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a b s t r a c t

We analyze the extension of the well known relation between Brownian motion and the
Schrödinger equation to the family of the Lévy processes. We consider a Lévy–Schrödinger
equationwhere the usual kinetic energy operator – the Laplacian – is generalized bymeans
of a selfadjoint, pseudodifferential operator whose symbol is the logarithmic characteristic
of an infinitely divisible law. The Lévy–Khintchin formula shows then how to write down
this operator in an integro-differential form. When the underlying Lévy process is stable
we recover as a particular case the fractional Schrödinger equation. A few examples
are finally given and we find that there are physically relevant models – such as a
form of the relativistic Schrödinger equation – that are in the domain of the non stable
Lévy–Schrödinger equations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

That the Schrödinger equation can be linked to some underlying stochastic process has been well known for a long
time. This idea has received along the years a number of different formulations: from the Feynman path integral [1],
through the Bohm–Vigier model [2], to the Nelson stochastic mechanics [3,4]. In all these models the underlying stochastic
process powering the random fluctuations is a Gaussian Brownian motion, and the focus of interest is the (non relativistic)
Schrödinger equation of quantum mechanics. This particular choice is understandable because on one hand the Gaussian
Brownian motion is the the most natural and widely explored example of Markov process available, and on the other hand
its connection with the Schrödinger equation has always lent the hope of a finer understanding of quantum mysteries.
In the framework of stochastic mechanics, however, this standpoint can be considerably broadened since in fact this

theory is a model for systems more general than quantum mechanics: a dynamical theory of Brownian motion that can be
applied to several physical problems [5–7]. On the other hand in recent years we have witnessed a considerable growth of
interest in non Gaussian stochastic processes, and in particular in the Lévy processes [8–12]. This is a field that was initially
explored in the 30’s and 40’s of last century [13–15], but that achieved a full blossoming of research only in the last decades,
also as a consequence of the tumultuous development of computing facilities. This interest is witnessed by the large field
of the possible applications of these more general processes from statistical mechanics [7] to mathematical finance [10,16,
17]. In the physical field, however, the research scope is presently rather confined to a particular kind of Lévy processes:
the stable processes and the corresponding fractional calculus [18,19], while in the financial domain a vastly more general
type of processes is at present in use. For instance also recently [20] the possibility of widening the perspective of the
Schrödinger–Brownian pair has been considered, but that has been confined only to a fractional Schrödinger equation. The
association of themore general Lévy infinitely divisible processes to the Schrödinger equation, instead, has been recognized
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as an important tool only in precious few papers [21,22] where the main interest of the authors was focused on the
probabilistic interpretation of the relativistic quantum equations. Here, on the other hand, we suggest that the stochastic
mechanics should be considered as a dynamical theory of the infinitely divisible processes showing time reversal invariance,
and that the horizon of its applications should bewidened even to cases different fromquantum systems (see for example [5,
6]).
This paper is devoted to a discussion of a generalization of the Schrödinger equation which takes into account the entire

family of the Lévy processes: wewill propose an equationwhere the infinitesimal generator of the Brownian semigroup (the
Laplacian) is substituted by the more general generator of a Lévy semigroup. As it happens this will be a pseudodifferential
operator (as, in particular, in the fractional case), and the Lévy–Khintchin formula will give us the opportunity to write
it down in the form of an explicit integro-differential operator by putting in evidence its continuous (Gaussian) and its
jumping (non Gaussian) parts. It is important to recall indeed that all the non Gaussian Lévy processes are characterized by
the fact that their trajectories make jumps: a feature that can help to explain particular physical phenomena, as for instance
the halo formation in intense charged particle beams in the accelerators [5,6], and the relativistic quantum mechanics [21,
22]. The advantages of this formulation are many: first of all the widening of the increment laws from the stable to the
infinitely divisible case will offer the possibility of having realistic, finite variances. As we will discuss later indeed, while
all the non Gaussian, stable distributions have divergent variances — so that the range of the x decay rates of the stable
probability density functions cannot exceed x−3 — this is not the case for the more general infinite divisible laws. On the
other hand both the possible presence of a Gaussian component in the Lévy–Khintchin formula, and the wide spectrum of
decay velocities of the increment probability densities will afford the possibility of having models with differences from
the usual Brownian (and usual quantum mechanical, Schrödinger) case as small as we want. In this sense we could speak
of small corrections to the quantum mechanical, Schrödinger equation. Last but not least, there are examples of non stable
Lévy processes which are connected to a particular form of the quantum, relativistic Schrödinger equation: an important
link that was missing in the original Nelsonmodel. It seems in fact [21,22] that we can only recover some kind of relativistic
quantum mechanics if we widen the field of the underlying stochastic processes at least to that of the selfdecomposable,
jumping Lévy processes. To avoid formal complications we will confine our discussion to the case of processes in just one
spatial dimension: generalizations will be straightforward.

