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Starting from the relation between the kinetic energy of a free Lévy–Schrödinger particle
and the logarithmic characteristic of the underlying stochastic process, we show that it is
possible to get a precise relation between renormalizable field theories and a specific Lévy
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1. Introduction and Notations

In this note we adopt the spacetime relativistic approach of Feynman’s propaga-

tors (for bosons and fermions) instead of the canonical Lagrangian–Hamiltonian

quantized field theory. The rationale for this choice is that for the development

of our basic ideas the former alternative is better suited to exhibit the connection

between the propagator of quantum mechanics and the underlying Lévy processes.

More precisely, the relativistic Feynman propagators are here linked to a dynam-

ical theory based on a particular Lévy process: a point, already discussed in a

previous paper,1 which is analyzed thoroughly here with the purpose of deducing

its consequences for the basic interactions among the fundamental constituents,

namely quarks, leptons, gluons, photons etc. To this end, we first recall that a Lévy

1250034-1

http://dx.doi.org/10.1142/S0217732312500344
mailto:cufaro@ba.infn.it
mailto:pusterla@pd.infn.it


March 9, 2012 15:37 WSPC/146-MPLA S0217732312500344 2–12

N. Cufaro Petroni & M. Pusterla

process is a stochastic process X(t), t ≥ 0 on a probability space (Ω,F ,P) such

that

• X(0) = 0, P-q.o.

• X(t) has independent and stationary increments: for each n and for every choice

of 0 ≤ t1 < t2 < · · · < tn < +∞ the increments X(tj+1)−X(tj) are independent

and X(tj+1)−X(tj)
d
= X(tj+1 −X(tj);

• X(t) is stochastically continuous: for every a > 0 and for every s

lim
t→s

P(|X(t)−X(s)| > a) = 0 .

To simplify the notation we will consider in the following only one-dimensional Lévy

processes (an n-dimensional extension, however, would not be a very difficult task):

it is well known2–4 that all its laws are infinitely divisible, but we will be mainly

interested in the nonstable (and in particular non-Gaussian) case. In other words,

the characteristic function of the process ∆t-increment is [ϕ(u)]∆t/τ where ϕ is

infinitely divisible, but not stable,a and τ is a time scale parameter. The transition

probability density p(2|1) = p(x2, t2|x1, t1) of a particle moving from the spacetime

point 1 to 2 is then

p(2|1) = 1

2π

∫ +∞

−∞

du[ϕ(u)](t2−t1)/τe−iu(x2−x1) . (1)

In analogy with the nonrelativistic Wiener case, we then obtain for the motion of

a free particle the Feynman propagator K(2|1) = K(x2, t2|x1, t1) as

K(2|1) = 1

2π

∫ +∞

−∞

du[ϕ(u)]i(t2−t1)/τe−iu(x2−x1) (2)

and the corresponding wave function evolution is

ψ(x, t) =

∫ +∞

−∞

dx′ K(x, t|x′, t′)ψ(x′, t′) . (3)

From (2) and (3) we easily obtain1

i∂tψ = − 1

τ
η(∂x)ψ ,

where η = logϕ and η(∂x) is a pseudodifferential operator with symbol3,5–7 η(u)

which plays the role of the generator of the semigroup Tt = etη(∂x)/τ operating on

a Banach space of measurable, bounded functions.3,5–7

It is very well known,2,3 on the other hand, that ϕ represents an infinitely

divisible law if and only if η(u) = logϕ(u) satisfies the Lévy–Khintchin formula

aA law ϕ is said to be infinitely divisible if for every n there exists a characteristic function ϕn

such that ϕ = ϕn
n; on the other hand, it is said to be stable when for every c > 0 it is always

possible to find a > 0 and b ∈ R such that eibuϕ(au) = [ϕ(u)]c. Every stable law is also infinitely
divisible.
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η(u) = iγu− β2u2

2
+

∫

R

[eiux − 1− iuxI[−1,1](x)]ν(dx) , (4)

where γ, β ∈ R, I[−1,1](x) is the indicator of [−1, 1], and ν(dx) is a Lévy measure,

namely a measure on R such that ν({0}) = 0 and
∫

R

(x2 ∧ 1)ν(dx) < +∞ .

