

(3.1)

it can be shown that our random trigonometric series will be everywhere con-
vergent. Even if this is not the more general way to get random periodic signals,
we can nevertheless suppose that the spanned set of functions will be fairly large
to contain at least good approximations of the real signals. Let us also remark that
for p < 1 we can say nothing about the convergence of the random trigonometric
series. However, since the aim of the present research is also to explore the
ambiguous region between harmonic tones and noises, in order to produce tones
with an unusual blend of harmonic partials (noisy tones) we will introduce in the
following of this paper also values of p < 1. In this region (where the reduced
Fourier transform of a noisy tone is not very different from that of a noise with a
narrow bandpass) the judgement on the pitch is much more difficult and hence the
problems of pattern recognition are much more interesting in the sense that the test
of our hypotheses on the conservation of the essential information in the com-
pression of the signal will be more severe.

Basically we have to produce two different sort of signals: that with a detect-
able pitch coming from periodic functions of time and that without a detectable
pitch coming from non-periodic functions of time. The random signals with detect-
able pitch will be simulated by means of random trigonometric series. The par-
ticular pitch class of the signal will also be random; indeed we will take at random
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DETECTION OF PITCH 381

an integer number k € {-60,...,59} and we will consider the corresponding Fourier
series with fundamental frequency vt. Of course we will consider only the am-
plitudes of the first 31 partials which fall in the audibility interval [v^Vj,]: to
determine these numbers we will first of all produce 31 random real numbers
{^-J^i 31 uniformly distributed in [0,1]; then in order to have the amplitudes we
have several possible choices: we can produce noisy tones with a pitch (namely
periodic signals with a strong presence of higher partials) simply by taking cn=$n

as our amplitudes without imposing any modulation for the higher frequencies
(namely we choose p=Q in the random variables %„). Usual periodic signals must
have random partials generally decreasing with the order n. However, as already
remarked, signals with p=0 can represent ambiguous situations in which, for some
particular reason, the tones have an unusual blend of partials in the first part of the
Fourier series. In this case a certain jamming of the pitch sensation can be
produced. More usual situations (associated with a more precise sensation of pitch)
will arise if in some way we modulate the §n in order to get the amplitudes. In the
simulations presented here, we have adopted the choice (3.1) with p extended to
every positive number, and the amplitudes of the partials of our fundamental
frequency v t will be simply defined as cn=§Jtf.

Now, following the discussion of Section 2, we can attribute the following
weights to the 12 relative locations in the diatonic scale (starting with vk)

K = vci2+c22+c42+4+4>

bi = c17

= c1

!+4+4

= c2

bi =

bi =

bi =

bi =

bio =

VC11 +C22

\/4+4

C27

\/4+4

+4

+c,2
2

+ C26

+4

+4

+4

i+4+4

Then the b'j will be rearranged in order to attribute the suitable weights to the 12
pitch classes. The pitch class of the fundamental vk will be v,t with lk=k mod 12:
to this pitch class we will attribute the weight b,t = b'o; to the pitch class b(t+1 we
will attribute b,k+l = b', and so on. Finally, in order to make the entire simulation
independent from the intensity of the signals, we will normalize the templates of
the b's by defining
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x. = _ i ; N =
* N yl

< 3 ' 2 )

In order to produce random signals without a detectable pitch, we need only to
take a sample of 120 random variables (uniformly distributed) in [0,1], let us say
(j)n; n e {-60,...,59}, which will represent the amplitudes of the Fourier transform
attributed to every vt. Then we calculate

\ j-s

and finally use (3.2). Of course this procedure produces templates corresponding
to white noise. If we want coloured noise it will be enough to introduce a bandpass
filter Hn with values 1 (if the frequency vn passes) and 0 (if vn is absorbed). In this
case, we first of all calculate cn = //„$„, then

and finally use (3.2) again.
Besides these samples of signals with or without a detectable pitch we will need