2. A heuristic discussion

Let us start from the non relativistic, free Schrödinger equation associated with its propagator or Green function
G(x, t|y, s) (see for example Ref. [1])

ih̄∂tψ(x, t) = −
h̄2

2m
∂2xψ(x, t) (1)

G(x, t|y, s) =
1

√
2π i(t − s)h̄/m

e−
(x−y)2

2i(t−s)h̄/m (2)

ψ(x, t) =
∫
+∞

−∞

G(x, t|y, s) ψ(y, s)dy (3)

and compare it with the Fokker–Planck equation of a Wiener process (Brownian motion) with diffusion coefficient D,
pdf (probability density function) q(x, t) and transition pdf p(x, t|y, s) (see for example Ref. [23])

∂tq(x, t) = D ∂2x q(x, t) (4)

p(x, t|y, s) =
1

√
4π(t − s)D

e−
(x−y)2
4(t−s)D (5)

q(x, t) =
∫
+∞

−∞

p(x, t|y, s)q(y, s)dy. (6)

It is apparent that there is a simple, formal procedure transforming the two structures one into the other:

D =
h̄
2m
, t ←→ it

It is well known that this is just the result of a time analytic continuation in the complex plane. There are of course important
differences between G and p. For example while p and q are well behaved pdf ’s, G is not a wave function, as can be seen also
from a simple dimensional argument. This simple symmetry can then be deceptive, and a better understanding of its true
meaning can be achieved either by means of the Feynman path integration with a free Lagrangian of the usual quadratic
form, or through the Madelung decomposition [24] of (1) and its subsequent stochastic mechanical model [3,4]. Either way
produces in the end the well known association between the Schrödinger equation and a very special form of background
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Lévy noise: the (Gaussian) Brownian motion. Our aim here is to generalize to distributions other than Gaussian this simple
shortcut fromWiener process to Schrödinger equation, and to analyze its most immediate consequences.
Let us see first of all what kind of role the gaussian distribution plays in our Wiener–Schrödinger scheme. The pdf and

the chf (characteristic function) of a centered Gaussian lawN (0, a2)

q(x) =
e−x

2/2a2

√
2πa2

, ϕ(u) = e−a
2u2/2

satisfy the reciprocal relations

ϕ(u) =
∫
+∞

−∞

q(x) eiux dx, q(x) =
1
2π

∫
+∞

−∞

ϕ(u) e−iux du. (7)

Then the propagator (2) and the transition pdf (5) respectively have as chf ’s (here a2 = 2Dτ )

e−iD(t−s)u
2
= [ϕ(u)]i(t−s)/τ , e−D(t−s)u

2
= [ϕ(u)](t−s)/τ

where now ϕ(u) = e−Dτu
2
= e−τ h̄u

2/2m is the chf of a Gaussian lawN (0, 2Dτ), and τ is a time constant introduced in order
to have dimensionless exponents. From (7) we then have

G(x, t|y, s) =
1
2π

∫
+∞

−∞

[ϕ(u)]i(t−s)/τ e−iu(x−y)du (8)

p(x, t|y, s) =
1
2π

∫
+∞

−∞

[ϕ(u)](t−s)/τ e−iu(x−y)du. (9)

In both cases the starting point is the same chf ϕ of the centered, normal law N (0, 2Dτ). Then we consider the
chf [ϕ(u)](t−s)/τ of the t − s stationary increments of the Wiener process, we pass to the imaginary time variables (t ↔ it),
and finallywe get from (8) the Schrödinger propagator (2). The time scale τ incorporated in the initial normal law disappears
in the subsequent steps when we generate the chf of the increments. This feature is common to all the stable laws and is
the embodiment of the stable processes selfsimilarity.
The Eqs. (1) and (4) can now be easily deduced respectively from (8) and (9). For instance from (3) and (8) we have

ψ(x, t) =
∫
+∞

−∞

dy
ψ(y, s)
2π

∫
+∞

−∞

e−iDu
2(t−s)e−iu(x−y)du

and then we can write

i∂tψ(x, t) =
∫
+∞

−∞

dy
ψ(y, s)
2π

∫
+∞

−∞

Du2e−iDu
2(t−s)e−iu(x−y)du

= D
∫
+∞

−∞

dy
ψ(y, s)
2π

∫
+∞

−∞

(i∂x)2e−iDu
2(t−s)e−iu(x−y)du

= −D ∂2x

∫
+∞

−∞

dy
ψ(y, s)
2π

∫
+∞

−∞

e−iDu
2(t−s)e−iu(x−y)du = −D ∂2xψ(x, t)

which – but for a factor h̄, and with D = h̄/2m – is the free, non relativistic Schrödinger equation (1).
We are now interested in reproducing these well known steps starting with the chf of a non Gaussian law. Take now an

infinitely divisible – in general non Gaussian – lawwith chf ϕ(u), and let η(u) = lnϕ(u) be its lch (logarithmic characteristic).
Infinite divisibility essentially is the property of a chf ϕ which guarantees that, for every real t , also ϕt/τ is a legitimate chf.
About the infinitely divisible laws and their intimate relation with the Lévy processes there is a vast literature (see for
example [8,15], and for a short introduction [25]). In the following we will restrict us to centered laws, and we will justify
this choice in the subsequent sections. The law of the increment of the corresponding Lévy process then is [ϕ(u)](t−s)/τ and
its transition pdf is (9) with our – possibly non Gaussian – infinitely divisible chf. Then, following the procedure previously
outlined for the Wiener–Schrödinger equation, the wave function propagator is (8) with our new ϕ, and hence from (3) the
time evolution is ruled by

ψ(x, t) =
∫
+∞

−∞

dy
ψ(y, s)
2π

∫
+∞

−∞

[ϕ(u)]i(t−s)/τ e−iu(x−y)du.

