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Abstract The aim of this paper is extensively investigate the performance of the esti-
mators for the Greeks of multidimensional complex path-dependent options obtained
by the aid of Malliavin Calculus. The study analyses both the computation effort
and the variance reduction in the Quasi-Monte Carlo simulation framework. For this
purpose, we adopt the approach employed by Montero and Kohatsu-Higa to the multi-
dimensional case. The multidimensional setting shows the convenience of the Mallia-
vin Calculus approach over different techniques that have been previously proposed.
Indeed, these techniques may be computationally expensive and do not provide enough
flexibility for variance reduction. In contrast, the Malliavin approach provides a class
of functions that return the same expected value (the Greek) with different accuracies.
This versatility for variance reduction is not possible without the use of the generalized
integral by part formula of Malliavin Calculus. In the multidimensional context, we
find convenient formulas that permit to improve the localization technique, introduced
in Fournié et al. and reduce both the computational cost and the variance. Moreover,
we show that the parameters for the variance reduction can be obtained on the flight in
the simulation. We illustrate the efficiency of the proposed procedures, coupled with
the enhanced version of Quasi-Monte Carlo simulations as discussed in Sabino, for the
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numerical estimation of the Deltas of call, digital Asian-style and exotic basket options
with a fixed and a floating strike price in a multidimensional Black-Scholes market.
Given the fact that the gammas of a call option coincides, apart from a constant, with
the deltas of digital options, this setting also covers the analysis of formulas tailored
for the second order Greeks of call options.

Keywords Greeks · Risk-management · Quasi-Monte Carlo methods ·
Malliavin calculus

JEL Classification C02 · C15 · C64

1 Introduction and motivation

Risk-sensitivities, also called Greeks, are fundamental quantities for the risk-
management. Greeks measure the sensitivities of a portfolio of financial instruments
with respect to the parameters of the underlying model. Mathematically speaking, a
Greek is the derivative of a financial quantity with respect to (w.r.t.) any of the param-
eters of the problem. As these quantities measure risk, it is important to calculate them
quickly and with a small order of error. In general, the computational effort required for
an accurate calculation of sensitivities is often substantially greater than that required
for price estimation.

The problem of Greeks calculation can be casted as follows. Suppose that the finan-
cial quantity of interest is described by E [ψ (X (α)) Y ] (i.e., the price of a derivative
contract), where ψ : R → R is a measurable function and X and Y are two random
variables (r.v.s). The Greek, that we denote θ , is the derivative w.r.t. the parameter α:

θ(α) = ∂

∂α
E [ψ (X (α)) Y ] = E

[
∂

∂α
ψ (X (α)) Y

]
.

The most common of the Greeks are notably, Delta, Gamma, Vega, Theta, Rho. These
quantities are relatively simple to calculate for plain vanilla contracts in the Black-
Scholes (BS) market. However, their evaluation is a complex and demanding task for
exotic derivative contracts such as Asian-style basket options where no closed-formula
is known.

The simplest and crudest approach is to employ the Monte Carlo (MC) estimation
of E [ψ (X (α)) Y ] for two or more values of α and then use finite-difference approx-
imations. However, this approach can be computationally intensive and can produce
large biases and large variances in particular if ψ = 11A, where A is a measurable set.
A variant is the kernel method (see Montero and Kohatsu-Higa 2003), which gener-
alizes finite-difference methods using ideas taken from the kernel density estimation.

Several alternatives have been proposed without finite-difference approximation.
Pathwise methods (see Glasserman 2004) treat the parameter of differentiation α as
a parameter of the evolution of the underlying model and differentiate this evolution.
However, this approach is not always applicable, notably when ψ is not smooth (for
instance ψ = 11A). At the other extreme, the likelihood method ratio (see Glasser-
man 2004) puts the parameter in the measure describing the underlying model and
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differentiates this measure. Even if the likelihood method ratio is applicable to non-
smooth functions, it may provide high-variance estimators. Indeed, compared to the
pathwise method (when applicable), it displays a higher variance. Summarizing, these
two alternatives involve two main ideas: differentiating the evolution or differentiating
the measure, respectively.