to produce some other type of signals to test the performances and the generaliza-
tion power of this model. In particular, in the following simulations, we will utilize
two other types of inputs:
a) signals with a residue pitch;
b) signals produced by means of a superposition of two or more signals.
The first type of signals consists of periodic signals constituted only by means of
their high harmonics; namely they are represented by Fourier series where the first
(and more prominent) harmonics are filtered away. It is well known that, even if
the fundamental frequency is no longer present, the perception of the same pitch
persists and it is known as residue pitch since it is extracted from a residue of high
harmonics (Hall 1982; Zwicker and Fasti 1990). In the simulations these signals
will simply be produced like the other signals with a pitch, but the value of c, (and
of c2 in further simulations) will automatically be zero. The second type of signals
will reproduce intervals or chords and they will be simulated by means of the
superposition of two (or more) signals with detectable pitch; namely we will sum
the squares of the weights of the same pitch classes in the two signals, and we will
attribute the square root of this sum as weight of this pitch class in the total signal.
Of course the final template will also be normalized.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 D

eg
li 

St
ud

i d
i B

ar
i]

, [
N

ic
ol

a 
C

uf
ar

o 
Pe

tr
on

i]
 a

t 0
4:

39
 0

3 
N

ov
em

be
r 

20
12

 



DETECTION OF PITCH 383

3.2 Training and Performance

In the two series of simulations implemented we used neural networks with 12
input neurons (in order to be adapted to our random templates with 12 entries as
inputs), and just one output neuron with an activation value which ranges con-
tinuously between 0 and 1: if the output is 1 we intend that a pitch has been
identified (we do not specify which one at this stage of the research); if, on the
contrary, the output is 0, no pitch has been detected. Of course the values of the
output can also indicate more ambiguous situations. The two series of simulations
are different for the structure of the training set of examples and for the
architecture of the neural network. On the other hand, the examples used in the
verification and in the generalization have been built in the same way. More
precisely the performances of the neural network have been always tested in two
ways: first of all we verified if the system give the right outputs when the inputs
are of the same type of the training set (namely signals with or without pitch
simulated exactly as that of the training set). Then we tested the possible
generalizations with input data of a type different from that of the training set
(namely signals with residue pitch and superpositions of signals).

The first set of simulations utilizes the simplest possible Neural Network
following the results of the Kolmogorov theorem (Hecht-Nielsen 1989), namely a
three-layers net with 12 input neurons, one output neuron and 25 = 2 • 12 + 1
neurons in the hidden layer. The training set of examples is constituted of 500
samples drawn from our random acoustic environment in the following way: first
of all there are 250 samples of periodic signals associated with the output 1 (since
in the supervised training we suppose that they are recognized as endowed with a
detectable pitch); they are produced with the cn simulated as values of the 31
random variables

$n = —$; (/>>0;« = l,2,...,31)
n p

where \ is uniformly distributed in [0,1]. More precisely there will be 50 samples
with p=0, 50 with p=0.5, 100 with p=\ and 50 with p=2. This means that we will
include in the training set even some noisy tones with a pitch and that we will
suppose that they are perceived as endowed with a detectable pitch. The remaining
250 samples are typical noises simulated as previously described: 100 samples are
white noises associated with a required answer 0 (since we suppose that in a broad
band noise there will be no detectable pitch); then there are samples of coloured
noise, namely 50 with a bandpass [v_20,v20] with required output 0.1, and 100 with
bandpass [v,,v12] with required output 0.5 (since we suppose that when we narrow
the bandpass we can elicit some pitch perception: in fact we select a part of the
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384 NICOLA CUFARO PETRONI ET AL.

frequency axis with a more or less defined height). We remark here that, in order
to have good performances from the net, the number of the examples of the
training set must be at least equal to the total number of connection and threshold
parameters of the net. In our case we have 500 > 12 • 25 + 25 + (12+25+1) =
363. By summarizing the training set of the first simulation is:

Table 3.1.

type of examples

harmonic tones
harmonic tones
harmonic tones
harmonic tones
noises
noises
noises

quantity

50
50

100
50

100
50
50

p or bandwidth

0
0.5
1
2
white
[V-20,V20]

[v,,v12]

required output

1
1
1
1
0
0.1
0.5

After 5,500 iterations of the backpropagation algorithm the neural network learns
to reproduce exactly 486 of the 500 examples with a total mean square error of
about 1.48. At this point the neural network is ready to be tested; in order to do
that (these remarks are suitable also for the second series of simulations) we
produce 20,000 samples of every particular type of signal and we consider the
histograms of all the corresponding outputs (which of course are all numbers in
[0,1]). In all our simulations the results will be given with a confidence coefficient
of 95%, in the sense that the confidence intervals will contain the true value of q
(namely of the probability that the output will fall in one of the subintervals of
[0,1]) with probability 1-a = 0.95 (see Appendix for details).

