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hi this paper we reconsider, in the light of  the Nelson stochastic" mechanics, the 
idea orightally proposed by Bohm and Vigier that arbitrary sohttions of  the evohl- 
tion equation for the probability densities ahvays relax ht time toward the quantmn 
mechanical density Iq/l'- derived fi'om the Schrddinger equation. The analysis o f  a 
few general propositions attd o f  some physical examples show that the choice of  
the L i metrics and of  the Nelson stochastic f lux is correct for a particular class 
o[' quantum states, but cannot be adopted ht general. This b~dicates that the 
question i f  the quantum mechanical densities attract other sohttion of  the classical 
Fokker-Planck equations associated to the SchrCdhtger equation is physically 
mean#~gful, even i f  a classical probabilistic model good for ever T quantum state is 
still not available. A few suggestion ht this dh'ection are finally discussed. 

1. I N T R O D U C T I O N  

In an important old paper ~ Bohm and Vigier have discussed the possi- 
bility that some criticisms to the assumptions of the causal interpretation 
of the quantum mechanics ~2~ could be overcome by means of an extension 
of the hydrodynamical model initially proposed by Madelung ~3~ in the 
direction of allowing that the Madelung fluid "undergoes more or less 
random fluctuations in its motion." In particular this model, given in terms 
of a fluid with irregular fluctuations, was supposed to answer a criticism of 
Pauli and others ~4~ about the hypothesis, made in the causal interpretation, 
that, if ~,(r, t) satisfies the nonrelativistic Schr6dinger equation, then the 
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probability density function (pdf) in an ensemble of particles with this wave 
function is f(r ,  t ) =  ]~(r, t)] 2. The physical idea of Bohm and Vigier was 
that, even if our ensemble of quantum systems is described by an arbitrary 
initial pdf it will decay in time to an ensemble with pdf I~p] 2, because of the 
random fluctuations arising from the interactions with a subquantum 
medium: "no matter what the initial probability distribution may have 
been (for example, a delta function) it will eventually be given by P =  ]~b[2. ' ' 
In the work cited above, however, some mathematical difficulties made the 
general proof of this property less than complete. 

On the other hand this paper can historically be considered as a 
stepping stone on the way to the understanding of the deep relations 
connecting the quantum mechanics with the world of the classical random 
phenomena. Researches in this field eventually led to the formulation of 
the stochastic mechanics~5): a classical model where the particles follow 
continuous random trajectories in space-time and all the observable predic- 
tions of the quantum mechanics can be completely reproduced. This theory 
is "by no means a causal theory, but probabilistic concepts enter in a 
classical way. ''~5~ 

The aim of the present paper is to review, in the light of the stochastic 
mechanics, the old idea of Bohm and Vigier about the decay of every initial 
pdf toward the quantum mechanical pdf: in Sec. 2 we will briefly recall the 
fundamentals of the Bohm and Vigier model and the principles of the 
stochastic mechanics; in Sec. 3 we will discuss a few general properties of 
the time evolution of the pdf's of the Markov processes in the particular 
metric induced by the usual norm in L~(R); in Sec. 4 we discuss a few 
specific examples of quantum systems described in stochastic mechanics 
and we show that, in the chosen metrics, the trend of all the initial pdf's 
to decay in time toward the quantum mechanical pdf is not a general 
property since it holds only for a wide but particular class of wave func- 
tions; finally in Sec. 5 a short discussion follows about these results and the 
possibility of their generalization. 

2. THE CAUSAL INTERPRETATION AND THE 
STOCHASTIC MECHANICS 

The causal interpretation of the quantum mechanics is based on the 
idea that a nonrelativistic particle of mass m, whose wave function obeys 
the Schr6dinger equation 

h 2 .~ 

il)O,t~(r, t )=  -2--mn V-~(r, t ) +  V(r, t) ~(r, t) (1) 
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is a classical object following a continuous and causally defined trajectory 
with a well-defined position and accompanied by a physically real wave 
field ~ which contributes to determine its motion. In fact, if we write down 
( 1 ) in terms of the real functions R(r, t) and S(r, t) with 

~,(r, t) = R(r, t) e iS(,'t)/h (2) 

and separate real and imaginary parts, we have 

O'R2 + V ( Rz VS~=O,n / (3) 

_--=----(VS)2 V h2 V2R 0 (4) 
0 ' S +  2m + 2m R 

where R2(r, t) = I~b(r, 012 is interpreted as the density of  a fluid with stream 
velocity 

VS 
v(r, t ) = - -  (5) 

m 

Thus Eq. (3) expresses the conservation of the fluid while Eq. (4) plays the 
role of a Hamil ton-Jacobi  equation for the velocity potential S in the 
presence of a quantum potential 

h 2 V2R 

2m R 

which depends on the form of the wave function. In the causal interpreta- 
tion the particle follows deterministic trajectories dictated by (5) when v is 
identified with the velocity of a particle passing through r at the time t. 