The differential equation can then be deduced as in the Gaussian case and is

i∂tψ(x, t) =
∫
+∞

−∞

dy
ψ(y, s)
2π

∫
+∞

−∞

−
ln[ϕ(u)]
τ

[ϕ(u)]i(t−s)/τ e−iu(x−y)du

= −
1
τ
η(∂x)ψ(x, t) (10)
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where now ln[ϕ(∂x)] = η(∂x) is a pseudodifferential operator with symbol η(u) that is defined through the use of the Fourier
transforms [10,11,26,27]. A pseudodifferential operator L on a suitable set of functions h(x), is associated with a function
`(u) called the symbol of L (we indeed symbolically also write L = `(∂x)), and operates in the following way: if the Fourier
transform of h is

ĥ(u) =
1
√
2π

∫
+∞

−∞

h(x) e−iuxdx (11)

then

(Lh)(x) = `(∂x)h(x) =
1
√
2π

∫
+∞

−∞

`(u) ĥ(u) eiuxdu. (12)

Remark that the definition (11) of Fourier transformof a function h(x) is traditionally slightly different from the definition (7)
of the chf of a law. This definition entails that the norm of a square integrable function is preserved in the transformation:
when dealing with Schrödinger equations this means that the Fourier transforms of normalized wave functions still are
normalized wave functions for the conjugate observables. When the symbol is a polynomial of degree n

`(u) =
n∑
k=1

ak(iu)k

then L is a simple differential operator of order n

L =
n∑
k=1

ak∂kx

as can be easily seen from the properties of the Fourier transforms. However, even if `(u) is not a polynomial, Eq. (12) defines
an operator which is called pseudodifferential. We will now analyze the properties and the role of our pseudodifferential
operator η(∂x) to see if (10) can reasonably be considered as a generalized Schrödinger equation.

3. Semigroups and generators

Let X(t) be a one dimensional Lévy process, namely a processwith stationary and independent increments, and X(0) = 0
almost surely. The chf of its increments on a time interval1t then is [ϕ(u)]1t/τ where ϕ(u) is an infinitely divisible law, and
τ a time scale parameter (see for example Refs. [8,11] for details about Lévy processes). It is well known that η(u) = lnϕ(u)
is the lch of an infinitely divisible law if and only if it satisfies the Lévy–Khintchin formula [11]

η(u) = iγ u−
β2

2
u2 +

∫
R

[
eiux − 1− iuxI[−1,1](x)

]
ν(dx) (13)

where γ , β ∈ R, IA is the indicator 0-1 function of the set A, and ν( ·) is the Lévy measure of our infinitely divisible law,
namely a measure on R such that ν({0}) = 0 and∫

R
(x2 ∧ 1) ν(dx) < +∞.

The integrals involving the Lévy measure ν should then in general be calculated on R−{0} to take into account its behavior
near y = 0. The triplet (γ , β, ν) completely determines the Lévy process and is also called its characteristic triplet. There are
a few equivalent formulations of this important result [8]. In particular the truncation function I[−1,1](x) can be chosen in
several different ways; this choice, however, will affect only the value of γ , while β and ν would be left unchanged.
To every Lévy process is associated a semigroup (Tt)t≥0 acting on the spaceD of themeasurable, bounded functions [11]:

if f ∈ D , we have (Tt f ) (x) = E [f (X(t)+ x)], where E is the expectation. The infinitesimal generator A of the semigroup
(see Ref. [11] p. 131) is now defined on the domain of the functions f ∈ D such that the limit in norm

Af = lim
t→0+

Tt f − f
t

exists. It can be proved (see Ref. [11] p. 139) that the generators of a Lévy process are pseudodifferential operators that can
be extended to the Schwartz space S of the rapidly decreasing functions. In particular it can be proved that the symbol of A
is nothing else than η(u), namely A = η(∂x), and that from the Lévy–Khintchin formula (13) we have

[η(∂x)f ](x) = γ (∂xf )(x)+
β2

2
(∂2x f )(x)+

∫
R

[
f (x+ y)− f (x)− y(∂xf )(x)I[−1,1](y)

]
ν(dy).

In other words our pseudodifferential operator η(∂x) of Eq. (10) is the generator of the underlying Lévy process, and thanks
to the Lévy–Khintchin formula it also has an explicit expression in terms of integro-differential operators.
The generator A = η(∂x) can finally be extended to L2(R) which is a Hilbert space, so that we can also discuss its self-

adjointness. In particular if X(t) is a Lévy process, then its infinitesimal generator A = η(∂y) will be self-adjoint in L2(R) if
and only if X(t) is centered and symmetric, namely if the symbol η(u) is real with
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η(u) = −
β2

2
u2 +

∫
R
(cos ux− 1) ν(dx) (14)

where ν(· ) is a symmetric Lévy measure (see Ref. [11] p. 154). A Lévy measure is symmetric when ν(B) = ν(−B) for every
Borel measurable set, where−B = {x;−x ∈ B}. As a consequence the self-adjoint generators of the centered and symmetric
Lévy processes enjoy the following simplified, integro-differential form

(Af )(x) = [η(∂x)f ](x) =
β2

2

(
∂2x f
)
(x)+

∫
R
[f (x+ y)− f (x)] ν(dy). (15)

It is also possible to show that−η(∂x) is not only self-adjoint, but also positive on L2(R) in the sense that for every f ∈ L2(R)
we have −(f , η(∂x)f ) ≥ 0 where (·, ·) is the usual scalar product on L2(R), and this is equivalent to say that the spectrum
of−η(∂x) lies entirely in [0,+∞).
We come back now to our proposed Lévy–Schrödinger equation. Let X(t) be a centered, symmetric Lévy process with

pdf and transition pdf : we know that there is a centered, infinitely divisible law with chf ϕ(u) = eη(u) such that the chf of
the stationary increments1X(t) = X(t +1t)− X(t) is

[ϕ(u)]1t/τ = eη(u)1t/τ

for a suitable time scale parameter τ . The transition pdf then is (9), so that by means of the substitution t ↔ it we get the
propagator G of Eq. (8). A wave function ψ then evolves following (10), and since our process is centered and symmetric
the generator η(∂x) is self-adjoint and has the integro-differential expression (15). That means that our proposed equation
takes the form

i∂tψ(x, t) = −
η(∂x)