In the most common cases of centered and symmetric laws, Eq. (4) simplifies in

η(u) = −β
2u2

2
+

∫

R

(cosux− 1)ν(dx) (5)

and η(u) becomes even and real. As a consequence the corresponding operator

η(∂x) is self-adjoint and acts on propagators and wave functions according to the

Lévy–Schrödinger integro-differential equation

i∂tψ(x, t) = − 1

τ
η(∂x)ψ(x, t) = −β

2

2τ
∂2xψ(x, t)

− 1

τ

∫

R

[ψ(x+ y, t)− ψ(x, t)]ν(dy) . (6)

The integral term accounts for the jumps in the trajectories of the underlying

stochastic process, while an action α with β2 = ατ/m weights the usual differen-

tial term of the Schrödinger equation. For β = 0, a pure jump Lévy–Schrödinger

equation is obtained

i∂tψ(x, t) = − 1

τ

∫

R

[ψ(x+ y, t)− ψ(x, t)]ν(dy) . (7)

2. Stationary Solutions for the Free Particle

The free equation(6) admits simple stationary solutions: if we consider

ψ(x, t) = e−iE0t/αφ(x) , α =
mβ2

τ

we then have

E0φ(x) = − α2

2m
φ′′(x) − α

τ

∫

R

[φ(x + y)− φ(x)]ν(dy) , (8)

and for a plane wave φ(x) = e±iux from (5) — namely with a symmetric Lévy noise

— we get

E0φ(x) = −α
τ

[

−β
2u2

2
+

∫

R

(e±iuy − 1)ν(dy)

]

e±iux

= −α
τ

[

−β
2u2

2
+

∫

R

(cos uy − 1)ν(dy)

]

φ(x) = −α
τ
η(u)φ(x)
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which is satisfied when E0 = −αη(u)/τ . Hence, by taking p = αu as a momentum

variable, we obtain1 the relevant equation

E0 = −α
τ
η

(

p

α

)

(9)

which connects the kinetic energy of a forceless particle to the logarithmic charac-

teristic of a Lévy process.

3. Relativistic Quantum Mechanics

Let us now take in particular the nonstable law (see, for example, Ref. 3)

η(u) = 1−
√

1 + a2u2 . (10)

With the following identification of the parameters

α = ~ ,
~

τ
= mc2 , a =

~

mc
, p = ~u ,

we are led to the formula

E0 = −mc2η
(

p

~

)

= E −mc2 =
√

m2c4 + p2c2 −mc2 (11)

which is the well-known relativistic kinetic energy for a particle of mass m. The

Schrödinger equation of a relativistic free-particle is then easily obtained from (11)

by reinterpreting as usual E and p respectively as the operators i~∂t and −i~∂x

i~∂tψ(x, t) =
√

m2c4 − ~2c2∂2xψ(x, t) . (12)

It is easy to check that this derives also from (6) after absorbing the mass energy

term −mc2 of (11) into a phase factor eimc2t/~. Remark that in three dimensions(12)

would read

i~∂tψ(x, t) =
√

m2c4 − ~2c2∇2ψ(x, t) . (13)

It has been shown3,8,9 that the Lévy process behind Eqs. (12) and (13) is a pure

jump process1,3 with an absolutely continuous Lévy measure ν(dx) =W (x)dx such

that

W (x) =
1

π|x|K1

( |x|
a

)

=
1

π|x|K1

(

mc

~
|x|

)

(14)

(Kν are the modified Bessel functions10), that in three dimensions becomes

W (x) =
1

2aπ2|x|2K2

( |x|
a

)

=
mc

2~π2|x|2K2

(

mc

~
|x|

)

(15)
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while from (7), Eq. (12) takes the form

i~∂tψ(x, t) = −mc2
∫

R

ψ(x+ y, t)− ψ(x, t)

π|y| K1

(

mc

~
|y|

)

dy (16)

and in three dimensions is

i~∂tψ(x, t) = −mc2
∫

R3

ψ(x+ y, t)− ψ(x, t)

2π2|y|2
mc

~
K2

(

mc

~
|y|

)

d3y . (17)

From Eq. (13), by means of well-known standard procedures,11 one also derives

(always for the free particle) the Klein–Gordon and Dirac equations in three di-

mensions both for scalar, and for spinor wave functions ψ, namely respectively
(

�− m2c2

~2

)