It is important  to remark now that, if we define 

VS h VR-" 
v(+~(r, t ) = - - m  + 2,n R 2 (6) 

the continuity equation (3) takes the form 

OtR- =2-ram V R- - -  v ( a - ' v ( + l )  (7) 

so that R 2 can also be considered as a particular solution of the evolution 
equation of the pdf's of a Markov  process (Fokker-Planck  equation) 

a,f= v V 2 f  - V(b, +,) (8) 

825 25 2-8 
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characterized by the velocity field v~ +~ and by a diffusion coefficient 

h 
v = - -  (9) 

2m 

This points out a possible connection between the density R 2 of the 
Madelung fluid and the pdf of a suitable Markov process describing the 
random motion of a classical particle. As a matter of fact this connection 
is not at all compulsory at this point since the causal interpretation is a 
deterministic theory with no randomness involved in its fundamentals so 
that the analogy between (7) and (8) could also be considered purely 
formal. Moreover it must be remarked that, while for a given v~+) we can 
determine an infinity of solutions of (8) (one for every initial condition 
f ( r ,  0 ) = f 0 ( r ) )  which are pdf's of Markov processes, the quantum 
mechanics are characterized by the selection of just one particular solution 
f =  R 2 among all the possibilities. In fact it must be emphasized that R 2 
and v~+~ are not independent: they are both derived from a ~b solution of 
(1) and hence are locked together by their common origin. In other words: 
not every couple off ,  solution of (8), and v~ + I can be considered as derived 
from the same solution of the Schr6dinger equation through the relation 
(6) and f =  R'-. 

That notwithstanding, the causal interpretation is obliged to add some 
randomness to its-deterministic description in order to reproduce the 
statistical predictions of the quantum mechanics and hence it identifies the 
function R 2 = [~'l-" with the pdf of an ensemble of particles. But, since this 
addition is made by hand, is it easy for the critics of the model to argue 
that "it should be possible to have an arbitrary probability distribution 
(a special case of which is the function P = 6 ( x -  Xo) representing a particle 
in a well-defined location) that is at least in principle independent of the 
~, field and dependent only on our degree of information concerning the 
location of the particle. ''~1 

A more convincing connection between quantum mechanics and classi- 
cal random phenomena was achieved only later by means of the stochastic 
mechanics~6~: here the particle position is promoted to a stochastic Markov 
process ~(t) defined on some probabilistic space ( s  P) and taking 
values (for our limited purposes) in R 3. This process is characterized by a 
pd f f ( r ,  t) and a transition pdf p(r, t i t ' ,  t ') and satisfies an It6 stochastic 
differential equation of the form 

d~(t) = v~ + ~(~(t), t) dt + dJt(t) (10) 

where v(+~is a velocity field which plays the role of a dynamical vari- 
able not given a priori  but subsequently determined on the basis of a 
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variational principle, and t/(t) is a Brownian process independent of ~ and 
such that 

E(dr/(t)) = 0, E(dr/(t) drt(t)) = 2vI dt 

where dq(t)=~l(t+dt)-q(t) (for dt > 0), v is the diffusion coefficient, and 
I is the 3 • 3 identity matrix. We know that under fair analytical conditions 
on the velocity field v~§ the solution of (10) exists and is unique if we 
supplement our equation with the initial condition 8(0) = ~o; moreover,  the 
pdf  of the process satisfies the evolution equation (8) associated with the 
initial condition f ( r ,  0 ) = f o ( r )  iffo(r)  is the pdf of 8.0. An important  role is 
played by the family of the transition pdf's p(r, t iP ,  s) which are defined as 
the conditional pdf's of  our process under the hypothesis that ~ ( s )=  r': in 
particular p(r, t [ r ' ,  0) will be the solutions of  (8) if we choose as initial 
condition Co = r '  (P-a.s.). The relevance of the transition pdf  is well appre- 
ciated when we realize that every other solution of (8) (which satisfies the 
boundary and the non-negativity conditions to be a pdf) is propagated 
from its initial condition fo(r) following the prescription 

f(r,t)=fa3p(r, tlr',O)fo(r')d3r', t > O  (11) 

or more generally 

f (r , t )=f~ p(r, tlr',s)f(r',s)d3r ', t>s (12) 