In this paper, we investigate the use of Malliavin Calculus in order to employ
(Quasi)-Monte Carlo (QMC) simulations for the evaluation of the sensitivities of
complex multidimensional path-dependent options. The main aim is to provide an
extensive study concerning the computational burden and the variance of the Greeks
estimators obtained by the aid of Malliavin Calculus. The multidimensional setting
shows the very convenience of the Malliavin Calculus approach over the different
techniques that have been proposed. Indeed, Malliavin Calculus allows to calculate
sensitivities as expected values whose estimation is a natural application of MC meth-
ods. Formally:

θ(α) = E

[
∂

∂α
ψ (X (α)) Y

]
= E [ψ (X (α)) H ] .

where H is a r.v. depending on X and Y .
In the context of multidimensional options, we adopt the approach employed by

Montero and Kohatsu-Higa (2004) in the multidimensional contest. This procedure
gives a certain flexibility and provides a class of functions (different r.v.s H ) returning
the same expected value (the sensitivity) but with different accuracies.

Indeed, the previously mentioned alternative techniques may be computationally
expensive in the multidimensional case and do not provide flexibility for variance
reduction. This versatility for variance reduction is not possible without the use of
the generalized integral by part formula of Malliavin Calculus. Advanced techniques
such as the kernel density estimation or more recent approaches such as the Vibrato
Monte Carlo in Giles (2009) are difficult to employ and computationally demanding
in multidimensions. In order to avoid to use the Malliavin Calculus technique, Chen
and Glasserman (2007) have illustrated a procedure that produces “Malliavin Greeks”
without Malliavin Calculus. However, since this procedure involves both pathwise and
likelihood ratio methods, the estimators of the formulas for the sensitivities in Chen
and Glasserman (2007) have a high variance.

For these purposes, we find convenient representations of H that permit to enhance
the localization technique introduced in Fournié et al. (1999) and reduce both the com-
putational cost and the variance. Moreover, we show that the parameters employed
for the variance reduction can be obtained on the flight in the simulation by adaptive
techniques. We illustrate the efficiency of the proposed procedures, coupled with the
enhanced version of QMC simulations discussed in Sabino (2009), for the numerical
estimation of the Deltas of call, digital Asian-style and exotic basket options with a
fixed and a floating strike price in a multidimensional BS market. This setting also cov-
ers the study of the second order Greeks of call options because, apart for a constant,
the gammas of calls coincide with the delta of digital options.

The paper is organized as follows. Section 2 is a short introduction on Malliavin
Calculus, Sect. 3 derives the formulas employed for the computation of the Deltas
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of call Asian basket options with floating and fixed strike, Asian digital options and
exotic options. Section 4 illustrates the enhanced QMC approach that we adopt and
describes in details how to get the localization parameters with adaptive (Q)MC tech-
niques; Sect. 5 discusses the numerical experiments of the study and finally Sect. 6
summarizes the most important results and concludes the paper.

2 Malliavin calculus: basic results and notation

The aim of this section is to briefly introduce the basic results from Malliavin Calculus
and to fix the notation we adopt in the rest of the paper. For more information on this
subject, we refer the reader to the book by Nualart (2006).

Consider the probability space (Ω,F ,P) where we define the M-dimensional
Brownian motion W(t) = (W1(t), . . . ,WM (t)) , t ∈ [0, T ].

Now consider the space of smooth random variables for t ∈ [0, T ]
S =

{
φ(W(t1), . . . ,W(tn)); 0 ≤ t1 ≤ · · · ≤ tn; φ ∈ C ∞

b (Rn×M )
}

⊂ L 2 (Ω) (1)

and define linear unbounded operator

Dm
s φ(W(t1), . . . ,W(tn)) =

n∑
k=1

∂φ

∂xk,m
(W(t1), . . . ,W(tn))11I (n)k

(s). (2)

The above operator is called Malliavin derivative a time s.
Let us precise the notation. We have xk = (

xk,1, . . . , xk,M
)
, so xk corresponds to

W(tk) and the mth component xk,m corresponds to the mth component Wm(tk).
Moreover, introduce on S the norm

‖F‖2
1,2 = ‖F‖L 2(Ω) + ‖DF‖L 2([0,T ]×Ω)

and denote by D
1,2 the closure of S with respect (w.r.t.) ‖ · ‖1,2.