τ
ψ(x, t) = −

β2

2τ
∂2xψ(x)−

1
τ

∫
R
[ψ(x+ y)− ψ(x)] ν(dy). (16)

When X(t) is a GaussianWiener process we know that η(u) = −β2u2/2 and A = η(∂x) =
β2

2 ∂
2
x . Then the process evolution

equation is reduced to the Fokker–Planck equation (4) with D = β2/2τ , and in this case (16) coincides with the usual
non relativistic, free Schrödinger equation. In fact this amounts to take the – self-adjoint and positive in L2(R) – (pseudo)
differential operator−h̄η(∂x)/τ = −h̄D∂2x as the kinetic energy operator.We propose here to extend this association also to
the case of nonGaussian Lévy processes. In fact the same kind of association has been proposed for the fractional Schrödinger
equations [20], albeit in a far more restricted perspective: that of the stable laws, which are a particular class of infinitely
divisible laws (see Section 4.3).
Notice that we will adopt here only the substitution t ↔ it , but we will not impose D = h̄/2m because our model is

not necessarily supposed to be some kind of generalized quantummechanics, but will rather describe a dynamical theory of
Lévy processes in the spirit of Nelson stochastic mechanics. If we introduce a constant α with the dimensions of an action
our proposed free Lévy–Schrödinger equation (16) becomes

iα∂tψ(x, t) = H0ψ(x, t) = −
α

τ
η(∂x)ψ(x, t)

= −α
β2

2τ
∂2xψ(x, t)−

α

τ

∫
R
[ψ(x+ y, t)− ψ(x, t)] ν(dy) (17)

where now the free hamiltonian operator H0 has the dimensions of an energy. This integro-differential hamiltonian H0 is
self-adjoint and positive on L2(R) so that it is a good kinetic energy operator. Everything that can be deduced about the usual
Schrödinger equation from the positivity and self-adjointness of H0 can also be of course extended to our Lévy–Schrödinger
equation (17). In particular the conservation of the probability in the sense that, if |ψ |2 plays the role of the position pdf,
then the norm ‖ψ‖2 will be constant. Because of the self-adjointness of η(∂x)will have indeed from (17)

d
dt
‖ψ(t)‖2 =

d
dt
(ψ(t), ψ(t)) = (∂tψ,ψ)+ (ψ, ∂tψ) =

(η(∂x)ψ,ψ)− (ψ, η(∂x)ψ)

iτ
= 0.

We could finally add a potential V (x) to (17) and get also a complete Lévy–Schrödinger equation

iα∂tψ(x, t) = Hψ(x, t) = −
α

τ
η(∂x)ψ(x, t)+ V (x)ψ(x, t) (18)

where the hamiltonian is now H = H0 + V .

4. Discussion and examples

The free Lévy–Schrödinger hamiltonian of equation (17) contains two parts: the usual kinetic energy − αβ2

2τ ∂
2
x related

to the Gaussian part of the process; and the jump part which is given by means of an integral with a symmetric Lévy
measure ν. Of course, depending on the nature of the underlying process, the Eq. (17) can contain these components in
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different mixtures. If the underlying process is purely Gaussian then the Lévy measure ν vanishes, almost every trajectory
of the underlying process will be continue, and (17) is reduced to the usual Schrödinger equation. To the other end of the
gamut, when the underlying noise has no Gaussian component its trajectories make jumps, β = 0, and we get a pure jump
Lévy–Schrödinger equation. In general both terms are present and, if for instance we introduce ω = 1/τ and choose α = h̄
and β2 = ατ/m, then (17) takes the form

ih̄∂tψ(x, t) = −
h̄2

2m
∂2xψ(x, t)− h̄ω

∫
R
[ψ(x+ y, t)− ψ(x, t)] ν(dy).

Here, for example, the integral jump term can be considered as a correction to the usual Schrödinger equation and itsweight,
the energy h̄ω, is at present a free parameter. In particular for β = 0 we get pure jump Schrödinger equations of the form

i∂tψ(x, t) = −ω
∫

R
[ψ(x+ y, t)− ψ(x, t)] ν(dy). (19)

Of course these remarks emphasize the fact that the explicit form of the Lévy–Schrödinger equation will depend on the
choice of the particular Lévy measure ν.

4.1. Comparison with other approaches

Wehave already recalled in the Section 1 that in the last few years several other lines of research have associated the Lévy
processeswith the Schrödinger equation. For instance in a series of papers [20] Laskin has developed a fractional Schrödinger
equation and the corresponding fractional quantum mechanics. As we will see in the subsequent Section 4.3 the fractional
calculus [19] needed to this approach is related to the use of background noises generated by stable Lévy laws, an important
subclass of the more general infinitely divisible laws.
The appeal of the stable distributions is justified by the properties of scaling and self–similarity displayed by the

corresponding processes, but it must also be remarked that these distributions show a few features that partly impair their
usefulness as empirical models. First of all the non gaussian stable laws always have infinite variance. Then the range of the
x decay rates of the probability density functions cannot exceed x−3, and this too introduces a particular rigidity in these
models. This makes them rather suspect as a realistic tool and prompts the introduction either of fractional measures of
the distribution dispersion, or of truncated stable distributions which, however, are no longer stable. On the other hand the
divergence of the second moment means that these processes represent signals with infinite average instantaneous power,
and – from a mathematical standpoint – that they are not square integrable processes so that they cannot take advantage
of all the geometrical structures present in an L2 Hilbert space.
The more general Lévy processes instead are generated by infinitely divisible laws and do not necessarily show these