In other words the transition pdf's, also calledfimdamental sohaions of (8), 
play the role of the propagators  and are the solutions of (8) which satisfy 
(in the sense of the distributions) the initial conditions 

p(r, t I r', O) ~ 8 ( r -  r'), t -*O + (13) 

A suitable definition of the Lagrangian and of the stochastic action 
functional for the sytem described by means of the dynamical variables f 
and v~ + ~ allows us to select, by means of the principle of stationarity of the 
action, the particular processes which reproduce the quantum mechanics. 
More precisely the selected processes will have a drift velocity 

vf 
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which, as required in (5), is always the gradient of a particular function 

S(r, t) solution of (4) with R = x/"-f. Moreover, it is possible to show that 
from f and S selected in this way we can always build a wave function 

~,(r, t) = ~/f(r ,  t) e is''''vh 

which satisfies the Schr6dinger equation (1). 
In this formulation the foundations to interpret R 2 as a particular 

solution of a Fokker-Planck equation for the pdf of Markov processes are 
well established. Of course we pay for this by abandoning the idea of deter- 
ministic trajectories even if the stochastic mechanics keeps intact the 
description by means of continuous trajectories in space-time and recovers 
the paths of the causal interpretation as averages on the stochastic 
trajectories. In this perspective the idea proposed by Bohm and Vigier of 
a relaxation in time of arbitrary pdf's solutions of (8) toward the quantum 
mechanical pdf 4qJl 2 can be checked as a property of the solutions of the 
Fokker-Planck equations with the field v~+l derived according to (6) from 
the wave functions solutions of (1). In other words, in this paper we will 
analyze an updated version of the Bohm and Vigier idea that for every 
quantum wave function ~ there exists a stochastic flux, described by a 
family of transition pdf's p(r, t l r ' , s ) ,  such that: (a) the quantum pdf 
[~[2 is correctly propagated by p; (b)every other pdf propagated by p 
approximates, in a suitable sense, the quantum pdf [~[2 for t ~  +oz. In 
particular, we will explore the possibility that the p associated by the 
Nelson stochastic mechanics to a quantum state ~b can be interpreted as the 
origin of the Bohm and Vigier stochastic flux, namely we will examinate 
if and how the solutions of (8) selected by the stochastic mechanics to 
reproduce the quantum predictions attract other solutions which do not 
satisfy the stationary stochastic action principle and hence cannot be 
considered as describing quantum systems. 

3. TIME EVOLUTION OF THE MARKOV PROCESSES 

In what follows we will limit ourselves to the case of the one-dimen- 
sional trajectories, so that the Markov processes ((t) considered will 
always take values in R. The set of all the probability density functions of 
the absolutely continuous real random variables defined on a probability 
space (s ,7, P) coincides with the set ~ of all the non-negative functions 
f ( x )  of the hypersphere of norm 1 in the Banach space L~(R) with norm 

f 
+ .:t.. 

IIfll : I A x ) l  dx 
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and hence the time-dependent pdff (x ,  t) of the stochastic processes ~(t) 
will be considered as trajectories on this subset ~. For Markov processes 
the transition pdf's p(x, t l y, s) classified by means of the initial condition 
~(s)= y (with s <  t) are particular trajectories with nonabsolutely con- 
tinuous initial conditions. In .~ we can then introduce a metric induced by 
the norm in L~(R): 

d(f, g) = �89 If(x) - g(x)l dx 

Here the factor 1/2 guarantees that we always have 0~<d(f, g)~< I: the 
value 1 is attained when f and g have disjoint supports, and the value 0 
when they coincide (Lebesgue almost everywhere). 

Definition 1. We will say that the pdff(x, t) Lt-approximates the pdf 
g(x, t) (for t ~  +o~), and we will write 

f ( x ,  t) LI g(x, t), t ~ + ~  

when 

d(f, g) ---, 0, t --* + ~  

In particular we will say that f L l-converges toward g (for t ~ +or)  if the 
pdf g(x) does not depend on the time t. 

This means that the two trajectories on the unit hypersphere tend to 
approximate one another in the Ll-norm when t ~  + ~ .  If the stochastic 
processes ~(t) under examination are Markov processes (as happens in 
stochastic mechanics) satisfying the stochastic differential equation (10) 
with initial condition ~(0)= ~0, their pdf will satisfy the one-dimensional 
evolution equation 

a, f (x ,  t )= rOOf(x, t)-O,.(v~+)(x, t) f ( x ,  t)) (14) 

with the initial condition f ( x ,  O) =fo(x) iffo(x) is the pdf of Go. 
We will examinate next a few properties of the concept of L~-approxi - 

mation for processes satisfying Eq. (10). 