ψ = 0 , (18)

(

iγµ∂
µ − mc

~

)

ψ = 0 . (19)

The corresponding Klein–Gordon and Dirac propagators in their turn satisfy the

inhomogeneous equations (here with ~ = c = 1)

(�2 −m2)KKG(2|1) = δ4(2|1) , (20)

(iγµ∂
µ
2 −m)KD(2|1) = iδ4(2|1) , (21)

with δ4(2|1) = δ(t2 − t1)δ
3(x2 − x1). Let us finally remark that these relativistic

quantum wave equations have been recently of particular interest12,13 also in the

field of quantum optical phenomena and of quantum information.

4. Infinite Divisibility-Preserving Modifications

From the relativistic kinetic energy E0 of a point particle of rest mass m

E0(p)

mc2
=

√

1 +
p2

m2c2
− 1 (22)

with the identifications

η = − E0

mc2
, u =

p

amc

we obtain

η(u) = 1−
√

1 + a2u2

which of course coincides with Eq. (10) extended to three dimensions. We take now

a class of transformations of η(u) characterized by the fact that they preserve the

infinite divisibility, while producing changes in the forceless particle equations of
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motion with respect to the usual ones (18) and (19). To this end we modify the

energy–momentum formula as follows:

E(p) = mc2

√

1 +
p2

m2c2
+ f

(

p2

m2c2

)

, (23)

where f is a possibly small dimensionless, smooth function of the relativistic scalar

p2/m2c2. Of course this modification entails that p2 no longer coincides with m2c2

since the standard energy–momentum relation is now changed into

p2 =
E2

c2
− p2 = m2c2 +m2c2f

(

p2

m2c2

)

. (24)

As we will see in the following, this also implies that the mass is no longer m: it

will take instead one or more values depending on the choice of f . As a matter of

fact, it could appear to be preposterous to introduce a function f of an argument

which after all is a constant (albeit different from 1). However, we will show that

this artifice will lend us the possibility of having both a mass spectrum, and a new

wave equation when, in the next section, we will quantize our classical relations.

Moreover, it will be argued in the following that we will choose f in such a way

that the corresponding modified logarithmic characteristic η will remain infinitely

divisible: a feature that is instrumental to keep a viable connection to a suitable

underlying Lévy process.

To see that, we first remark that (24) defines the total particle energy E in an

implicit form. To find it explicitly we first rewrite (24) in a dimensionless form as

p2

m2c2
= 1 + f

(

p2

m2c2

)

,

and then, by taking g(x) = x − f(x), we just observe that the former equation

requires that x be a solution of g(x) = 1, namely

g

(

p2

m2c2

)

=
p2

m2c2
− f

(

p2

m2c2

)

= 1 .

Note that f and g should be considered universal functions, and that the following

conditions hold

f(1) = 0 , g(1) = 1 .

If then g−1(1) represents one of the (possibly many) solutions of this equation, we

could write

p2

m2c2
= g−1(1) = x(g)

∣

∣

g=1

so that we have

p2 =
E2

c2
− p2 = m2c2g−1(1)
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which can be interpreted as a simple mass re-scaling, fromm to one of the (possibly

many) values M = m
√

g−1(1). The new Hamiltonian is then

E(p) =
√

m2c4g−1(1) + p2c2 =Mc2
√

1 +
p2

M2c2
(25)

and its kinetic part (by applying the same re-scaling also to the subtracted rest

mass term) is

E0(p) = E(p)−mc2
√

g−1(1) =Mc2
√

1 +
p2

M2c2
−Mc2 .

Hence the main consequence of our modification consists of a re-scaling of the mass

value (m→M) at a purely classical level. This fact is apparently welcome, because

its straightforward consequence is that the new associated logarithmic characteristic

η is trivially again infinitely divisible, and hence still produces acceptable Lévy

processes. But there is more: since g−1(1) can take several different real and positive

values, by means of our modification(23) we have introduced a mass spectrum: in

the rest frame of the particle we indeed have now

M =
Ecm

c2
= m

√

g−1(1) . (26)

5. Quantum Equations of Motion

From the modified energy formula one derives a relativistic Schrödinger equation

(for instance by means of the formal substitutions E → i~∂t and p → −i~∇):

i~∂tψ(x, t) = mc2

√

1− ~2

m2c2
∇

2 + f

(

�

m2c2

)