Finally define the adjoint of D in L 2 (Ω × [0, T ])
δSk : u = (u1, . . . , um) ∈ dom

(
δSk
)

→ δSk (u) ∈ L 2(Ω) (3)

which, by definition, satisfies for φ ∈ D
1,2 and u ∈ dom

(
δSk
)

M∑
m=1

E

⎡
⎣

T∫
0

Dm
s φum(s)ds

⎤
⎦ = E

[
φ

M∑
m=1

δSk
m (um)

]
= E

[
φδSk (u)

]
. (4)

δSk is known as Skorohod integral and Eq. (4) is known as duality relation.
It can be shown (see Nualart 2006) that if u(t) is an Ito process, the Skorohod

integral coincides with the Ito integral of u and Dsu = 0 if s ≥ t .
We now list some identities and useful results that will be employed in the rest of

this paper. Proofs can be found in Nualart (2006).
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1. ∀F1, . . . , Fd ∈ D
1,2 we have φ(F1, . . . , Fd) ∈ D

1,2 and ∀m = 1, . . . ,M

Dm
s φ =

d∑
k=1

∂φ

∂xk
(F1, . . . , Fd) Dm

s Fk . (5)

For example, let a ∈ R
M we have

Dm
s exp

(
M∑

i=1

ai Wi (t)

)
= am exp

(
M∑

i=1

ai Wi (t)

)
11[0,t](s) (6)

2. Let φ(t) be an adapted process we have:

Dm
s

T∫
0

φ(t)dW m(t) = φ(s)+
T∫

s

Dm
s φ(t)dW m(t), (7)

and

Dm
s

T∫
0

φ(t)dt =
T∫

s

Dm
s φ(t)dt, (8)

3. If φ ∈ D
1,2,u ∈ dom

(
δSk
)
, and φu ∈ dom

(
δSk
)

then

δSk (φu) = φδSk (u)−
M∑

m=1

T∫
0

um(s)D
m
s φds. (9)

3 Multidimensional Malliavin sensitivities

Consider for simplicity a complete market whose risky assets, Si , i = 1, . . . ,M , are
driven by the following dynamics (in the risk-neutral measure):

dSi (t) = r Si (t)dt + Si (t)σi (t)dBi (t), i = 1, . . . ,M, (10)

Si (0) = xi ,

where r is the constant risk-free rate, σ(t) = (σ1(t), . . . , σM (t)) is the vector of the
volatilities process and B(t) is the vector of the M-dimensional Brownian motion in
the risk-neutral measure with dBi (t)dBm(t) = ρim(t)dt ; ρ is the correlation matrix
among the Brownian motions (it can be stochastic). The existence of the vector process
σ(t) is guaranteed by Theorem 9.2.1 in Shreve (2004). Applying the risk-neutral pric-
ing formula (see Shreve 2004), the calculation of the price at time t of any European
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derivative contract with maturity date T boils down to the evaluation of an (discounted)
expectation:

a(t) = exp (−r(T − t))E [ψ | Ft ], (11)

the expectation is under the risk-neutral probability measure and ψ is a generic
FT -measurable variable that determines the payoff of the contract.

In order to apply Malliavin Calculus, we need to write the above dynamics in terms
of uncorrelated Brownian motions:

dSi (t) = r Si (t)dt + Si (t)σi (t)
M∑

m=1

αim(t)dWm(t), i = 1, . . . ,M

Si (0) = xi ,

where
∑M

m=1 αim(t)αkm(t) = ρik(t), a.s. and we have defined σim(t) = σi (t)
∑M

m=1
αim(t), a.s.

Hereafter, we denote δKr and δD the Kronecker delta and the Dirac delta, respec-
tively. Naturally at time T , we have ψ = a(T ), a.s.