Proposition 1. If f and g are solutions of (14), the distance d ( f  g) is 
a monotonic nonincreasing function of the time t. 
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Proof If we write d ( t ) = d ( f ,  g)  to put  in evidence the dependence on 
time, we have from (12) that (for t > s) 

f -t- ,zc, d(t)  = �89 If(x, t ) -  g(x, t)l dx 
~z  

=~_ -~.. p(x, t ly ,  s ) [ f ( y , s ) - g ( y , s ) ] d y  dx 

<~�89 p(x, t ly ,  s ) I f ( y , s ) - g ( y , s ) l  dy dx 

= �89  tly,  s) dx )dy  

=�89 [ f ( y , s ) - g ( y , s ) l  dy = d(s) 

where we have used the Fubini  theorem to exchange the order  of integra- 
tion and the obvious fact that 

for every real y and for t > s. 

p(x, t[ y, s) dx = 1 

[] 

Of course, even if this general proposi t ion for Markov  processes states 
that the distance d(f ,  g) among the solutions of (14) is a nonincreasing 
function of time, this is not enough to derive the consequence that this 
distance actually decreases, let alone the fact that it is infinitesimal when 
t ~  +c~. However, this proper ty  is sufficient to prove that, since d(t) is a 
monotone and bounded function of t, the limit of d(t) for t---, + ~  always 
exists and is finite. 

In order to examinate the condit ions that are sufficient to make the 
distance d ( f  g) actually tend to zero when t---, +c~, let us now introduce 
the following definition: 

Definition 2. We will say that the family of the transit ion pdf 's  
p(x, t[ y, O) LI-approximates the pdf  g(x, t) in a locally w~iform way in ), 
(y-l.u.) for t +  + m ,  and we will write 

p(x, tl y, O) ~ g(x, t) y-l.u., t ~  + ~  

when for every K > 0  and for every e > 0  we can find a T > 0  such that 

d(p, g ) =  d(p(x,  tl y, 0), g(.x, t ) ) < e  

for every t >  T a n d  for every y such that lYl ~<g. 



Quantum Mechanical States as Attractors 305 

The meaning of this definition is the following: the transition pdf's 
which L'-approximate the same pdf g for t-~ +or  progressively forget 
their dependence on the initial condition y, in the sense that, for every y, 
they approximate the same pdf g. Moreover, the local uniformity in y 
requires something more than the simple L~-approximation of every p to 
the same g independently from y, albeit something less than the global 
uniformity which would ask that the inequality d(p, g ) < e  be verified for 
every t > T and for every real y without limitations. Of course the global 
uniformity implies the local uniformity, but the converse is not in general 
true. 

Proposition 2. If the transition pdf's p(x, t]y, 0) L l-approximate 
y-l.u, the pdf g(x, t) for t-~ + ~ ,  then every f(x, t) solution of the evolu- 
tion equation (14) Ll-approximates g(x, t) for t-~ + ~ .  

Proof Let f(x, t) be an arbitrary solution of (14), corresponding to 
the initial condition f (x ,  0 )=fo(x) ,  and e > 0 an arbitrary positive number. 
Since fo is in LJ(R) we will always be able to find a K > 0  such that 

f~,.~ > K fo(y) dy <2 

Moreover, since the approximation is y-I.u., for the given e and K we can 
always find T >  0 such that 

I f  +'~' d(p, g ) = ~  -~, ]p(x, tl y, O)- g(x, t)l dx < 2 

for every t > T and for every real y such that lyl ~< K. Then, since we always 
have d(p, g) ~< 1, we get for every t > T 

1 f4-~, 
d(f, g)= 5 3_~ 

l f+  ~' 

1 r 
2 ~, 

- ,  (lf+  

]f(x,  t )--  g(x, t)l dx 

[p(x, t[ y, O) - g(x, t)] fo(Y) dy dx 

Ip(x, t y , O ) - g ( x ,  t) l fo(y)dy)dx 

]p(x, tl y, O)-- g(x, t)l dx) dy 

f +~ = fo(Y) d(p, g) dy 
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=f fo(y) d(p,g)dy+] f0(y)  d(p, g) dy 
l y l  > X I: '1 ~ K 

K d e .<K e e e <fl,,l> fo(Y) Y+2fl,'l f~ dY<-2+2= 

where we used all the previous limitations and the Fubini theorem to 
exchange the order of integration. [] 