ψ(x, t) , (27)

where the square root pseudo-differential operator satisfies the constraints exposed

in Sec. 1. From (27) one easily obtains in the usual manner (from here on ~ = c = 1)

[

�−m2f

(

1

m2
�

)

−m2

]

ψ = 0 , (28)

[

�2 −m2f

(

1

m2
�2

)

−m2

]

KKG(2|1) = δ4(2|1) (29)

and, by standard methods,11 the modified Dirac spinor equations

[

iγµ∂
µ −m

√

1 + f

(

1

m2
�

)]

ψ = 0 , (30)

[

iγµ∂
µ
2 −m

√

1 + f

(

1

m2
�2

)

]

KD(2|1) = iδ4(2|1) . (31)
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In the momentum space (with Fourier transforms in four dimensions) these equa-

tions become much simpler: more precisely we have

KKG(p
2) =

1

p2 −m2[1 + f(p2/m2)] + iǫ
, (32)

KD(p2) =
1

γµpµ −m
√

1 + f(p2/m2) + iǫ
. (33)

We notice that KD(2|1) is in our case simply related to the KKG(2|1) (like in the

usual case) as

KD(2|1) = i[i∂/2 +m
√

1 + f(�2/m2)]KKG(2|1) . (34)

6. Phenomenology: Quark and Lepton Masses

Equations (29) and (31) generalize the well-known propagator equations (20) and

(21) deriving from QED and QCD at zeroth order (in the absence of interaction

terms). The Standard Modelb (SM) SUc(3) × SUL(2) × U(1) treats both strong

and electroweak interactions: within this scheme the modified η(u) leads to new

interesting consequences. We begin by considering the Feynman rules in perturba-

tion theory in the presence of the modified zeroth order propagator for both spin- 12
(quarks and leptons) and spin-1 (gluons, vector weak interacting bosons). The am-

plitude A for a fermion that propagates from vertex X to vertex Y , if expanded,

looks as follows: A = A(0) +A(1) +A(2) + · · · . The lowest order is

A(0) = Y
i

γµpµ −m
√

1 + f(p2/m2) + iǫ
X . (35)

bFor future developments we recall that the Lagrangian density of QCD is, up to gauge fixing
terms:

L = −
1

4
F a
µνF

µν
a +

∑

q

ψ̄
q
i [iγ

µ(Dµ)ij −mqδij ]ψ
q
j ,

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsfabcA

b
µA

c
ν , and the insertion of interaction terms is done with the

minimal interaction by substituting the simple derivative ∂µ with the covariant one Dµ where we
have respectively for QED and QCD

Dµ ≡ ∂µ − ieAµ ,

(Dµ)ij ≡ δij∂µ − igsT
a
ijA

a
µ .

Here gs is the QCD coupling constant, Ta
ij and fabc are the SU(3) color matrices and structure

constants respectively, and Aa
µ the eight Yang–Mills gluon fields; ψq

i are the Dirac four-spinors
associated with each quark field of color i and flavor q.
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It is then possible that the fermion emits and reabsorbs a virtual vector bosonc

from X to Y :

A(1) = 4πg2sY

∫

d4k
γµ

γρpρ −m
√

1 + f(p2/m2)

1

(p− k)2

× 1

kνγν −m
√

1 + f(k2/m2) + iǫ

γµ

γρpρ −m
√

1 + f(p2/m2)
X . (36)

We now choose f(x) in such a way that it makes the integral finite

C = 4πg2γµ
∫

d4k

γρkρ −m
√

1 + f(k2/m2) + iǫ

1

(p− k)2
γµ . (37)

One may notice that f(x) behaves as a smooth cutoff in a procedure of regulariza-

tion at each order in QCD (and QED). The integral C is an invariant of the form

C = Ã(p2)p/ + B̃(p2) and its integrand is also present as a factor in higher order

terms, thus producing convergence.