disturbing features, but they can be more difficult to analyze and to simulate (as for example in the case of the Student
process [28–30]). Besides the fact that they do not have natural scaling properties, the probability density function of their
increments could be explicitly known only at one time instant. In fact, while their time evolution can always be explicitly
given in terms of characteristic functions, theirmarginal densitiesmay not be calculable. This is a feature, however, that they
sharewithmost stable processes, since the probability density functions of the non gaussian stable laws are explicitly known
in terms of elementary functions only in few cases. On the other hand some new applications in the physical domain for
Lévy, infinitely divisible but not stable processes begin to emerge: in particular the statistical characteristics of some recent
model of the collective motion in the charged particle accelerator beams seem to point exactly in the direction of some kind
of Student infinitely divisible process [6,31]. It should be stressed again, moreover, that there is another physically relevant
case that can be associated with a Lévy non stable noise: that of the relativistic Schrödinger equation. This apparently shows
that there are significant models to be found outside the domain of the more popular stable distributions.
The relevance of this last remark, on the other hand, has been well understood by De Angelis [21] and by Garbaczewski

and his coworkers [22] who in several papers have analyzed the possibility of using a wider spectrum of infinitely
divisible distributions and of the corresponding Schrödinger equations. In particular the focus of their interest has been
the relativistic Schrödinger equation that – as will be analyzed in the subsequent sections – can be associated to a subclass
of selfdecomposable laws. The interest of this choice is apparent since it is connected to the well known problem of the
single–particle, probabilistic interpretation of the Klein–Gordon equation. On the other hand the authors in Ref. [22] again
and again point out that their approach is not coincidentwith that of the Nelson stochasticmechanics, but rather is inscribed
in what is known as the Schrödinger problem: that of deducing the probabilistic interpolation (a stochastic process also
known as Schrödinger bridge, see for example Ref. [32] and references quoted therein) consistent with a given pair of
boundarymeasure data at a fixed initial and terminal time instants t1 < t2. In this framework Garbaczewski analyzes several
questions connectedwith themarkovianity of the interpolating process and, to do that, he takes a special care in elaborating
explicit examples of a Cauchy–Schrödinger dynamics. As it is well known the Cauchy laws are themost tractable case of non
Gaussian, stable laws, and hence the generators of the associated Lévy processes fall in the class of the pseudodifferential,
fractional operators mentioned earlier. Remember also that the Cauchy law is the prototype of the non Gaussian, stable
laws with infinite variance. It is important then to extend our stochastic analysis also to the classes of non stable, infinitely
divisible laws, and in the subsequent sections we will give an overview of the possible, calculable examples of these laws
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beyond the Cauchy and the Relativistic case. In particular we will focus our attention on a few explicit examples of laws,
namely theVarianceGamma, the Student and the compound Poisson lawswhich are not considered in the previously quoted
papers. On the other hand the mentioned possible applications of the Lévy–Schrödinger equation in domains different from
the quantum mechanics, will qualify this model as a general dynamical theory of the Lévy processes, in the same spirit of
the Nelson stochastic mechanics.
In the Laskin papers [20], finally, a generalized form of Feynman path integrals has been used to discuss the meaning

of the fractional propagators: in particular the amplitudes associated with the Feynman paths have been generalized by
substituting the non Gaussian, stable pdf ’s to the usual Gaussian laws. In the momentum representation, for example, the
fractional kernel has just a term |p|λ (0 < λ ≤ 2) instead of the term p2 of the Feynman kernel: namely the Gaussian lch u2
has been replaced by the stable |u|λ (see Section 4.3). This line of reasoning can entirely be transferred here, because our
generalized, infinitely divisible propagators (8) can also be expressed in term of Feynman integrals by generalizing the path
amplitudes to infinitely divisible pdf ’s. In particular the stable lch |u|λwill just be replaced by a generalized infinitely divisible
η(u). The very nature of the underlying Lévy processes would entail the coherence of this approach. Here however we will
not elaborate this point and we will take for granted this association between generators and kinetic energy operators in
order to establish the most general form of the free Lévy–Schrödinger equation and then discuss its first consequences.

4.2. Stationary free solutions

Let us consider first the stationary solutions of (17): taking

ψ(x, t) = e−iEt/αφ(x), iα∂tψ(x, t) = Eψ(x, t)

we have that the spatial part φ(x)will be solution of

H0φ(x) = −
αβ2

2τ
φ′′(x)−

α

τ

∫
R
[φ(x+ y)− φ(x)] ν(dy) = Eφ(x). (20)

For the plane wave solutions

φ(x) = e±iux

and because of the symmetry of the Lévy measure ν, Eq. (20) becomes

Eφ(x) =
[
−
αβ2

2τ
u2 −

α

τ

∫
R
(e±iuy − 1) ν(dy)

]
φ(x)

=
α

τ

[
β2u2

2
−

∫
R
(cos uy− 1) ν(dy)

]
φ(x) = −

α

τ
η(u)φ(x)

and hence it is satisfied when between E and u the following relation holds

E = −
α

τ
η(u).

Here u is a wave number, while we are used to look for a relation between energy E and momentum p. If then we posit
p = αu the energy–momentum relation for our free Lévy–Schrödinger equation is

E = −
α

τ
η
( p
α

)
. (21)

4.3. Some classes of infinitely divisible laws

We will explore in the subsequent sections a few examples of Lévy–Schrödinger equations associated with Lévy
processes. For a short summary of the concepts used here see for example Ref. [25]. To begin with we will consider the
chf ’s, Lévymeasures and infinitesimal generators of centered, symmetric, infinitely divisible laws so that (14) and (15) hold.
The form of the Lévy measure ν is here instrumental to explicitly show how the pseudo-differential generator η(∂x)works.
It would then be useful to list several classes of infinitely divisible laws in a growing order of generality:

1. Stable laws: here we have [8,10]

η(u) = −
(a|u|)λ

λ
; 0 < λ ≤ 2, (22)

with the important particular cases

η(u) =
{
−a2u2/2 Gauss law (λ = 2);
−a|u| Cauchy law (λ = 1).
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Stable laws are selfdecomposable and hence their Lévy measures are absolutely continuous [8,10] so that ν(dx) =
W (x) dxwith Lévy density

W (x) =
B
|x|λ+1

, B =


0 λ = 2;
a/π λ = 1;

−
aλ

2λ cos λπ2 0(−λ)
λ 6= 1, 2.