The results of this first round of simulations are given in the Figures: there the
outputs are listed respectively for harmonic tones (with different values of p:
Figure 1.1—4), for noises (with different bandwidths: Figure 1.5—7) and for tones
with residue pitch (with different values of p: Figure 1.8—15). As for the super-
position of tones (intervals) instead of the histograms we have calculated a pitch
parameter which is nothing else that the expectation value of the outputs for every
class of intervals: it can be considered as a measure of how much the perception
of a detectable pitch is disturbed or reinforced by the superposition of tones. In the
simulations for tone superpositions we have always taken p = 1.

The second set of simulations has been implemented by means of a different
neural architecture: the network has still 12 input and one output neurons, but the
hidden layers are 2 and are composed respectively of 25 and 12 neurons. This
modification will modify the performances of the net in some respects, as will be
seen later. Since now the number of neurons is larger, even our set of training
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DETECTION OF PITCH 385

examples must be larger: we will consider a set of 1,000 examples, since 1,000 >
12 • 25 + 25 • 12 + 12 + (12+25+12+1) = 662. Of course this will also slow the
training phase: in fact we will need now some 10,000 iterations in order to have
931 examples perfectly reproduced and an overall mean square error of 1.97. Our
1,000 training examples are now produced in a way perfectly identical to that of
the first simulations, but the proportions of the different type of signals and some
of the required answers are different. More precisely we will have now

Table 3.2.

type of examples

harmonic tones
harmonic tones
harmonic tones
harmonic tones
noises
noises
noises

quantity

200
100
100
100
200
100
200

p or bandwidth

0
0.5
1
2
white
[V-20.V20]

[v,.v,J

required output

0.7
0.9
1
1
0
0.1
0.3

The results are given, in a way identical to that adopted for the first simulations,
in the Figure II. 1—16.

4. DISCUSSION AND CONCLUSIONS

Looking at the results listed in the Figures 1.1—7 and II. 1—7, the first remark to do
is that the performances of our neural networks are satisfactory as long as we are
interested in signals of the same type of those of the training sets. In other words
we can say that, in both the first and the second simulation, the network can
discriminate between signals with and without detectable pitch. Of course the
performances are optimal when the samples come from well separated sets of
signals: for examples for p=\ and p=2 (Figures 1.3—4; II.3—4) the presence of a
pitch is very clear (more than 90% of the outputs are between 0.9 and 1.0), and,
on the other hand, for white noises (Figures 1.5; II.5) is the absence of a pitch to
be evident (more than 90% of the outputs are between 0.0 and 0.1).

The performance can also be considered good in the intermediate cases: in fact
the discrimination between noises and tones is now less clear, but that must be so
as remarked in the previous sections. Indeed from Figures 1.1—4 and II. 1—4 we can
see that a periodic signal becomes more noisy (in the sense that the pitch is less
perceptible) when p becomes smaller; and, on the other hand, the more the band-
pass of a noise is narrow, the more a pitch emerges from the signal (see Figures
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DETECTION OF PITCH 387

1.6—7 and n.6—7). However, in these intermediate situations we must also remark
the tendency of the outputs to be polarized toward 0 and 1 (with the exception of
Figure II.7): the intermediate values are almost never predominant and the ambi-
guous situations manifest themselves rather in the fact that the probabilities of the
outputs 0 and 1 have similar values. Moreover this behavior is more prominent in
the first set of simulations than in the second and a first explication can be the fact
that, in the supervised training, the examples of the first simulations presented
more polarized answers than the second: we will have more to say on that later.
A first consequence of these remarks is that we can consider meaningful to use the
reduced Fourier transform in our simulations since the sets of signals with and
without pitch remain fairly separated also after the projection.

