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Introducing a description of the collective transverse dynamics of charged (proton) 
beams in the stability regime by suitable classical stochastic fluctuations, we show 
that the transition probabilities associated to Nelson processes can be exploited 
to model evolutions suitable to control the transverse beam dynamics. In partic­
ular we show how to control, in the quadrupole approximation to the beam-field 
interaction, both the focusing and the transverse oscillations of the beam, either 
together or independently. 

1 Introduction 

In this paper we study the intermediate, but physically relevant, regime of 
beam dynamics in which a balance is realized, on the average, between the 
energy dissipation and the external RF energy pumping1. We thus describe 
the beam dynamics exploiting the theory of classical stochastic dynamical sys­
tems with time-reversal invariance, which has been introduced and extensively 
studied in the context of Nelson stochastic mechanics2. The study of these 
dynamical systems is based on an extension of the variational principles of 
classical mechanics to include the case of a diffusive kinematics replacing the 
deterministic one 3. This is remarkable since variational principles are a very 
powerful tool in the description of physical systems. Here the stochastic vari­
ational principle yields two coupled hydrodynamic equations, respectively for 
the density and for the forward drift, which provide an effective description of 
the transverse oscillations of the beam profile in the regime of stability. 

On the other hand, it is also interesting to remark that the two real, 
nonlinearly coupled hydrodynamic equations of the stochastic mechanics are 
equivalent to one complex, linear equation of the form of a Schrodinger equa­
tion, with the Planck action constant replaced by the diffusion coefficient of 
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the random kinematics. This fact connects our stochastic approach, which is 
developed in full detail elsewhere4, to the recently developed quantum-like 
approaches to beam dynamics5. Moreover, since this description involves not 
only a Fokker-Planck equation but also a dynamical prescription, i.e. the 
specification of the external potential, it allows to implement the powerful 
techniques of active control6 also to beam dynamics. This is at variance with 
the case of a purely dissipative Fokker-Planck dynamics which only describes 
a passive, irreversible evolution of the state 7. 

In fact, once we obtain the description of the collective dynamics of the 
beam in terms of the hydrodynamic equations of Nelson stochastic mechanics 
with the proper diffusion coefficient, we can implement techniques of control 
already developed in the general context of stochastic dynamical systems6. 
These techniques exploit the transition probabilities, a fundamental object in 
the theory of diffusion processes, in order to drive the beam toward a spec­
ified and controlled evolution. In particular, we construct time-dependent 
potentials which drive the system from an initial state with a certain degree 
of collimation towards a final state characterized by a better focusing. At the 
same time, and independently, also the transverse betatron oscillations can be 
controlled and varied. 

2 Stochastic collective dynamics in t he stabil i ty regime 

In this section we model the spatial fluctuations through the random kinemat­
ics performed by a representative particle that oscillates, in a reference frame 
comoving with the bunch, around the closed ideal orbit. This representative 
particle is identified with the collective degree of freedom by letting the as­
sociated probability density coincide with the real density of particles in the 
bunch. This last step is achieved by rescaling the normalization of the total 
number of particles. Before proceeding, we establish the notations that will be 
used in the following, according to the standard conventions. 

We denote by r = (x, y) a point in the transverse section orthogonal to the 
beam direction. We then measure the time in units of length through the arc 
length s along the design orbit (curvilinear coordinate). We now consider the 
(two-dimensional) diffusion process q(s) which describes the transverse motion 
of the representative particle and whose probability density coincides with the 
particle density of the bunch in the transverse direction. The evolution in the 
"time" s of the process q is described by the Ito stochastic differential equation 

dq(s) = v ( +)(q(s),s)ds + V£dw(s), (1) 

where V(+) is the (forward) drift, and dw(s) = w(s + ds) — w(s) is the 6-
correlated time increment of the standard white noise, and where we have 
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fixed the diffusion coefficient to be the characteristic transverse emittance. 
Equation (1) defines the random kinematics performed by the collective degree 
of freedom. 

In the stability regime the energy lost by photonic emissions is regained in 
the RF cavities, and on average the dynamics is time-reversal invariant. We 
are thus in a situation in which there are both a random kinematics and time 
reversal invariance. Therefore the dynamics must be independently added 
to the kinematics (at variance with the purely dissipative Fokker-Planck or 
Langevin case) by introducing a stochastic generalization of the least action 
principle3. The latter is obtained as a generalization of the variational princi­
ple of classical mechanics, by replacing the classical deterministic kinematics, 
d<lc{s) = vc(s)ds, with the random diffusive kinematics of equation (1). The 
equations of motion thus obtained take the form of two coupled hydrodynamic 
equations describing the evolution in time of the beam density and of the 
velocity field of the beam profile. 