In order to get estimators for the sensitivities, we adopt the same approach in Mon-
tero Kohatsu-Higa (2004) in the multidimensional context. This approach relies on the
multidimensional integration by part formula (see for instance Nualart 2006, p 333)
that is summarized, without proof, in the following proposition.

Proposition 1 Assume the dynamics (12), let m(T ) be a FT -measurable and also
m(T ) ∈ D

1,2. In addition, suppose that ψ ∈ D
1,2 and ψ Lipschitz or piecewise con-

tinuous with jump discontinuities and linear growth. Finally, denote Gk the partial
derivative

Gk = ∂m(T )

∂xk
, k = 1, . . . ,M. (12)

The kth delta (the kth component of the gradient) is

Δk = ∂a(0)

∂xk
= e−rT

E

[
ψ

M∑
m=1

δSk
m (Gkum)

]
, (13)

where u = (u1, . . . , uM ) ∈ dom(δSk), z = (z1, . . . , zm) ∈ dom(δSk),Gku ∈
dom(δSk) and

um(s) = zm(s)∑M
h=1

∫ T
0 zh(s)Dh

s m(T )ds

M∑
h=1

T∫
0

zh(s)D
h
s m(T )ds 
= 0, a.s.
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In the following subsections, we apply Proposition 1 to the cases of a discrete Asian
basket call (ψ just Lipschitz ) and digital options (piecewise continuous with jump
discontinuities and linear growth), respectively.

3.1 Greeks in the multidimensional BS market

In this section, we apply Proposition 1 to the case of a multidimensional BS market
where the volatilities vector process in Eq. (12) is not stochastic and has constant vol-
atilities and correlations. The main advantage of the Malliavin approach over different
techniques, for example the methods in Giles (2009) and the Chen and Glasserman
(2007), is that Proposition 1 allows the possibility of variance and computational reduc-
tion due to the flexibility in choosing either the process u or better z. The methods
illustrated in Giles (2009) and Chen and Glasserman (2007) are difficult to employ if
we assume a multidimensional dynamics and they do not allow versatility for variance
reduction.

We consider the weights zh = αkδ
Kr
hk ; h, k = 1, . . . ,M, αk = 1,∀k. Namely,

in order to compute the kth delta, we consider only the kth term of the Skorohod
integral reducing the computational cost. In particular, this choice is motivated
by the fact that we can enhance the localization technique introduced by Fournié
et al. (1999). With this setting, we need to control only δSk

k (·) and then only the
kth component of W(t). This enhancement is not possible with other approaches
that furnish only a fixed representation of the components of the multidimensional
deltas.

Under the above assumptions for the vector process z, we explicitly derive the
multidimensional deltas for the following exotic options in the BS market:

1. Discretely monitored Asian basket options with fixed strike. Assume t1 < t2 · · · <
tN = T , where T is the maturity of the contract and the payoff function

ψ =
⎛
⎝ M∑

i=1

N∑
j=1

wi j Si
(
t j
)− K

⎞
⎠

+
, (14)

where K is the strike price and
∑

i, j wi j = 1. In this case, we have

Gk = 1

xk

N∑
j=1

wk j Sk(t j )

and

m(T ) =
M∑

i=1

N∑
j=1

wi j Si
(
t j
)
.
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We then calculate the following quantities

Lk =
T∫

0

Dk
s m(T )ds =

M∑
i=1

N∑
j=1

wi j Si (t j )t jσik,

Ak =
T∫

0

Dk
s Gkds =

N∑
j=1

w jk Sk(t j )t jσk

Bk =
T∫

0

Dk
s Lkds =

N∑
j=1

wi j Si (t j )t
2
j σ

2
ik,

and hence

Δk = E

[
ψδSk

k

(
Gk

L K

)]
, k = 1, . . . ,M. (15)

Due to the Eq. (9), we can write the Skorohod integral above for k = 1, . . . ,M
as:

δk

(
Gk

L K

)
= Gk

L K
Wk(T )− 1

L2
k

⎛
⎝Lk

T∫
0

Dk
s Gkds − Gk

T∫
0

Dk
s Lkds

⎞
⎠

= Gk

L K

(
Wk(T )+ Bk

Lk

)
− Ak

Lk
. (16)

With another choice of z, for instance zh = αh,Δk would depend linearly on the
whole M-dimensional Brownian motion, making the localization technique less
efficient.