Let us now consider the results of our simulations when the inputs are no more
of the same type of the training examples: namely, let us analyze the possible
generalizations of the performances of the Network. We tested these generalization
abilities in two ways: first of all we used as inputs periodic signals from which the
first (or the first two) partial has been subtracted. Namely we tested the output with
tones lacking the fundamental frequency (and possibly even the second partial).
The aim of this simulations is to see if a neural network, trained to detect pitches
from random signals {with fundamental frequency), can detect a residue pitch even
when the first partials are filtered away from the tone. Of course what we have in
mind is to verify if the perception of a residue pitch can be simulated as a
phenomenon of pattern recognition of an incomplete signal by a neural network
trained to detect the pitch in complete signals.4 Given the fact that our model based
on the reduced Fourier transform must be considered as a very crude approxima-
tion of the reality, we think very encouraging the fact that our trained network can
detect a residue pitch from the signals modified by the subtraction of one or two
partials (see Figures 1.8—15 and II.8—15). In fact the results of these simulations
show the same qualitative behaviour presented in the case of the complete signals,
but for the fact that the detection of the residue pitch is less clear than the
perception of the normal pitch (the value of the probability for outputs between 0.9
and 1.0 are less prominent) as happens also in the real world. Moreover, even here
the detection of the residue pitch is more clear when the tone is not noisy, namely
for larger valuer of p, and this is especially true for the second series of simu-

Fig. I.I. Harmonic tones (p = 0).
Fig. 1.2. Harmonic tones (p = 0.5).
Fig. 1.3. Harmonic •tones (p = 1).
Fig. 1.4. Harmonic tones (p = 2).
Fig. 1.5. White noises.
Fig. 1.6. Noises (bandwidth [-20,20]).
Fig. 1.7. Noises (bandwidth [1,12]).
Fig. 1.8. Harmonic tones lacking the first partial (p = 0).
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DETECTION OF PITCH 389

lations (see Figure II.8—9). A consequence of this result is that we can in some
sense consider that our simple model of the real acoustic world makes some sense
since at least it allows one to give an account of some phenomena (the residue
pitch perception) by means of simpler facts (the pitch perception of complete
signals taken as an elementary fact).

More unexpected, on the contrary, are the results of the second type of gen-
eralization: we tested the net by means of signals obtained as superpositions of two
periodic signals (as described in the Section 3) and we have calculated a pitch
parameter for these signals. The aim was to see if the templates of these pitch
parameters vs. the musical intervals would have reproduced the well known tem-
plates of the perceived consonance or dissonance (a first germ of the tonal
relations) of these intervals.5 However, in this case it is very clear that the known
relations between tones in intervals are not well reproduced. For example small
values are given to Sixts (I—VI) and Thirds (/—/// and /—7//t) and on the contrary
high values are attributed to intervals like Diminished Fifths (/—/Vjt) Seconds (I—II)
and Sevenths (I—VII), despite the fact that Sixts and Thirds are considered more
consonant than Seconds or Sevenths. Moreover, this performance is not improved
if we consider the outputs of the second neural architecture: the only difference
between these two sets of results is that the histogram in Figure 11.16 is more flat
than that in Figure 1.16, but this can be a consequence of both, the different
architecture of the network and the different set of training examples.

At first sight we could deduce from these results that a system able to indi-
viduate the presence of a pitch in a signal cannot distinguish between consonant
and dissonant intervals. This could suggest that the perceptions of consonance and
dissonance are not based on a system of (respectively) confirmation and denial of
the presence of a fundamental pitch. In other words, the information about the
presence of a pitch is not (qualitatively) the same as the information about the
consonance and dissonance of combined signals. However, these conclusions are
apparently too sharp if we take into account the following remarks.