Let us remark that in the proof  we nowhere used the hypothesis that 
g(x, t) is a solution of (14): in fact, it is enough to suppose that g is the 
time-dependent pdf of a generic Markov process. However,  even if the 
transition pdf's p L~-approximate a g which is not a solution of (14) 
the triangular inequality for the metric d allows us to show that all the 
solutions of (14) LLapproximate  one another as stated in the following 
proposition: 

Corollary 1. If the transition pdf 's  L~-approximate y-l.u, an arbitrary 
pdf  g, then 

d(f l ,  f2) ~ 0, t--* + ~  

for every f l ,  f2 solutions of (14). 

Proof From Proposit ion 2 we have fl  L' L t g and f2 ~ g so that from 
the triangular inequality 

d(f~,f2)<~d(fi, g)+d(f2, g)~O, t~  +c~ 
for every f l  and f2 solutions of (14). [] 

The meaning of this Corollary is that, under the conditions of 
Proposition 2, all the solutions of (14) globally tend to L~-approximate one 
another after a sufficiently long time. Vice-versa, if we can find two solu- 
tions f l  and f2 of (14) such that d ( f l , f 2 )  is not infinitesimal for t ~  +or ,  
then no pdf g can be L~-approximated y-l.u, by the family of the transition 
pdf's p. 

4. EXAMPLES FROM QUANTUM MECHANICS 

In order to discuss our examples in detail it will be useful to derive a 
formula to calculate the L~-distance among the pdf's ~U(m, t&) of normal 
random variables, namely pdf 's  of the form 

e - ~ x  - m )2/2o 2 

g .... (x) = ~ v / ~  
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with real m and a > O. In the following we will indicate with the symbol 

1 f" 
~ ( x )  = ~ _ ~ e -.,.-'/2 dy 

the usual error fimction and we will also pose 

d(a, b; p, q)=d(ga. ~, gt,.q) 

Proposition 3. With the previous notations,  i f p  > q we have that 

d ( a , b ; p , q ' = I ~ ( ~ 2 ~ ) - ~ ( ~ ) l  

where 

aq2 _ bp2 _ qp x/(a _ b)2 + 2(q2 _ pZ) In(q/p) 
Xl = q 2 p 2  

aq'- -- bp 2 + qp x/( a - b) 2 + 2(q 2 - p2) In(q/p) 
x2 = q2 _ p2 

If p = q and a 4: b we have that 

d ( a , b ; p , p , = 2 ~ ( ~ ) - I  

Finally, i f p  = q  and a=b we have that d(a, a; p, p ) = 0 .  

Proof The points where the difference between the two normal pdf 's  
change its sign are the solutions of the equation 

(q2-p2) x 2 - 2 ( a q 2 - b p 2 ) x  + [a2q2-b2p2 + 2q2p21n(p/q)]=O (15) 

If p=/:q (in particular,  to fix the ideas, if p>q)  the solutions are the 
numbers x~ and x2 indicated in our proposi t ion which are always real since 

(q2-- p2) ln q= P2 [ ( q )  2--111n P 
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and (1'2 _ 1 ) In t > 0 for every t > 0. Moreover, since p > q, it is immediately 
seen that x~ > x  2. On the other hand, i f p = q  and a # b ,  Eq. (15) has just 
one solution 

a + b  
NO ~ 2 

We will finally just neglect the case p = q and a = b since this means that 
the two pdf's coincide so that we immediately get d(a, a; p, p ) = 0 .  Let us 
remark now that, in the case p # q  (in particular p > q  and x~ >x2),  we 
have gu. p(x) >~ gh, q(X) for x ~< x2 and x >/Xl, and go.p(x) <~ gl,.q(x) for x2 ~< 
x ~< x~, so that we easily have 

I f -'--' d(a, b; p, q ) =  9~ [ go . r ( -" ) -  gt,.q(X)] dx + 9 J ' [  gt"q(X)- g " r ( x ) ]  
! f, dx 

l f + ~  
+~ .,-, [g~.r(x)--gb.q(X)] dx 

On the other hand, i f p = q  (but a # b  and, to fix our ideas, b>a)  we have 
g,,.~,(x) >t gl,.p(x) for x<~x o and go.p(x)<~ g~,.i,(x) for x>~xo so that 

d ( a , b ; p , p ) = 2 j  -,. [g , .p (x) -g , , .p (x)]dx+~_f  [g~ ,p(x ) -g , .p (x )]dx  
-*~'(I 

