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THE HALO FORMATION IN CHARGED PARTICLE 
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N. CUFARO PETRONI 
Dipartimento Interateneo d i  Matematica- Universitd e Politecnico d i  Bari, 
T. I. R. E.S. (Innovative Technologies for Signal Detection and Processing) - 

Universitd d i  Bari, 
Istituto Nazionale d i  Fisica Nucleare - Sezione d i  Bari, 

Istituto Nazionale per la Fisica della Materia - Unitd d i  Bari, 
Via G. Amendola 173, 70126 Bari, Italy, 

E-mail: cufaro@ba.infn.it 

S. D E  MARTINO, S. D E  SIENA, F. ILLUMINATI 
Dipartimento d i  Fisica “E. R. Caianiel1o”- Universitd d i  Salerno, 
Istituto Nazionale per la Fisica della Materia - Unit& d i  Salerno, 

Istituto Nazionale d i  Fisica Nucleare - Sezione d i  Napoli (Gruppo collegato d i  
Salerno), 

Via S. Allende, I-84081 Baronissi (SA), Italy, 
E-mail: demartino@sa.infn. it, desiena@sa.infn.it, illuminati@sa.infn.it 

The formation of the beam halo in charged particle accelerators is studied in the 
framework of a stochastic-hydrodynamic model for the collective motion of the 
particle beam. We take into account space-charge effects, which lead to a set 
of self-consistent coupled nonlinear hydrodynamic equations. Solutions of the 
dynamical equations describe quasi-stationary beam configurations with enhanced 
transverse dispersion and transverse emittance growth. Finally, potentials and 
drifts leading to ring-shaped halos are studied. 

1. Introduction 

In high intensity beams of charged particles, proposed in recent years for a 
wide variety of accelerator-related applications, it is very important to keep 
at low level the beam loss to the wall of the beam pipe, since even small 
fractional losses in a high-current machine can cause exceedingly high levels 
of radioactivation. One of the possible relevant mechanisms for these losses 
is the formation of a low intensity beam halo more or less far from the core. 
These halos have been observed or studied in experiments 2 ,  and have 
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also been subjected to an extensive simulation analysis 3~4i5i61728-9110211. It 
is however widely believed that for the next generation of high intensity 
machines it is still necessary to obtain a more quantitative understanding 
not only of the physics of the halo, but also of the beam transverse distri- 
bution in general In fact “because there is not a consensus about 
its definition, halo remains an imprecise term” l5 so that several proposals 
have been put forward for its description. 

The charged particle beams are usually described in terms of classical 
dynamical systems. The standard model is that of a collisionless plasma 
where the corresponding dynamics is embodied in a suitable phase space 
(see for example Is). We propose and develop a different approach: a model 
for the halo formation in particle beams based on the idea that the trajec- 
tories are samples of a stochastic process, rather than usual deterministic 
(differentiable) trajectories. Indeed the authors believe that a plasma (with 
collisions) described in terms of controlled stochastic processes seems a good 
candidate to explain the rare escape of particles from a quasi-stable beam 
core by statistically taking into account the random inter-particle interac- 
tions that can not be described in detail. Of course the idea of a stochastic 
approach is hardly new 1 6 , 1 7 3 1 8 ,  but there are several different ways to im- 
plement it. In fact, the system we want to describe is endowed with some 
measure of invariance under time reversal 19, and this looks reasonable in 
the intermediate regime of stability. In a few previous papers 20,21 we explic- 
itly introduced a stochastic description which involves both a kinematical, 
diffusion equation and a dynamical equation with external potentials. We 
showed that this method allows also to implement techniques of active con- 
trol for the dynamics of the beam. These techniques have been proposed 
to improve the beam focusing and to independently change the frequency 
of the betatron oscillations. As a first step to approach the halo problem, 
we implement the method to quantitatively investigate the nature, the size 
and the dynamical characteristics of a possible stationary beam halo. 