First of all we should reconsider the method for the attribution of the partials
to the pitch classes. As already remarked some of these attributions are in fact
ambiguous since the real frequency is more or less equidistant from two well-
tempered frequencies. In fact this results also in an unbalanced attribution of

Fig. 1.9. Harmonic tones lacking the first partial (p = 0.5).
Fig. 1.10. Harmonic tones lacking the first partial (p = 1).
Fig. I.I 1. Harmonic tones lacking the first partial (p = 2).
Fig. 1.12. Harmonic tones lacking the first two partials (p = 0).
Fig. 1.13. Harmonic tones lacking the first two partials [p = 0.5).
Fig. 1.14. Harmonic tones lacking the first two partials (p = 1).
Fig. 1.15. Harmonic tones lacking the first two partials (p = 2).
Fig. 1.16. Pitch parameters of superposed tones vs. intervals.
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DETECTION OF PITCH 391

partials: for example there are four partials (even if of a high order) attributed to
the Minor Sevenths, three to the Diminished Fifths and only one to the Minor
Thirds (see Table 2.3). Hence it is possible that a more balanced situation can be
obtained if we do not attribute the whole energy of every partial to just one pitch
class, and instead we adopt a strategy of spreading this energy on a suitable
interval attributing to every pitch class only the share of the signal energy falling
in the appropriate interval. In order to do that perhaps the best idea is to remember
that every frequency of a spectrum excite the nerves of a region of the basilar
membrane whose width is about 1 mm. This well-known fact gives rise to the
phenomenon of the critical bandwidth (Hall 1982; Zwicker and Fasti 1990) whose
range is of about 15—20% of the center frequency, namely more or less 2.5—3
semitones. That means that partials which are less than a Minor Third apart begin
to overlap on the basilar membrane spreading their energy on more than one well-
tempered frequency. If we take this fact into account we will probably be able to
design a different algorithm for the attribution of weights to the pitch classes, and
that can of course change the results of our simulations. Moreover, the use of an
excessive number of partials can be considered in some sense as an addition of
noise to the tone making too difficult the retrieval of a pitch. The proposed
spreading of the signal energy over larger intervals can also make sure that no
pitch class will have an exactly zero weight even if we take into account a smaller
number partials.

The second remark to do is that we should also modify the way in which we
superpose periodic signals. In fact, if we consider our discretized Fourier
transforms as elements of a vector space with the basis given by the trigonometric
functions with discretized frequencies, our two signals will be superposed by
simply summing up the components cj;1' and c<2) as cn = c™ + c f and then
projecting the total signal in the corresponding reduced Fourier transform. In this
way we will obtain a weight attributed, for instance, to the first pitch class of the
form

Fig. II. 1. Harmonic tones (p = 0).
Fig. II.2. Harmonic tones (p = 0.5).
Fig. II.3. Harmonic tones (p = 1).
Fig. II.4. Harmonic tones (p = 2).
Fig. II.5. White noises.
Fig. II.6. Noises (bandwidth [-20,20]).
Fig. 11.7. Noises (bandwidth [1,12]).
Fig. II.8. Harmonic tones lacking the first partial (p = 0).
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Fig. II.9
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instead of the weight (used in our simulations, as described in Section 3.2)

This will of course modify the answers of the network.
Let us conclude this discussion with three more remarks. First of all a

modification of the model which is very simple to implement is the fact that we
can produce our samples by means of random variables which are not uniformly
distributed: it is not clear that this will dramatically improve the results, but it is
interesting to test how the performances change as a consequence of a change in
the training set. From this standpoint the second remark, connected with the first,
is that it will be important to test how the performances will change if the required
outputs in the supervised training are modified. In fact it must be stressed here that
it is not very well clear how to fix the required answers in the ambiguous cases.
Many possible choices are possible and no evident motivations can be given for
particular values of the outputs different from either 0 or 1. For example in our
first set of simulations we decided to give output 1 to every periodic signal (even
to the ambiguous noisy tones) while in the second set we gave less precise answers
to the noisy tones. This resulted in performances which are less polarized on the
extreme values 0 and 1, but the difference between the two sets of simulations is
not particularly evident. In fact in the ambiguous cases the neural network tends
to give as output either 0 or 1, but not the intermediate values (only in Figure II.7
we got a flat histogram, and even in this case the intermediate values are not
prominent). Of course these remarks once more stress the idea that it will be very
interesting to perform the experiment by reducing real signals and by adopting real
answers about the pitch. However, in our opinion the problem is less in the
suspicion that the simulation could artificially introduce a distinction between tones
and noises on the basis of some regularity (the randomness of the sample
production makes sure that this will not happen), than in the fact that the training
set can be grossly unbalanced in the composition of the samples and of the
answers.