As a first consequence of the stochastic variational principle3 we find that 
the current velocity has a gradient form: 

mv(r ,s) = VS( r , s ) . (2) 

The two (nonlinearly coupled) Lagrange equations of motion for the density p 
and for the current velocity v, of the form (2) are: the continuity equation 

dsP = - V • ipv), (3) 

and a dynamical equation 

dsS+^v2-2m£2?^A+V(r,s)=0. (4) 

This dynamical equation is typical for time-reversal invariant diffusion pro­
cesses (Nelson processes). It has the same form of the Hamilton-Jacobi-
Madelung (H JM) equation, originally introduced in the hydrodynamic descrip­
tion of quantum mechanics by Madelung8. It can also be shown that (3) it is 
equivalent to the standard Fokker-Planck equation 

dsp = -V-[v(+)p} + £S72p. (5) 

The time-reversal invariance is assured by the fact that the forward drift ve­
locity V(+)(r, s) is not a field given a priori, as usual for diffusion processes 
of the Langevin type. On the contrary, given a certain initial condition, it is 
dynamically determined at any instant of time by the HJM evolution equa­
tion (4). 
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The equations (3) and (4) describe the collective behaviour of the beam 
at each instant of time through the evolution of both the beam profile and the 
velocity field of the beam. 

It is finally worth noticing that, introducing the trivial representation8 

1>(T,a) = y/fa8)eiS™'2m£, (6) 

the coupled equations (3) and (4) are equivalent to a single linear equation of 
the form of the Schrodinger equation in the function ip, with the Planck action 
constant replaced by the emittance £: 

i2m£dsip = -2m£2V2V + Vi/> . (7) 

In this formulation the "wave function" ip carries the information on both the 
dynamics of the bunch density p, and of the velocity field of the bunch, where 
the velocity field is determined through equation (2) by the phase function 
5(r, s). This shows, as previously claimed, that our procedure, starting from 
a different point of view, leads to a description formally analogous to that of 
the quantum-like approaches to beam dynamics 5 . 

3 Controlled beam dynamics in the quadrupole approximation 

We now move on to construct explicit examples of controlled beam dynamics. 
In considering an accelerating machine we assume, as usual, that the longi­
tudinal and the transverse dynamics can be deemed independent with a high 
degree of approximation. We will work in the framework of the quadrupole 
approximation, with the further simplification of considering decoupled evo­
lutions along the radial direction x and the vertical direction y in the local 
reference frame. 

Under these conditions, we can separate the original, two-dimensional 
diffusion process into two independent, one-dimensional processes respectively 
along x and y, each ruled by a harmonic potential. The configurational variable 
£ of the previous section can here indifferently be either x or y depending on 
the considered transverse direction. The potential in each transverse direction 
has, in units of mass, the general form: 

V(£, a) = ^ 2 ( s ) ( 2 - mf{a)$ + mU(s). (8) 

We have considered here a time-dependent frequency (parametric oscillator) 
in order to describe also the effects due to strong focusing1. Our aim is now 
to exploit the hydrodynamic equations (3) and (4) as control equations for the 
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beam dynamics. In particular, we will show how to compute a controlling, 
time-dependent potential which allows to drive a bunch prepared in a state 
with a certain degree of collimation towards a final state with better focusing. 

We consider a Gaussian shape for the initial density profile of a bunch in 
each transverse direction, with constant dispersion, and with the centre of the 
profile which performs a classical harmonic motion with the same frequency 
associated to the initial potential (8). The motion of the centre models the 
betatron oscillations of the bunch. In our quantum-like approach, the state 
of the bunch is thus formally represented by a coherent state. As anticipated 
at the end of the previous section, we will now consider an instance of con­
trolled evolution that does not require an extra smoothing procedure for the 
driving velocity field, i.e. the transition between pairs of Gaussian densities. 
In particular we will describe transitions from a coherent oscillating packet to 
another Gaussian state with a better collimation (smaller dispersion). It is 
worth noticing that we can also implement a procedure that allows to vary in­
dependently the dispersion (collimation) of the bunch density and the motion 
of the centre of the density profile (characteristics of the betatron oscillations). 

To this end we will recall that if the velocity field of a Fokker-Planck 
equation (5) with constant diffusion coefficient £ (the transverse emittance) 
has the linear form «(+)(£, s) = A(s) + B(s)£, with A(s) and B(s) continuous 
functions of s, then there are always Gaussian solutions A/"(^(s), i/(s)), where 
H(s) is the displacement of the centre of the Gaussian distribution and i/(s) is 
the variance of the Gaussian distribution. 