( b - a )  l 
= 2 q 5 \  2p J -  

Of course, with our conventions, these formulas never have negative values. 
[] 

The usefulness of the formulas in Proposition 3 are put in evidence 
by the remark that in the examples discussed in this paper both the 
transition pdf's and the pdf's derived from the quantum mechanical wave 
functions are normal, so that an application of Proposition 2 requires the 
calculation of distances among normal pdf's. That this is actually the case 
is due to the following proposition which indicates a very simple way to 
find the fundamental solutions of a class of evolution equations (14) which 
contain all the situations of our future examples. 
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Proposition 4. If the velocity field of the evolution equation (2) has 
the form 

vc+ ~(x, t ) =  - b ( t )  x - c (  t) 

with b(t) and c(t) continuous functions of time, then the fundamental 
solutions p(x, t] y, 0) are normal pdf's ~U(p(t), fl(t)) where/.t(t) and fl(t) 
are solutions of the equations 

p'(t) + b(t) It(t) + c( t) = 0 

fl'(t) + 2b(t) fl(t) - 2v = 0 

with initial conditions ~(0) = 0 and It(O) = y. 

Proof With the given velocity field the evolution equation takes the 
form 

O, f=  rOOf+ (bx + c) Oxf  + bf  

so that it is easy to verify that a normal pdf of the form 

e [  x - i t ( t )  ]2/2[J( t)  

p(x, t l y ,  O ) -  x / ~ ( t )  (16) 

will be a solution if p(t) and ~(t) satisfy the two first-order, ordinary dif- 
ferential equations indicated in the proposition. The initial conditions 
~(0) = 0  and p ( 0 ) = y  are then imposed in order to satisfy the relation 

p ( x , t [ y , O ) - * f ( x - - y ) ,  t -*O + 

namely the one-dimensional analogs of (13), so that their role is to select 
the fundamental solutions p among all the other possible solutions of the 
form (16). [] 

We will discuss now our particular examples for systems reduced to a 
single nonrelativistic particle with a mass m, by remembering that the 
connection between the quantum mechanics and the stochastic mechanics 
is guaranteed if the diffusion coefficient and the Planck constant satisfy the 
relation (9). Let us consider first of all a simple harmonic oscillator with 
elastic constant k and classical (circular) frequency ~ o = ~  and two 
possible wave functions obeying the Schr6dinger equation: the (stationary) 
wave function of the ground state 

~o(-", t) = (2~a2) '/4 e-''-/4~'-e-'~'/2 
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and the (nonstationary) wave function of the oscillating coherent wave 
packet with initial displacement a 

( 1 ~,,4 [ (x-acoscot)'- 
~bc(X, t)= \2-~-a'-J exp [ - 4a z 

where we have defined 

( 4axsincot-a2sin2cog ~-)1 
- -  i 8a 2 -F 

|P 

0 -2 = _ _  

co 

From the position (2) we find for our wave functions that 

e - x 2 / 2 ~  

Ro(x, t)= fo(x, t ) - -  

Re(x, t)=fc(x, t)= 

1 h So(x, t)= - ~  tot 

e - ( x - a c o s  e a t  ) 2 / 2 a 2  

1 4ax sin cot - a 2 sin cot 
Sc(x, t)= - - ;  hcot-h 8a 2 Z 

and hence we can calculate from (6) the corresponding velocity fields 

v~ I(x,  t)  = - c o x  

vC+ I(x, t) = --cox + coa(cos cot -- sin cot) 

This means that )Co and f c  are respectively of the form .C(0, a 2) and 
~.t'(a cos cot, a2), and that the fundamental solutions of the corresponding 
evolution equation (14) can be calculated by means of Proposition 4 with 

bo(t) =co, Co(t) = 0 

be(t) =co, Co(t) = -coa(cos c o t - s i n  cot) 

so that po(x, t[ y, 0) and pc(x, tl y, 0) will respectively be the normal pdf's 
o4q/~o(t), tio(t)) and oC(~c(t), tic(t)), where 

tio(t) = a2( 1 -e-2" ' ) ,  p o ( t ) = y e  .... 

t i c ( t )  = 0-2(1 - -  e - 2 ' ~  # c ( t ) = a c o s c o t + ( y - - a ) e  .... 
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A second class of examples can be drawn from the wave functions of 
a free particle of mass m. In part icular  we will choose to examinate the 
behavior  of the (nonsta t ionary)  wave function of a wave packet of minimal 
uncertainty centered around x = 0 with initial dispersion a 2 >  0: 