The previous discussion introduces also our last remark: we stated in the

Fig. II.9. Harmonic tones lacking the first partial (p = 0.5).
Fig. 11.10. Harmonic-tones lacking the first partial (p = 1).
Fig. 11.11. Harmonic tones lacking the first partial (p = 2).
Fig. 11.12. Harmonic tones lacking the first two partials (p = 0).
Fig. 11.13. Harmonic tones lacking the first two partials (p = 0.5).
Fig. 11.14. Harmonic tones lacking the first two partials (p = 1).
Fig. 11.15. Harmonic tones lacking the first two partials (p = 2).
Fig. 11.16. Pitch parameters of superposed tones vs. intervals.
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394 NICOLA CUFARO PETRONI ET AL.

Section 2 that a backpropagation neural network can be seen as a computing
system which implements a good approximation (in the sense of the least squares)
of the function E(Y\X=x). However, this is not so sure if the training set of
examples is produced as in our simulations. Indeed our (normalized) reduced
Fourier transform are the points of a 11-dimensional hypersphere embedded in R12.
When we give our random sample (of size N) of pairs signal/output (xw, y^)k=1 jv,
with probability 1 we never get twice exactly the same point x on our 11-dimen-
sional hypersphere and hence we never have the possibility to show to the learning
neural network that to the same point x different outputs y can be associated. That
means that, unless our sample is overwhelmingly populous (very large N), the
neural network will not always do a conditional average, but rather will try to
follow the irregular oscillations of the associations given in our sample (x®,
y(*')*=i,...jv as far as the set of its possible functions will allow it. The fact that in our
trainings more than 90% of the examples were exactly reproduced (486 out of 500
in the first simulation and 931 out of 1,000 in the second) is in our opinion an
indication of this problem. This is likely to be the main reason for the quoted
phenomenon of the polarization of the outputs toward the extreme results 0 and
1 (instead of intermediate results) even when the samples used as tests are clearly
ambiguous. Of course we can try to avoid this problem by giving a large number
of training examples, but this does not seem to be the better way since the time of
training grows very fast with the size of the training sample: for instance, in our
two sets of simulations, the first network (363 parameters to be determined)
completed the training on 500 examples in about 90 minutes of CPU time, while
the second (662 parameters) with 1,000 examples required about 530 minutes. The
best thing seems to us to be a modification either in the algorithms of the
backpropagation neural network or in the presentation of the training samples in
order to get a sort of regularization of the functions implemented by the trained
network. For example we could manipulate the set of training examples in order
to give to the network an indication of the fact that to the same input can
correspond more than one output. A simple way to do that would be to fix a
regularization parameter p (its magnitude must of course be initially estimated in
some way), to consider around every input x00 a hypersphere of radius p, to check
if in this hypersphere there are other points of our sample (presumably with a
different output), and finally to attribute to x w all the outputs of the points
belonging to its spherical neighborhood. Of course this is just a first suggestion
which need to be much more thoroughly investigated.

The results of this paper must be considered only preliminary and an assess-
ment about the possibilities of our model will require further simulations and
extensive modifications to be definitive. Hence we will finally indicate some of the
directions in which this work could be extended. First of all an obvious modifica-
tion will be to design networks able to detect not only if there is a pitch, but also
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DETECTION OF PITCH 395

which pitch class is present in the given signal. This will complicate a bit the
network architecture, but in some preliminary attempts the classes of inputs seemed
to be separated enough to be easily detected. A second modification will also be
an attempt to take into account more elements of the complete Fourier transform
of the signal: it is possible to take into account, for examples, the phases of the
Fourier components, since it is well known that an influence of the phases on the
perception of the pitch of complex tones exists (Plomp 1976). A third is to
implement our analysis on real and not simulated signals.