(23)

The infinitesimal generator, which in the Gauss case (λ = 2) simply is

a2

2
(∂2x f )(x),

for 0 < λ < 2 becomes the pseudo-differential operator

[η(∂x)f ](x) = −
1
√
2π

∫
+∞

−∞

(a|u|)λ

λ
eiux̂f (u) du = B

∫
+∞

−∞

f (x+ y)− f (x)
|y|λ+1

dy

which can also be symbolically expressed in terms of the fractional derivatives [19]

(∂λx f )(x) = −
1
√
2π

∫
+∞

−∞

|u|λeiux̂f (u) du

= −
1
√
2π

∫
+∞

−∞

(−∂2x )
λ/2eiux̂f (u) du =

[
−(−∂2x )

λ/2f
]
(x). (24)

The Cauchy case is discussed also in Ref. [22].
2. Selfdecomposable (non stable) laws: they are an important sub-family of infinitely divisible laws. Two examples are (for
details and other examples see Refs. [25,29])

η(u) =
{
−λ ln(1+ a2u2), Variance-Gamma (λ > 0);
1−

√
1+ a2u2, Relativistic quantum mechanics

which have no Gaussian part (β = 0 in the Lévy–Khintchin formula) and produce pure jump processes. Their Lévy
measures have densities [25,29]

W (x) =
{
λ|x|−1e−|x|/a VG;
(π |x|)−1K1(|x|/a) Relativistic q.m.

where Kλ(z) is a modified Bessel function. Remark that, while for the VG we can explicitly write the pdf

q(x) =
2

a 2λ0(λ)
√
2π

(
|x|
a

)λ− 12
K
λ− 12

(
|x|
a

)
we have no elementary expressions for the Relativistic q.m. pdf

q(x) =
1
2π

∫
+∞

−∞

e1−
√
1+a2u2eiuxdu

which can then be calculated only numerically. There is finally at least another important family of selfdecomposable
laws that has attracted considerable attention in recent years [28–30] and deserves to be mentioned here: the Student
laws. As is known their lch’s are not elementary (λ > 0)

η(u) = ln
[
2(a|u|)λ/2Kλ/2(a|u|)
2λ/20(λ/2)

]
where 0(z) is the Euler Gamma function, but their pdf are comparatively simpler than the previous ones

q(x) =
1

a B(1/2, λ/2)

(
1+

x2

a2

)−λ/2
where B(x, y) is the Euler Beta function. What makes the corresponding Lévy process (the Student process) a harder nut
to crack than, for example, the VG process is the fact that, even if both the Student and the VG distributions are not stable,
the family of the VG laws is closed under convolution, while the Student family is not. This means that in a VG process
the marginals always are VG distributions, while in the Student case the marginals are explicitly known only at one time
instant. It is worth noting, however, that to write down the corresponding Lévy–Schrödinger equation we do not use
a detailed description of the underlying process: we just need to know the lch of the generating law η(u) and its Lévy
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densityW (x). The Student process has been recently analyzed [29] in the case λ = 3 where the lch and the pdf have the
elementary expressions

η(u) = −a|u| + ln(1+ a|u|), q(x) =
2
aπ

(
1+

x2

a2

)−2
(25)

and the density of the Lévy measure has been explicitly calculated:

W (x) =
a
πx2

[
1−
|x|
a

(
sin
|x|
a
ci
|x|
a
− cos

|x|
a
si
|x|
a

)]
(26)

where ci(x) and si(x) are the cosine and sine integral functions

ci(x) = −
∫
+∞

x

cos t
t
dt si(x) = −

∫
+∞

x

sin t
t
dt.

3. Infinitely divisible (non selfdecomposable) laws: The classical example of an infinitely divisible, non selfdecomposable law
is the Poisson law of intensity λ, but the corresponding Lévy process would not be symmetric. If however we take the
chf χ(u) of a centered, symmetric law, then the corresponding compound Poisson processwill be centered and symmetric
with lch

η(u) = λ (χ(u)− 1) .

In the analysis of the corresponding Lévy measure wemust remember that nowwe can no longer take for granted that ν
is absolutely continuous. For example if the jump size can take only two values±a (a > 0) with equal probabilities 1/2,
then the chf χ(u) = cos au has no pdf, η(u) = λ(cos au− 1), and ν(dx) = λF(dx)where the cumulative distribution

F(x) =
Θ(x− a)+Θ(x+ a)

2
(27)

is a symmetric, two-steps function, andΘ(x) is the 0–1Heaviside function. If on the other handχ is a lawwith a pdf g(x),
it is possible to show that also the Lévy measure ν is absolutely continuous with a density

W (x) = λg(x).

This completely specify the associated Lévy process on the basis of the Poisson intensity λ, and of the law of the jump
sizes.

4.4. Examples of Lévy–Schrödinger equations

Wecannowanalyze a fewexamples of Lévy–Schrödinger equations based on the laws listed above, by putting in evidence
their integro-differential form and the energy momentum relations associated to every particular choice.
1. Non relativistic, quantum, free particle: this is the well known case of the Gaussian Wiener process with η(u) = −β2u2/2
giving rise to the usual Schrödinger equation (1) for a suitable identification of the parameters. In this case the
energy–momentum relation (21) is

E = −
α

τ

(
−
β2

2
p2

α2

)
=

β2

2ατ
p2

and with α = h̄ and β2 = ατ/mwe get as usual

E =
p2

2m
, p = h̄u.