OF(X, t)= 2na~x2(t e -x:/+':x(') 

where 

V 
Z(t)= l + i~ot, o~=--~ 

C7- 

In this case we have from (2) 

e - xz/2~ t ) 

RF(X ,  t ) = f r ( X ,  t ) = / - ~  
Go~( t ) 

h ( o,t.,"- 
SF(X , t ) = ~ \ 2 ~ t )  arctan~ot / 

where 

cx(t) - IX(t)l = ~/1 + co2t 2 

This means that J~-is normal  of the form .A "(0, a2c(2(t)); moreover,  we get 
from (6) the velocity field 

1 - -  O)t  

1 O92/2  
vF+ )(X, t) = cox 

+ 

and the fundamental solutions of the corresponding evolution equations 
(14) can then be calculated by means of Proposi t ion 4 with 

1 --rOt 
b F( t ) = , .'7"'5""'~ ~ 0), C F( t ) = 0  

l +O~-t- 

As a consequence pF(X,  t] y ,  0) is a normal  pdf~ i'(pr(t), flF(l)) ,  where 

pr(t)  = y x/1 + ~ 2 t 2  e . . . .  t . . . .  t 

f lF( t )  = O'2(  I + O92I 2 )( 1 - e - 2 arct  . . . . .  ) 

We can now use the results of Proposi t ion 3 in order to calculate 
d(po , fo) ,  d ( p o f c )  and d(pF, fF): a long but simple calculation will show 
that (y-l.u.) 

Po s fo, Pc s fc ,  t--* +or 
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in the examples drawn from the harmonic  oscillator, but that PF will not  
L~-app roximate fF since d(pF, fF) turns out to be different from zero and 
still dependent on y in the limit t--* + ~ :  

d(pg, f r )  ~ ~(e"/Z[Y--  x/1 - - e - "  x / y 2 - -  ln(1 -- e - '~ ) ] )  

-- r [ y +  ~ 1  - e - "  x /y  2 - ln(1 - e - " ) ]  ) 

-- q~(e'V2[ y x/1 - - e - ' ~ - - ~ y 2 - - l n ( 1 -  e - '~ ) ] )  

+ q0(e"/2[ y ~ / I  -- e - "  + x/~, 'z -- ln( I -- e - " ) ]  ) 

For  example, if y =  0 (so that both PF and f r  will remain centered around 
x = 0  along all their evolution) we get in the limit t ~  +c~: 

d(pg, fF} ~ 2[q~(e "/2 x / - l n (  1 - e -~ ) )  

- qS(e '~/-" x/1 -- e - "  x / - - l n (  1 - e - " ) ) ]  ~ 0.011 

It is also possible to show that in this case two transition pdf 's  with dif- 
ferent initial condit ions 3":~ Y' will never L ' - app rox ima te  one another  as 
t---} + ~ ,  since 

( ly: ,'l 
d(p(x, t l y ,  O),p(x, t l y ' , O ) ) ~ 2 ~ \ 2 ~ /  1 

which is zero if and only i fy  = y'. Hence on the basis of Corol lary 1 we can 
state that every solution of the evolution equation (14) L~-approximates 
the quantum mechanical pdf (for t---} +c~)  only in the examples of the 
harmonic oscillator but not in that of the free particle. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N S  

It is apparent  from our examples that the Markov  processes associated 
to the quantum mechanical wave functions by the stochastic mechanics do 
not always exhibit the behavior required by the Bohm and Vigier hypo- 
thesis. In fact the calculations show that, in order  to recover the proper ty  
of a global  relaxation in time of the pdf 's  toward the quantum mechanical 
solution, we must restrict ourselves to a part icular  set of physical systems. 

The different behaviors of our examples are in fact inscribed in the 
form of the time dependence of the parameters  of the normal  pdf 's  involved 
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in our calculations. It is easy to see that, in the case of the harmonic 
oscillator, for every real y we have (for t ~  + ~ )  

p o ( t ) ~ O ,  f l o ( t ) ~ a  2 

[ p c ( t )  - a  cos 09tl -* 0, t i c ( t )  --, a 2 

On the other hand, I t r ( t )  and flF(t) behave differently from the corre- 
sponding parameters of the quantum mechanical pdffF, since (for t ~ + o~) 

]P F ( t )  - -  e - " /~ ,09 t l  --* O, I t i F ( t )  - -  ( 1 - e - ~) a2092t~-I ~ 0 

while the quantum mechanical f r  is a normal pdf which remains centered 
around x = 0 with a variance which diverges as az092t2. It is also useful to 
point out that in this case it is of no avail to remark that both P F  and f F  

will flatten to zero when t ~  +c~: the relevant fact is that this flattening 
happens at rates different enough to make the LLdistance remain nonzero 
even in the limit t ~ +c~. 