2. Discretely monitored Asian basket options with floating strike K (T ) =
∑M

i=1 Si (T )
M .

For simplicity, we assume wi j = 1
M N ∀i, j . The calculation is similar to the pre-

vious payoff function, indeed we can write ψ = n(T )+ where

n(T ) = m(T )− K (T ).

In analogy, we have

Fk = ∂n(T )

xk
= Gk − Sk(T )

Mxk
= Gk − Tk,

Mk =
T∫

0

Dk
s n(T )ds = Lk −

T∫
0

Dk
s K (T ) = Lk −

∑M
i=1 Si (T )Tσik

M

= Lk − Uk,
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T∫
0

Dk
s Fkds = Ak −

T∫
0

Dk
s Tkds = Ak − Sk(T )Tσk

Mxk
= Ak − Vk,

T∫
0

Dk
s Mkds =

T∫
0

Dk
s Lkds −

T∫
0

Dk
s Ukds = Bk −

∑M
i=1 Si (T )T 2σ 2

ik

M
= Bk −Pk,

with the quantities Tk,Uk, Vk, Pk,∀k automatically defined by the above equa-
tions. Then,

Δk = E

[
ψδSk

k

(
Fk

MK

)]
, k = 1, . . . ,M. (17)

and

δk

(
Fk

MK

)
= Fk

MK

(
Wk(T )+ Bk − Pk

Mk

)
− Ak − Vk

Mk
. (18)

3. Digital Asian basket options with fixed strike.

ψ = 11m(T )≥K . (19)

This type of payoff function fulfills the hypotheses of Proposition 1 and we might
adopt Eq. (15). However, due to the properties of the Dirac delta δD and Proposi-
tion 1, we can formally write (see Kohatsu-Higa and Pattersson 2002)

Δk = e−rT
E

[
δD

K (m(T ))Gk

]
= e−rT

E

[
δD

K (m(T )) φ

(
m(T )− K

h

)
Gk

]

= e−rT
E

[
ψ

M∑
m=1

δSk
m (Gkφum)

]
,

where we assume that φ, φ′ are square integrable, φ(0) = 1, φGk is Skorohod
integrable ∀k = 1, . . . ,M and h > 0. The aim of this setting is to reduce the
variance of the MC estimator of Δk by tuning the localization function φ around
the strike K with a convenient choice of the parameter h (see Kohatsu-Higa and
Pattersson 2002).
Under this assumption, the Skorohod integral in Eq. (13) becomes:

δSk
(
φ

(
m(T )− K

h

)
Gku

)
= φ

(
m(T )− K

h

)
Gkδ

Sk(u)

−
M∑

m=1

T∫
0

um(s)D
m
s (φGk) ds
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where for m = 1, . . . ,M

Dm
s

(
φ

(
m(T )− K

h

)
Gk

)
= φ

(
m(T )− K

h

)
Dm

s Gk

+Gk

h
φ′
(

m(T )− K

h

)
Dm

s m(T ),

then the Skorohod integral δSk
(
φ
(

m(T )−K
h

)
Gku

)
is

φ

(
m(T )− K

h

)
Gkδ

Sk(u)−
φ
(

m(T )−K
h

)∑M
m=1

∫ T
0 um(s)Dm

s Gkds
∑M

m=1

∫ T
0 um(s)Dm

s m(T )ds

−Gk

h
φ′
(

m(T )− K

h

)
. (20)

Finally, with our choice for the simple process u, the last equation becomes:

φ

(
m(T )− K

h

)
Gkδ

Sk(u)−
φ
(

m(T )−K
h

)
Ak

Lk
− Gk

h
φ′
(

m(T )− K

h

)
, (21)

where δSk(u) depends on the terms that we have found in the case of call Asian basket
options.