2. Relativistic, quantum, free particle: it is important to remark at this point that there is a pure jump Lévy process which
is connected to the relativistic Schrödinger equation, in the same way as the Wiener process is connected to the non
relativistic Schrödinger equation. Take the non stable, selfdecomposable lawη(u) = 1−

√
1+ a2u2, anduse the following

identifications
α

τ
= mc2, a =

h̄
mc
, p = h̄u

to find from (21)

E = −mc2η(u) =
√
m2c4 + p2c2 −mc2 (28)

which is the relativistic total energy less the rest energy mc2: namely the kinetic energy. The corresponding
Lévy–Schrödinger equation is now

ih̄∂tψ(x, t) =
[√
m2c4 − c2 h̄2 ∂2x −mc

2
]
ψ(x, t)
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and it is discussed also in Ref. [22]. Since the constant −mc2 can be reabsorbed by means of a phase factor eimc
2t/h̄, the

wave equation finally is

ih̄∂tψ(x, t) =
√
m2c4 − c2 h̄2 ∂2x ψ(x, t) (29)

which is the simplest form of a relativistic, free Schrödinger equation [33]. It is interesting to note that the Lévy process
behind the relativistic equation (29) is a pure jump process with an absolutely continuous Lévy measure with pdf

W (x) =
1
π |x|

K1

(
|x|
a

)
=

1
π |x|

K1

(
mc|x|
h̄

)
so that Eq. (29) can also be written as

ih̄∂tψ(x, t) = −mc2
∫

R

ψ(x+ y, t)− ψ(x, t)
π |y|

K1

(
mc|y|
h̄

)
dy.

From the form of the relativistic energy (28) also the usual relativistic corrections to the classical energy–momentum
relation for small values of p/c follow:

E = mc2
(√
1+

p2

m2c2
− 1

)
=
p2

2m
−

p4

8m3c2
+ o(p5).

Finally if we consider E = H(p) as the Hamiltonian function of a relativistic free particle from the Hamilton equations
we get

q̇ = ∂pH =
p
m

1√
1+ p2/m2c2

and here too we can see the relativistic correction to the classical kinematic relation p = mq̇.
3. Variance-Gamma laws: for the particular case λ = 1

2 we have

η(u) = −
1
2
ln(1+ a2u2), q(x) =

1
aπ
K0

(
|x|
a

)
, W (x) =

e−|x|/a

2|x|
.

The Variance-Gamma processes are pure jump processes with no Gaussian part in the Lévy–Khintchin formula (13)
(β = 0), so that the Lévy–Schrödinger equation becomes

iα∂tψ(x, t) = −
α

τ

∫
R

ψ(x+ y, t)− ψ(x, t)
2|y|

e−|y|/ady.

By choosing

α =
ma2

τ
, p =

ma2

τ
u (30)

we have the following energy–momentum relation (for pτ/ma→ 0)

E =
ma2

2τ 2
ln
(
1+

τ 2p2

m2a2

)
=
p2

2m
−

τ 2

2ma2
p4

m2
+ o(p5)

while with the identification E = H(p)we can also recover the kinematic relations between p and q̇:

q̇ =
p/m

1+ τ2p2

a2m2

=
p
m
−
τ 2p3

a2m3
+ o(p4).

It is apparent then that again these equations are corrections to the classical relations.
4. Student laws: also the Student processes are pure jump processes with no Gaussian part in the Lévy–Khintchin formula,
and for λ = 3 the pdf, lch and Lévy density are listed in (25) and (26), so that the Lévy–Schrödinger equation is

iα∂tψ(x, t) = −
α

τ

∫
R

ψ(x+ y, t)− ψ(x, t)
πy2

a
[
1−
|y|
a

(
sin
|y|
a
ci
|y|
a
− cos

|y|
a
si
|y|
a

)]
dy.

If then we take (30) the energy–momentum relations become (with pτ/ma→ 0)

E =
a|p|
τ
−
ma2

τ 2
ln
(
1+
|p|τ
ma

)
=
p2

2m
−
τ |p|3

3m2a
+ o(|p|3)

and the kinematical ones

q̇ =
p/m

1+ τ |p|
am

=
p
m
−
|p|
p
τp2

am2
+ o(p2).
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As in the case of all the other selfdecomposable laws, here toowe find that thesemechanical relations are just corrections
to the classical equations when p is small with respect toma/τ .

5. Stable laws: for the non Gaussian stable laws we have the lch (22) and the Lévy measure pdf (23) where 0 < λ < 2.
With a couple of exception (Cauchy and Lévy laws), however, there are no elementary formulas for their pdf ’s q(x). Their
Lévy–Schrödinger equation is nothing else than the so called fractional Schrödinger equation [20] expressed also in terms
of the fractional derivatives (24)

iα∂tψ(x, t) =
α

τ
∂λx ψ(x, t) =

α

τ

aλ

2λ cos λπ2 0(−λ)

∫
R

ψ(x+ y, t)− ψ(x, t)
|y|λ+1

dy

and with the identifications (30) its energy–momentum relations become

E =
α

τ

(a|u|)λ

λ
=
2λ/2

λ

(
ma2

τ 2

)1−λ/2 ( p2
2m

)λ/2
. (31)

This however looks not as a correction of the classical formula as in the other cases considered, but rather as a completely
different formula. The same can be said of the kinematic relations between q̇ and pwhich are now

q̇ =
p
m

(
p2τ 2

m2a2

)λ/2−1
. (32)

The relations (31) and (32) are still another reason to deem not advisable to restrict an inquiry on Lévy processes and
Schrödinger equation only to the family of stable processes.