As previously stated, all along the time evolution our states keep a Gaus­
sian shape for the density, and the centre of the density profile performs an 
arbitrarily assigned motion. Then, if we adopt the concise quantum-like rep­
resentation of the bunch state (6) it is straightforward to show that the general 
form for the wave packet will be: 

</>(£,s) = (27w/r1 / 4exp 

(9) 
while the forward velocity field reads 

v' — IE 
«(+>(£, s ) = V + - 2 ^ ( £ - / * ) • (10) 

Here the s-dependent functions \i{s) and v{s) describe respectively the motion 
of the centre of the density profile and the spreading of the bunch density in 
the chosen transverse direction; on the other hand 0(s) plays the role of an 
arbitrary integration constant. Of course a suitable potential must also be 

4i/ + ImE 
mfi'^ + m—(^ tf + 6  Q

ua
nt

um
 A

sp
ec

ts
 O

f 
B

ea
m

 P
hy

si
cs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 p
ro

f 
N

ic
ol

a 
C

uf
ar

o 
Pe

tr
on

i o
n 

09
/1

3/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



512 

tailored in order to keep the evolution of the wave function (9) on the right 
track: we will show that in fact this control potential has the form suggested 
in (8). 

The equation (9) represents the most general Gaussian packet, with a given 
generic motion fi(s) of its centre and with a given dispersion v(s), associated 
to a linear form of the forward velocity in the Fokker-Planck equation (5). 
This also allows us to keep independent the initial and the final motion of 
the centre of the packet from the dispersions. As a first example let us now 
consider the transitions between two states of the form (9) with constant dis­
persion and with a harmonic motion of the centre of the profile. If initially 
(namely for s -C r, where from now on r is the transition instant) we start 
with v(s) = v\ and fi(s) = ai cos(wis), we will have an initial Gaussian density 
profile with spreading v\ and with harmonic betatron oscillation of frequency 
<jj\ = Ejv\. We now want to drive the system towards a final (for s S> T) 
state of the form (9), but with a spreading V2 < v\ (better collimation) and 
a new betatron oscillation /x2(s). To this end we only need to put in the 
solution Af(n(s),v(s)) two functions iu,(s),u(s) which interpolate between the 
corresponding initial and final functions of the motion of the centre, and of the 
spreading respectively. Moreover, with a suitable choice of the ^-independent 
part of the phase function in (9), the forward velocity field will also smoothly 
interpolate between the initial and the final velocity fields6. The control po­
tential which drives the solution toward the required end is finally obtained 
with p given by the interpolating solution N{n(s),v(s)), and with v<+\ given 
by the associated forward velocity. Of course there is a large number of pos­
sible choices for the interpolating functions n{s),v(s): this will allow us to 
single out the forms that better realize specific requirements. For example, it 
is possible to choose a characteristic transition time (the time needed to go 
from the initial to the final state) by inserting exponential relaxation terms in 
the interpolating functions. 

We will now present a few explicit examples of transitions. Our initial 
(s -C T) Gaussian, coherent, oscillating wave function has the form 

Vi(£,s) = (27n/i)-1 /4exp 
-(£ — a\ coswis)2 

.4<2i£sinu;iS — a\ sin2o;is + AviiO\S. 

(11) 

—i exp , 
81/1 

where we must also remember that 

wi = — . (12) 
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The relation (12) means that our initial potential is purely harmonic with 
frequency u\. From the wave function (11) we have 

fj,(s) = ai coswis = aicos I — J , v(s) — vi, (s <C r ) . (13) 

As for the initial phase function, by inspection of equations (11) and (6), and 
by taking (12) into account, we immediately get 

S(£,s) = mui I - j - sin2wis — £s — ai£sinwis I , (s <C r ) . (14) 

First of all we want to describe the (smooth) transition of our initial wave 
function to a final one of the same form but characterized by a new set of 
parameters: 

£ £ 
ai -¥ a2 , vi -» vi, wi = • u>2 = — - (15) 

The choice (15) also means that the final potential is still purely harmonic 
with a new frequency LJ2- In order to achieve that we consider for example the 
function 

r(«) = 7 -r (16) 

which smoothly goes from 0 (for s <IC r) to 1 (for s 3> r) with a flex point 
in s = T and a transition velocity equal to I / 7 . Of course here r and 7 are 
completely free parameters: a suitable choice of them will allow to fine tune 
the timing and the velocity of the transition. Now the required transition is 
implemented by choosing /L*(S) = a\ cos(£s/ui)(l — T(s)) + a2 cos(£s/u2)T(s), 
and v{s) = v\(1 — T(s)) + i^I^s), which clearly interpolates between the two 
initial and final Gaussian, coherent, oscillating states. 
The phase function can now be calculated from (9) and we have 