A fourth point is the fact that, if we want to approach in a realistic way the
question of the emergence of a tonal sensitivity, we must take into account the
time evolution of the acoustic signals. In fact our study was just a static
investigation, but everybody will agree that the tonal relations are something more
complicated than just the presence of a detectable pitch or the relations of
consonance between harmonic tones and that the time sequence of the signals will
be a crucial element in this sort of analysis. However, this remark points also to
a last but not least question: if we want to develop a dynamical analysis of acoustic
signals we cannot stick to our static model based on a backpropagation neural
network. In this case a new model must be designed and we think that the appro-
priate approach will be that of the (deterministic or stochastic) dynamical systems
endowed with autonomous attractors and driven by a superimposed external signal.
Some work in this direction has already been started by other researchers (Leman
1994; D'Autilia and Guerra 1991).

Some other changes in the design of the model are also stimulated by the
remark that the supervised training cannot always be considered as the better way
to deal with these problems. We already hinted to this question in the discussion
of the results when we pointed out the fact that there is no clear motivation for the
choice of a particular value of the output, apart from the extreme values 1 and 0
of the unambiguous signals. Of course this problem is even more relevant when
we try to extend our simulations from the problem of detecting pitches to that of
individuating chords and keys. In these complex cases it is difficult to find a
suitable representation for the outputs of our system. A solution to this problem
could be to adopt a strategy of non-supervised training, for example by means of
Kohonen maps, as already done in a different way by other researchers (Leman
1990).
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396 NICOLA CUFARO PETRONI ET AL.

NOTES

1. Think, for example, of the case of the random variables H, altitude in the atmosphere, and
T, air temperature. It is well known that there is a dependence of T on H: the more we go
up, the more the temperature goes down. However, it is also clear that this dependence is only
statistical and not functional: at a given value of H it does not correspond to a unique value
of T since the temperature depends on many other variables that we are neglecting here
(latitude, atmospheric conditions, hour of the day,...), so that no function/such that T=f(H)
can exist.

2. In the following the symbols E(-), V(-) and E(.|.) will represent expectation values,
variances and conditional expectation values of random variables, respectively.

3. In fact, by eliminating the redundancy of the signal, we have introduced some ambiguity in
the sense that, as already remarked, the same reduced Fourier transform can be obtained from
different signals associated to different values of Y.

4. This model of pattern recognition for the residue pitch can of course claim some resemblance
with the well-known ideas of Terhardt, Wightman and Goldstein (Zwicker and Fasti 1990;
Hall 1982).

5. See for example the templates of relationship between pitches measured by Krumhansl as
reproduced by Leman (1990).

APPENDIX

In order to calculate our histograms for our 20,000 samples we subdivide the interval [0,1] into
10 subintervals of amplitude 0.1, then for every subinterval we consider the (independent and
identically distributed) random variables T|, e {0,1}, i = 1,2,...,20,000: T),- = 1 means that the i-th
output falls in our subinterval, and T|,. = 0 means the opposite. Now we subdivide the r\, into 20
subsets of 1,000 samples each and we consider the sample averages

. 2000(n-l)

Sn = E TV " =1,2,...,20.
1000 *= 1000(n-l)+l

On the basis of the Central Limit Theorem, if q = P(t|, = 1); i = 1,2,...,20,000, we can say that
these averages are all approximately normally distributed as 5, ~ N (q, q{\ - <7)/1000). Since we
do not know the value of q, we will consider (£„)„=,, 2o

 a s a random sample of size 20 of a
normal random variable with unknown expectation value u = q and variance o2 = q (l-qO/1000
Hence, if

1 2 0

~s = _L y^ 5

20 £i "

1 20

A - ' 7 1 = 1

are the unbiased estimators of the expectation value and of the variance, we know that
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DETECTION OF PITCH 397

is a Student random variable with 19 degrees of freedom so that we can calculate the suitable
confidence intervals for the value of q which of course in our histogram represents the probability
that the output of our neural network will fall in the chosen subinterval of [0,1]. In all our
simulations the results will be given with a confidence coefficient of 95%, in the sense that the
intervals indicated in the figures will contain the true value of q with probability 1-a = 0.95.
More precisely the confidence interval will have the form

t X + 6 t
*19,0.975' ° . '19,0.975

where, from the values of the Student distribution, tWfim - 2.093, and our results will be given
as 5 ± (cW20)f19097J. The confidence intervals, never wider than about 0.01, are not shown in the
Figures.
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