Of course the difference between the cases of the harmonic oscillator 
and the free particle can also be traced back to the behaviors of the corre- 
sponding velocity fields v~ + ~. In fact, while on the one hand v~ ~is always 
directed toward the origin of the x axis (namely the equilibrium point of 
the oscillator) for every x and t > 0 and v~_~ behaves in the same way for 
t > 0 and Ixl/> v/2 a (but oscillates between inward and outward directions 

for I.u ~< v/~ a), on the other hand the velocity field vi~ ~ of the free particle 
is (everywhere in x) directed toward the center only for t <  1/09, but 
becomes and remains everywhere directed in the outward direction when 
t >  1/o9. Physically this indicates that, while in the two examples from 
the harmonic oscillator the velocity field always drags the process toward 
the center x =  0 (with the possible exception of a limited region around the 
origin), in the free particle case, after a time 1/09=0"2/I ', the velocity field 
always carries the process away from this center. It is remarkable, 
moreover, that in the formulation chosen in the original Bohm and Vigier 
paper not one of our three examples would have shown the correct 
property: our Ll-metric plays here an important role in discriminating the 
well-behaved systems among all the possibilities. 

The fact that the Nelson transition pdf's do not always L J-approximate 
one another also means that it is impossible to find a unique pdf g 
L~-approximated by them independently from y, and hence that the solu- 
tions of (14) in the discussed free particle case will not globally tend to 
L~-approximate one another in time. Of  course nothing forbids a pr ior i ,  

even in this case, that particular subsets of solutions can show the tendency 
to mutually L~-approximate and hence the field is open to investigations 
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about, for instance, the possibility that some particular solution of (14) can 
be stable with respect to small perturbations of their initial conditions: 
which in some minimal sense was the essential intention of the Bohm and 
Vigier proposal. In any case our examples show that, at least for a signifi- 
cant set of systems and wave functions the Bohm and Vigier property holds 
in the L~-metrics if we adopt the'transition pdf suggested by the Nelson 
stochastic mechanics, and hence it can be surely stated that their original 
idea posed an interesting and physically well-grounded problem. It is not 
possible at present to state clearly and in a general way in which cases we 
realize the conditions for a global (or at least local) mutual Lt-approxi - 
mation of the solutions of (14). The examples discussed show that the 
discriminating property is not the stationarity of the quantum mechanical 
wave function since also the square modulus of the nonstationary, 
coherent, oscillating wave packet of the harmonic oscillator attracts in L ~ 
every other solution of (14). An indication can perhaps be found in the fact 
that the main difference between the two systems seems to be principally in 
the fact that their energy spectra are very different: the harmonic oscillator 
has a completely discrete spectrum and the free particle a completely con- 
tinuous one. Hence a first idea can be to distinguish between bound states, 
which exhibit the Bohm and Vigier property, and scattering states, which 
do not. An interesting suggestion in this direction comes, in fact, from the 
papers of Shucker ~7~ where, for systems with zero potential, it is shown that 
the sample paths of the processes of the stochastic mechanics behave 
asymptotically (for t---, +c~) like the paths of the classical mechanics. Of 
course the settlement of this question will require the discussion of further 
examples and the investigation of more general properties. However, it 
must be pointed out that in this paper we have made the very particular 
choice of selecting the transition pdf's of the Nelson stochastic mechanics 
as a good candidate to the generation of the right stochastic flux exhibiting 
the Bohm and Vigier property in some suitable sense. As a consequence 
another possible conclusion of this article could also be that the Nelson 
flux is not the right candidate to represent, in the general case, the inter- 
pretative scheme of Bohm and Vigier. Hence we consider wide open the 
possibility that the right transition pdf's can be built in a different way. 
For example it is well known that in the Nelson stochastic mechanics the 
diffusive part of the stochastic differential equation (10) is given a priori.  
Hence, since the transition pdf which propagates a given time-dependent 
pdff(r ,  t) is not uniquely determined (and are not, in general, observable 
in the stochastic mechanics), nothing forbids one to find a diffusive flux, 
different from that of Nelson, which exhibites the Bohm and Vigier property 
for every possible quantum wave function. In particular a possibility lies in 
the generalization of the stochastic mechanics where also the diffusive part 
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of the stochastic differential equation controlling the process is dynamically 
determined in a way such that the Bohm and Vigier property is always 
satisfied. 
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