The search of poles of the fermion propagators can be done in the following

way14: one considers the contributions of the perturbative expansion of the ampli-

tude A(p2) (here we always understand f = f(p2/m2)):

A(p2) = Y

{

1

p/−m
√
1 + f

+
1

p/−m
√
1 + f

C
1

p/m
√
1 + f

+
1

v −m
√
1 + f

C
1

p/−m
√
1 + f

C
1

p/−m
√
1 + f

+ · · ·
}

X (38)

and using the formula

1

A−B
=

1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ · · · (39)

one obtains the approximate expression

A ≃ Y
1

p/−m
√
1 + f − C

X = Y
1

p/−m
√
1 + f − Ãp/− B̃

X (40)

and looks for possible poles which, after rationalizing Eq. (40), are solutions of the

equation

[1− Ã(p2)]2p2 −
[

m
√

1 + f(p2/m2) + B̃(p2)
]2

= 0 . (41)

cThe presence of γ (gamma) in the numerator of formulas (36) and (37) is typical of QED. More
elaborated numerators may be present in non-Abelian theories (in particular QCD); however they
appear totally unessential for our subsequent developments and purposes.
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6.1. Hypothesis for an approximate evaluation of the mass

spectrum

Let us now focus our attention on QCD. We may consider the approximation

Ã(p2) ≃ Ã(m2) and B̃(p2) ≃ B̃(m2) which follows from the assumption

Ã≪ 1 and B̃ ≪ m
√

1 + f(p2/m2) . (42)

We then obtain the equation

p2 =

[

m
√

1 + f(p2/m2) + B̃(m2)

1− Ã(m2)

]2

= m2
exp , (43)

where the experimental masses mexp are still represented in an implicit form. How-

ever, note that in the limit gs → 0, Ã and B̃ → 0 one achieves the equation

p2 = m2[1 + f(p2/m2)] (44)

which coincides with the classical equation (24). At this point we notice that the

simplest choice of f(x) that makes the integral C finite (integrand convergent) is a

polynomial of third degree:

f(x) = λ0 + λ1x+ λ2x
2 + λ3x

3 . (45)

Equation (44) then becomes

x− 1− f(x) = −λ3(x− 1)(x− x+)(x− x−) = 0 ,

(

x =
p2

m2

)

(46)

with

f(1) = 0 , λ0 = −λ1 − λ2 − λ3 , (47)

where

x± =
1

2λ3
(−λ2 − λ3 ±

√
∆) ,

∆ = (λ2 − λ3)
2 − 4λ1λ3 − 4λ23 + 4λ3

(48)

and we finally get

λ2
λ3

= −(1 + x+ + x−) , (49)

λ1 − 1

λ3
= x+ + x− + x+x− . (50)

From the previous formulas one achieves the following interesting result: the con-

vergence of C determines a possible phenomenological function f(x) that produces,

at least in a qualitative way, a mass spectrum of three fermion particles (quarks in

QCD).
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The connections with the possible experimental physical masses are M1 = m,

M2 = m
√
x+, M3 = m

√
x−. If the three poles in the free (zero order) propagator

are real and positive (with proper residues), with appropriate values of the λs, they

allow the interpretation of physical basic masses of fermions (quark or leptons)

belonging to the three different families of the Standard Model. To be more specific

we get two different propagators for quarks, one with charge − 1
3 (d, s, b quarks) and

another with charge + 2
3 (u, c, t quarks). Similarly for charged leptons (charge −1

and spin- 12 ) we get one propagator.

7. Conclusions

We have proposed a modification of the classical relativistic Hamiltonian that allows

the presence of several masses without changing its basic structure. This modifi-

cation does not affect the infinite divisibility of the laws that are at the basis of

the correspondence between stochastic processes and Lévy–Schrödinger equations.

However, we discovered that the mentioned modification suggests a reformulation

of the relativistic equations for wave functions and propagators in such a way that a

suitable choice of the background noise produces a convergence in the perturbative

contributions. To this purpose we remarked that a modification, with respect to

the one given by Eq. (11), of the logarithmic characteristic η(u), by the insertion of

a cutoff f(x), allows to proceed to regularization first, and then to renormalization

of the two-point function of QCD. There are three parameters in our phenomeno-

logical f(x) which is a third degree polynomial; the latter appears as the simplest

choice that produces convergence in the integrals representing high order contribu-

tions to the fermion and boson propagators. Such parameters create three different

poles in the zero-order propagators and allow the interpretation of a physical system

with three different masses under precise constraints on f(x). The masses might be

related to the three families of the Standard Model.
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