S(£, s) = m [a(s)e + P{a)Z + H(s) + 6(s)} (17) 

Since a, /3 and H are now fixed by the chosen interpolating /i(s) and f(s), a 
comparison between (17) and (14), and in particular between the asymptotic 
(s —> ±00) expressions of the ^-independent term of the phase, will suggest 
the following form for the arbitrary 9(s) function (where 9(s) = 0(s) + H(s)): 

0(8) 
£a\ . (2£s\ £2s 

sin sin Au\ \ v\ ) vx 
( i - r ( * ) ) + 

£a\ . (2£s\ £2s 
—i sin 
4^2 \ Vi ) Vi 

(19) 
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Finally the potential will have the form 

1 
Vc(£,s) = m 2G(s)e-F(s)Z + W(s) G(s) = -j-7r; + ^ , (20) 

F(s) = /i" + nG , W(s) = ° l - - ^ - £ l - 6'(s), (21) 

where now all the terms are given by the previous relations. 
As already remarked this potential has exactly the form (8). The functions 
a(s), P(s), G(s), F(s) and W(s), which determine the potential, can now be 
explicitly calculated. However their analytic expressions are by far too long 
(albeit elementary), and we do not report them here. They are plotted in4 . 

The potential Vc has the required time behaviour since it is a simple har­
monic potential for s <C r and s ~S> r (albeit with two different frequencies), 
and shows some extra terms only in a limited interval around the transition. 
Of course this does not constitute the only potential we can obtain in this 
way. For example the function n(s), instead, could be chosen in such a way 
that the oscillation of the centre of the profile be slower than the initial one, 
despite the fact that the better collimation requires a final potential associated 
to a frequency w2 = £/"2 larger than the initial one and then to a stronger 
betatron oscillation. This can be achieved by keeping a suitable forcing part 
F(s) different from zero also for s 3> r : namely in this case the final potential 
does not reduces itself to a simple harmonic one. It is easy to show that if the 
final oscillation has the generalized form 

n(s) = a cos(u)s) H sin(ws), (22) 
m 

with u> not coincident with £/v, the forcing function F(s) calculated from (20) 
will correspondingly be 

F(s) = m w2 j " ) ( a cosws H sinws I . (23) 

In this case the potentials are more complicated but can still be suitably ex­
plored by means of our method. As an example we consider the case where 
the final state is characterized by two independent parameters: W2 for the fre­
quency and V2 for the packet spreading. Now a relation similar to (12) will be 
no longer satisfied. As a consequence the original choice of interpolating n(s) 
and v{s) will be changed in fi(s) = a\ cos ( f 2 ) (1 — T(s)) + «2 cos (u>2s) T(s) 
and u(s) — fi (1 — T(s)) + i^I^s), while we get a new determination for the 
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arbitrary 0(s) function: 

§(s) Sal • {MA £ 
- sin 1 sin 

2 . 

Av\ \ v\ J Vi 
( i - r (a)) + 

- 2 

—-— sin (2(jj2S) — cw2s r(s). 
(24) 

The functions defining the time evolution of both the phase and the potential 
can now be calculated once more and we find that, the functions a(s), /3(s) 
keep a form very similar to the previous one. Instead the new G(s) displays 
an opposite behaviour, since the final frequency U2 is smaller than the initial 
frequency UJI, and thus the betatron oscillations are suppressed. Regarding 
the functions F(s) and W(s), they do not disappear any more for s S> r, 
so that asymptotically we do not have a purely harmonic potential since now 
in (8) both the term linear and that constant in £ will be present for every 
s > T. However it is clear that other choices are always possible: for example 
the arbitrary function 9(s) could be defined so that in (20) the ^-independent 
term W(s) of the potential Vc be identically zero. Of course there would be a 
price to pay for that: in fact now in the phase function S the ^-independent 
term will no more follow an asymptotic behaviour of the type (14) since the 
relation (24) will no more be satisfied. 
In the most general case of transitions between states with non constant dis­
persion (strong focusing) it is clear that the procedure can also be suitably 
extended. In fact it is sufficient to exploit for instance the expressions for the 
interpolating dispersion, but with time dependent initial and final dispersions 
J/I(S) and vzis). The general form (20) of the controlling potential is thus cal­
culated, but with a new expression for u(t). Finally, also the initial and final 
laws of motion of the profile centre, /ii(s) and fais), can always be chosen as 
in the previously discussed example. However, in this forcing part F(s) 
is needed to retain the oscillatory motion (22) for s 3> r . 

In future work we will study the extension of these control techniques 
beyond the quadrupole approximation and address in detail problems related 
to dynamical instabilities and halo formation. This latter problem has recently 
been addressed in the framework of a quantum-like approach9. 
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