6. Compound Poisson process: for the symmetric, compound Poisson process with the Lévy measure (27) the pure jump
Lévy–Schrödinger equation (19) greatly simplifies as

i∂tψ(x, t) = −
λω

2
[ψ(x+ a, t)− 2ψ(x, t)+ ψ(x− a, t)] .

We can now show that the usual Schrödinger equation (1) can always be recovered as a limit case of this
Poisson–Schrödinger equation. If ψ is twice differentiable in x, we know that for a→ 0+ we have

ψ(x± a, t) = ψ(x, t)± a∂xψ(x, t)+
a2

2
∂2xψ(x, t)+ o(a

2)

and hence

i∂tψ(x, t) = −
λωa2

2
∂2xψ(x, t)+ λ o(a

2).

Now, if, as a→ 0+, also λ→+∞ in such a way that λa2 → b2, then we have

i∂tψ(x, t) = −
ωb2

2
∂2xψ(x, t)

where ωb2/2 has the dimensions of a diffusion coefficient: namely, in the limit, we get a Wiener–Schrödinger equation
of the type (1). This procedure, for instance, could also be used to introduce small corrections in the coefficient h̄2 /2m
of a Schrödinger equation. Remark that this ability of the compound Poisson process to approximate Gaussian processes
is only a consequence of a much more general behavior: in fact every Lévy process (not only the Gaussian one) can be
pathwise approximated by a suitable sequence of compound Poisson processes (for details see Ref. [8] p. 342).

4.5. Perfectly rigid walls

An example of solution of the complete Lévy–Schrödinger equation (18) can easily be obtained in the case of a system
confinedbetween twoperfectly rigidwalls symmetrically located at x = ±L/2. Thediscussion is similar to that of Section 4.2,
but for the boundary conditions which now require that the solutions vanish at x = ±L/2. As a consequence the solutions
are the usual trigonometric functions with discrete eigenvalues

En = −
α

τ
η(un), un =

nπ
L
, n = 1, 2, . . . .

The form of the eigenvalue sequence will depend on the lch η. If the underlying process is a Wiener process we have
η(u) = −β2u2/2, and hence

En =
αβ2π2

2τL2
n2
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which, with the identifications α = h̄ and β2 = ατ/m, coincides with the usual quantum mechanical result. On the other
hand for an underlying Variance-Gamma noise we find

En =
λα

τ
ln
(
1+

a2π2

L2
n2
)
.

Finally for a symmetric, compound Poisson noise with intensity λ and equiprobable jump sizes±awe get

En =
λα

τ

(
1− cos

aπn
L

)
.

Apparently this no longer is a monotone increasing sequence: En goes up and down between 0 and 2αλ/τ . If a/L is rational
the sequence is periodic; on the other hand when a/L is irrational there are no coincident eigenvalues in the sequence, so
that the En will fill the bandwidth between 0 and 2αλ/τ .

5. Conclusions

We have discussed the possibility of generalizing the relation between Brownian motion and the Schrödinger equation
by associating the kinetic energy of a physical system with the generator of a symmetric Lévy process, namely to a
pseudodifferential operator whose symbol is the lch of an infinitely divisible law. This amounts to suppose, then, that this
new Lévy–Schrödinger equation is based on an underlying Lévy process that can have both Gaussian (continuous) and non
Gaussian (jumping) components. In recent years other extensions of the Schrödinger equation have been put forward in
the same spirit of our Lévy–Schrödinger equation. In particular we refer to several papers about fractional Schrödinger
equations [20] that explored the use of fractional calculus in a kind of generalized quantummechanics. As it is clear from the
previous sections, however, this is the particular case when our underlying process is stable. The extension to the infinitely
divisible, non stable processes, on the other hand, is physically meaningful because there are significant cases that are in
the domain of our Lévy–Schrödinger picture, without being in that of the fractional Schrödinger equation. In particular, as
shown also in Ref. [22], the simplest form of a relativistic, free Schrödinger equation can be associated with a particular type
of selfdecomposable, non stable process acting as background noise. Moreover in many instances of the Lévy–Schrödinger
equation the new energy–momentum relations can be seen as corrections to the classical relations for small values of certain
parameters. It must be remembered moreover that our model is not tied to the use of processes with infinite variance: the
variances can be chosen to be finite even in a purely non Gaussian model – as in the case of the relativistic, free Schrödinger
equation – and can then be used as a legitimate measure of the dispersion. Finally let us recall that a typical non stable,
Student Lévy noise seems to be suitable for applications in themodels of halo formation in intense beam of charged particles
in accelerators [6,29,31].
It is important now to explicitly give in full detail a discussion of the processes associated with the wave functions of the

Lévy–Schrödinger equation, namely of a generalized stochastic mechanics. In our opinion this will be possible because the
techniques of the stochastic calculus applied to Lévy processes are today in full development [8–12], and at our knowledge
there is no apparent, fundamental impediment along this road. At present we have confined ourselves to give heuristic
arguments based on both the identification of the self–adjoint process generators as the kinetic energy operators, and
the usual analytic continuation of the time variable t to its imaginary counterpart it . In an equivalent vein it would be
possible to follow the Feynman integral road in analyzing the propagators (8) in term of integrations over paths with
amplitudes deduced now from some kind of infinitely divisible distribution. It will be important now try to generalize the
Nelson stochastic mechanics by adding suitable dynamics to our Lévy processes, and by studying the Lévy–Nelson processes
associated with the wave functions: this will be the subject of a future paper.
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