Time-reversal invariant diffusion processes are obtained by promoting 
deterministic kinematics to stochastic kinematics, and by adding a further 
dynamical prescription 22,23. The simpler, and most elegant, way to obtain 
the equations of such processes is to impose stochastic variational principles 
which generalise the usual ones of the deterministic mechanics to the case of 
diffusive kinematics 2 2 9 2 4 .  This method can be applied to classical, conser- 
vative many-particle systems, whose complex dynamics can be effectively 
described by a representative particle performing stochastic trajectories. If 
p is the (normalized) density of the particles and v the current velocity, the 
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stochastic variational principle leads to the following gradient form for the 
velocity field v 

mv(r, t )  = VS(r, t )  , 

&p = -v . (pv) , 

(1) 

(2) 

and to the couple of nonlinear hydrodynamic equations 

V2@ + V(r, t )  = 0 .  &S + -v2 - 2mD2- 
m 

2 fi (3) 

Here, D is the diffusion coefficient, and V(r, t )  is the external potential en- 
ergy applied to the system. Due to the non differentiability of the stochastic 
trajectories, it is not possible to define the standard velocity. One then in- 
troduces the forward velocity v+ (connected to the mean time-derivative 
from the right) and the backward velocity v- (connected to the mean time- 
derivative from the left). In the conservative diffusions, the two velocities 
are exchanged under time-reversal. Furthermore, the current velocity is the 
balanced mean of v*; it describes the velocity of the center of the density 
profile, and obviuosly reduces to the standard deterministic velocity if the 
noise is removed putting D = 0. In this last case, the two hydrodynamic 
equations reduces to the equations €or an ideal fluid. The equation (2) can 
be also explicitely written in the form of Fokker-Planck equation 

atp = -v . [V(+)P] + D v 2 p  (4) 
formally associated to the It8 equation. It is finally important to remark 
that, introducing the representation 25 

(with a = 2mD) the coupled equations (2) and (3) are made equivalent 
to a single linear equation of the form of the Schrodinger equation in the 
function $, with the Planck action constant replaced by a: 

We will refer to it as a Schrodinger-like (S-1) equation. In this formulation 
the phenomenological “wave function” $ carries the information on the 
dynamics of both: the bunch density, and the velocity field of the bunch, 
since the velocity field is determined through equation (1) by the phase 
function S(r, t ) .  This shows that our procedure, starting from a different 
point of view, leads to a description formally analogous to that of the so 
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called Quantum-like approaches to beam dynamics 26. In this last frame- 
work, an interesting analysis of the halo formation in particle beams has 
been performed in Ref. 27. 

2. Self consistent equations 

One of the possible mechanisms for the formation of the halo in particle 
beams is that due to the unavoidable presence of space charge effects. In 
this Section we will investigate this possibility in the framework of our 
hydrodynamic-stochastic model of beam dynamics. To this end, we take 
into account the space charge effects by coupling the hydrodynamic equa- 
tions of stochastic mechanics with the Maxwell equations which describe 
the mutual electromagnetic interactions between the particles of the beam. 
We thus obtain a self-consistent, stochastic magnetohydrodynamic system 
of coupled nonlinear differential equations that can be numerically solved 
to show the effect of the space charge. 

In the following, the reference physical system will be an ensemble of 
N identical copies of a single charged particle embedded in a particle beam 
and subject to both an external and a space-charge potential. In a refer- 
ence frame comoving with the beam, our system is then described by the 
Schrodinger equation (6), where Q is the unit of action (emittance) and 
the Hamiltonian operator which will be explicitly determined in the fol- 
lowing. Since in general + is not normalized, we introduce the following 
notation for its constant norm 

ii$ii2 = 1 i+(r, t)i2 d3r, ( 7 )  
R3 

so that, if N is the number of particles with individual charge 4 0 ,  the space 
charge density of the beam will be 

In this paper we study the case of zero current density, so that the wave 
function is stationary: 

(9) 
i E t / a  $(r, t )  = u(r) e- . 

We couple Eq. (6) with the Poisson equation for the scalar potential @sc 

generated by the space charge, and we consider that in a reference frame 
comoving with the beam we can always assume that the wave function is 
of the stationary form (9). Moreover, if the beam with space-charge inter- 
actions stays cylindrically symmetric the function u will depend only on 
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the modulus of the cylindrical radius r. We define the potential energies 
Kit = qo@ext ,  and V,, = go@,,. We then choose as external potential en- 
ergy a cylindrically symmetric, harmonic potential with a proper frequency 
w in absence of space charge: Vext = (mw2r2) /2 ,  with r = d m ,  and 
introduce the dimensionless quantities 

r s = -  
a d  l 

where u2 = ~ / 2 m w  is the variance of the ground state of the cylindrical 
harmonic oscillator without space charge. 