Remark 1 The same localization procedure and the Malliavin approach adopted for
digital options can be employed for the computation the Gamma (second-order deriv-
ative) for call Asian basket options.

It is worthwhile to mention that, for discretely monitored path-dependent options, the
solutions in Fournié et al. (or for example Formula 6.25 p 335 in Nualart 2006) can
be used. However, these solutions are instable and display a high variance. More-
over, for discretely monitored multidimensional barrier (but not Asian barrier) and
lookback options, solutions in a quite general setting can be found in Bernis et al.
(2003). Although in different mathematical and financial situation, in contrast to the
earlier mentioned study, our choice of the weight zk returns formulas for the Greeks
that depend on δSk

k only. Having less terms in the formulas permits a reduction in the
computational burden.

3.2 Greeks for exotic options

Proposition 1 assumes that the payoff function ψ depends on m(T ) only. How-
ever, with the notation adopted in the BS setting, suppose for instance, that ψ =
max (m(T )− K , K(T )− K , 0), where K is a fixed price, we cannot rely on Propo-
sition 1 to derive the expression of the sensitivities of such an exotic option because
ψ depends separately on the two random variables m(T ) and K(T ). In the following,
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based on the classical integral by part formula, we extend Proposition 1 in order to
allow such a dependence.

Proposition 2 Assuming the dynamics (12), let ψ = ψ(X,Y ) ∈ D
1,2 Lipschitz or

piecewise continuous with jump discontinuities and linear growth and X,Y ∈ D
1,2.

Denote Gk = ∂Y
∂xk

and Tk = ∂X
∂xk

. Let u and p be two processes belonging to dom(δSk)

and define the following FT -measurable r.v.s:

a1 =
M∑

m=1

T∫
0

um(s)D
m
s Xds, a2 =

M∑
m=1

T∫
0

um(s)D
m
s Y ds (22)

b1 =
M∑

m=1

T∫
0

pm(s)D
m
s X, b2 =

M∑
m=1

T∫
0

pm(s)D
m
s Y ds (23)

O1 =
M∑

m=1

T∫
0

Tkum(s)D
m
s ψds, O2 =

M∑
m=1

T∫
0

Gk pm(s)D
m
s ψds (24)

U1 = b2 − b1Gk
Tk

a1b2 − a2b1
, U2 =

a2Tk
Gk

− a1

a1b2 − a2b1
. (25)

Finally, suppose that a1b2 − a2b1 
= 0, a.s. and U1Tku − U2Gkp is Skorohod inte-
grable, we have:

�k = ∂E [ψ(X,Y )]

∂xk
= E

[
ψ(X,Y )

M∑
m=1

δSk
m (U1Tkum − U2Gk pm)

]
, (26)

Here below, we report a sketch of the proof under the assumption that ψ has bounded
partial derivatives in X and Y . However, by means of approximation procedures, one
can extend it to the irregular functions case in the hypothesis (see Nualart 2006).

Proof Compute:

Dm
s ψ(X,Y ) = ∂XψDm

s X + ∂YψDm
s Y. (27)

Then, multiply times Tk and um , sum for all m and integrate:

M∑
m=1

T∫
0

Tkum(s)D
m
s ψds =

M∑
m=1

T∫
0

Tk∂Xψum(s)D
m
s Xds

+
M∑

m=1

T∫
0

Tk∂Yψum(s)D
m
s Y ds. (28)
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Now repeat the procedure above considering Gk and ph(s), we have

M∑
m=1

T∫
0

Gk pm(s)D
m
s ψds =

M∑
m=1

T∫
0

Gk∂Xψpm(s)D
m
s Xds

+
M∑

m=1

T∫
0

Gk∂Yψpm(s)D
m
s Y ds. (29)

We rewrite Eqs. (28) and (29) as a linear system

{
O1 = a1Tk∂Xψ + a2Tk∂Yψ

O2 = b1Gk∂Xψ + g2Gk∂Yψ
(30)

Our aim is to compute Tk∂Xψ(X,Y ) + Gk∂Yψ(X,Y ) such that we can apply the
duality relation. After some algebra, we get that