Then, the coupled (Schrodinger and Poisson) equations become, in 
terms of the adimensional unities, 

sw”(s) + w’(s) + [p - s2 - w(s)] sw(s) = 0 , (11) 

where 

Aa O0 B = - = 1 sw2(s )ds .  
2 

The effect of the space charge will be accounted for by comparing the 
normalized solution w(s) with the unperturbed ground state of the cylin- 
drical harmonic oscillator: 

We have solved numerically the system (ll), (12) by tentatively k i n g  one 
of the two free parameters b and p, and then searching by an iterative trial 
and error method a value of the other such that the solution shows, in a 
given interval of values of s, the correct infinitesimal asymptotic behavior 
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for large values of s. We have then normalized the solutions w(s) by cal- 
culating numerically the value of B. It is clear from the definition of the 
dimensionless parameters B,  b and p (13) that the value of ,B is a sort of 
reduced energy eigenvalue of the system, while the product 

y = Bb, (15) 

which is by definition a non negative number, will play the role of the 
interaction strength, since it depends on the space-charge density along the 
linear extension of the beam. Reverting to dimensional quantities, since 
a2/2m02 has the dimensions of an energy, the two relevant parameters are 

which are respectively the energy of the individual particle embedded in 
the beam, and the strength of the space-charge interaction. 

In the following we will limit ourselves to discuss solutions of Eqns. (1 I), 
and (12) without nodes (a sort of ground state for the system). It is possible 
to see that no solution without nodes can be found for values of the space- 
charge strength y beyond about 22.5 and that for values of y ranging from 
0 to 22.5, the energy ,8 decreases monotonically from 2.0000 to -0.0894. If 
the unit of action a is fixed at a given value, it is apparent that the value of 
y is directly proportional to the charge per unit length Nqo/L of the beam: 
a small value of y means a rarefied beam; a large value of y indicates that 
the beam is intense. A halo is supposed to be present in intense beams, 
while in rarefied beams the behavior of every single particle tends to be 
affected only by the external harmonic potential. 

It is useful to provide a numerical estimate (in M K S  units) of the rele- 
vant parameters. We are assuming a beam made of protons, so that m and 
qo are the proton mass and charge, while €0 is the vacuum permittivity. 
From empirical data, a reasonable estimate for (T yields m, while 
for NIL usually a value of 10l1 particles per meter is considered realis- 
tic. On the ground of accepted experimental values of the beam emittance 
(usually measured in units of length) we can assume a/mc of the order 
of 10-7m, and in particular from now on we will fix a at its approximate 
central value 2 M 4.0 x lop7 m .  Finally, we note that by changing the 
beam intensity (namely NIL and y) one correspondingly changes the energy 
(namely E and P )  of the individual particle embedded in the beam. The 
quantities /3 and y are dimensionless: the true physical quantities (energies) 
are obtained by multiplicating them by the unit of energy & M 37.5 eV. 

M 
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The overall effect of the space charge in this model is a conspicuous 
spreading of the transverse distribution of the particles in the beam with 
respect to the unperturbed ground state distribution (14) k3’. When y = 0 
the potential due to space charge vanishes, and the solution exactly co- 
incides with the ground state of the cylindrical harmonic oscillator with 
variance o’. When y > 0 the transverse distribution begins to spread 32. 

To give a more quantitative measure of the flattening and broadening of the 
transverse distribution we compare numerically the probabilities of finding 
a particle at a relatively large distance from the beam longitudinal axis 
with and without space charge. The quantity 

F M  

is the probability of finding a particle at a distance greater than co for 
systems with a given strength y of the space charge coupling. For instance, 
considering the two different situations y = 0 (no space charge) and y = 
22.5 (strong space charge) we have: 

We see that the probability of finding particles at a distance larger than 
100 from the core of the beam is enhanced by space charge by many orders 
of magnitude. This means, for example, that if in the beam there are 10l1 
particles per meter, while practically no one is found beyond 100 in absence 
of space charge, for very strong space-charge intensity we can find up to 
lo5 particles per meter at that distance from the core. 

The above analysis shows that in the hydrodynamic-stochastic theory of 
charged beams, the space-charge potential induces a strong broadening of 
the unperturbed transverse density distribution of the beam, thus yielding 
a small, but finite probability of having particles at a distance well away 
from the core of the beam. 

The hydrodynamic-stochastic model allows also an estimate on the 
growth of the emittance due to the presence of the space charge. The 
emittance can be calculated by exploiting a structure of uncertainty prod- 
ucts that is inherent to the SM. In particular, the transverse emittance can 
be calculated as Ax . APT, where we have: 
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In our case, it is easy to show that the root mean square deviation for the 
position is: 

As for the momentum p, it can be recovered from the velocity field which 
is well defined in SM. Since we are considering a stationary state, only 
the osmotic part of the velocity field is non zero, and the momentum field 
reads 

As a consequence, the root mean square deviation for the x-component of 
the momentum is: 

We can then define the emittance 1 as the position-momentum uncer- 
tainty product in phase space in the following way: 

1 = A x .  Ap, = ad-. (23) 

The emittance (23) can be thus estimated from knowledge of the numerical 
solutions w(s) and their first derivatives w’(s). It can be seen 32 that the 
emittance is exactly a for y = 0 (namely in absence of space charge), and 
grows with y to a value M 1.2 x a for y M 22.5. This result is consistent 
with the expected growth of emittance produced by space-charge effects, 
and it provides evidence that in the model of SM of charged beams the 
constant a plays the role of a lower bound for the phase-space emittance. 

We have seen that in our scheme the space-charge density leads to an 
enlargement of the particle density, that can be interpreted as a possible 
halo effect. However, the space-charge is only one possible source of halo. 
It has been also suggested that the halo distribution could be described, 
in first approximation, as a Gaussian core distribution plus a small ring 
of particles surrounding it and constituting the halo. Thus, we now will 
follow a different route. In fact, since it is not clearly established that a 
halo can be due only to space-charge effects, starting with a realistic ring 
distribution and trying to understand the dynamics that can produce it 
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could be very useful in this respect. Then, we will simply assume a specific 
form of a beam with a halo without deriving it as an effect of space charge 
interactions, and resorting to the techniques introduced in Refs. 28, 29 and 
20, we reverse the point of view: we insert into the equations (3) and (4) the 
supposed distribution, and obtain the drift and the potential which realize 
it. For a three-dimensional, cylindrically symmetric beam we introduce the 
normalized radial density distribution 

which is composed of a Gaussian core with variance gz (the simple harmonic 
oscillator ground state), plus a ring-like distribution whose size is fixed 
through the two parameters p > 0 and q 2 0. The parameter 0 5 A 5 1 
is the relative weight of the two parts. This density distribution has the 
required form for suitable values of the parameters, but it has no nodes. 
This is convenient for two main reasons: first because it is a rather general 
requirement for a ground state to have no nodes (this fact is a rigorous 
theorem for one-dimensional systems). Moreover, it has been shown in 
Refs. 28, 30 and 31 that stationary distributions without nodes are also 
attractors for every other possible (non extremal) initial distribution: a 
property that will be useful in a future discussion of the possible relaxation 
of the system toward a stable beam halo. 

Using, as usual, adimensional quantities, and using the methods of 
Refs. 28, 29 and 20, we can obtain the radial drift and the radial potential 
associated to the distribution (24). It results that the drift undergoes a 
sudden jump if compared to the umperturbed drift associated to the pure 
Gaussian, halo-free distribution (14). Correspondingly, the potential is de- 
formed with respect to the harmonic shape, and displays a narrow peak: 
this last generates the escape of a fraction of the particles (for details, 
see Ref. 32). 

In order to illustrate more explicitely the main effects involved, let us 
give here the simpler formulae relative to the Id case. We consider only Id 
processes denoting by x one of the transverse space coordinates. We assume 
that the longitudinal and the transverse beam dynamics can be deemed 
independent, with the further simplification of considering decoupled evo- 
lutions along the transverse directions x and y. Under these conditions the 
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density distribution with a halo ring now reads 
e - x = / 2 u =  

a f i  P ( X )  = A 

It is then straightforward to compute the corresponding velocities and po- 
tential, obtaining 32 

a2 a2 U”(Ic) 
V ( x )  = - +-- 4ma2 2m u(x) 

Using these expressions, it can be verified a behavior similar to that of 
the three-dimensional case: sudden jumps of the drift, with corresponding 
narrow peaks in the potential. 

In conclusion, we have presented a dynamical, stochastic approach to 
the description of the beam transverse distribution in the particle accelera- 
tors. We have shown that in this framework it is possible to have tranverse 
distribution which show a broadening and an emittance growth, typical of 
the halo formation. In forthcoming papers we plan to extend these tech- 
niques to the problem of engineering suitable timedependent potentials for 
the control and the elimination of the beam halo. 
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