Tk∂Xψ = b2Gk O1 − a2Tk O2

Gk (a1b2 − a2b1)
,

Gk∂Yψ = a1Tk O2 − b1Gk O1

Tk (a1b2 − a2b1)

and

Tk∂Xψ + Gk∂Yψ =
O1

(
b2 − b1Gk

Tk

)
− O2

(
a2Tk
Gk

− a1

)
a1b2 − a2b1

, (31)

then we have

�k = E [O1U1 − O2U2] = E

⎡
⎣ M∑

m=1

T∫
0

(U1Tkum(s)− U2Gk pm(s)) Dm
s ψds

⎤
⎦ ,(32)

by duality

�k = E

[
ψ

M∑
m=1

δSk
m (U1Tkum − U2Gk pm)

]
(33)

and this concludes the proof.

We will now adopt the results of Proposition 2 to the BS market. Again the Malliavin
Calculus approach is very versatile and permits to reduce the computational burden
and the variance of the MC by enhancing the localization technique. As done before,
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we consider um(s) = δKr
mk,∀s and pm(s) = sδKr

mk,∀s, in order to fulfill the hypothesis
of Proposition 2. The formula for the kth component of the delta is

�k = E

[
ψ(X,Y )

(
δSk

k (U1Tk)− δSk
k (sU2Gk)

)]
, (34)

and the two Skorohod integrals are respectively:

δSk
k (U1Tk) = U1Tk Wk(T )− U1

T∫
0

Dk
s Tkds − Tk

T∫
0

Dk
s U1ds, (35)

δSk
k (U2Gk) = U2Gk

T∫
0

sdW k
s − Gk

T∫
0

s Dk
s U2ds − U2

T∫
0

s Dk
s Gkds. (36)

In the MC estimation, we can simulate the first term in the above equation relying on
the equality:

T∫
0

sdW k(s) = T Wk(T )−
T∫

0

Wk(s)ds,

where
∫ T

0 Wk(s)ds is approximated by a sum at the points t1, . . . , tN = T .
In our numerical experiments, we consider ψ = max (m(T )− K , K (T )− K , 0),

that is Lipschitz where m(T ) and K (T ) have been defined in Sect. 3.1. The terms in
Eqs. (35) and (36) have been obtained as in Sect. 3.1.

4 QMC simulation setting

In this section, we briefly describe the numerical setting that we adopt for the QMC
estimation of the Greeks given by the Malliavin approach formulas. We briefly illus-
trate the QMC method and discuss how to conveniently find the parameters of the
localization technique on the fly by adaptive simulation.

4.1 The Quasi-Monte Carlo framework

Consider I = E[ψ(X)] where X is a d-dimensional random vector and ψ : R
d → R,

the QMC estimator of I is ÎQMC =
∑NS

n=1 ψ(Xn)

NS
, NS is the number of simulations, as

for the standard MC. However, the points Xi are not pseudo-random but are obtained
by low-discrepancy sequences. Low-discrepancy sequences do not mimic randomness
but display better regularity and distribution (see Niederreiter 1992 for more on this
subject). We do not enter into the details of QMC methods and their properties, we
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just stress the fact that such techniques do not rely on the central limit theorem and
the error bounds are given by the well-known Hlawka-Koksma inequality. Some ran-
domness is then introduced in order to statistically estimate the error of the estimation
by the sampled variance; this task is achieved by a technique called scrambling (see
Owen 2003). The randomized version of QMC is called randomized Quasi-Monte
Carlo (RQMC).

In our numerical estimation, we use a randomized version of the Sobol’ sequence
with Sobol’s property A, that is one of the most used low-discrepancy sequences
(it is also a digital net).

Finally, in order to improve the efficiency of RQMC and reduce the effect of the
so-called curse of dimensionality, we employ the linear transformation (LT) technique
introduced in Imai and Tan (2006) in the enhanced version illustrated in Sabino (2009,
2011) and in Cufaro Petroni and Sabino (2011). The aim of the LT algorithm is to
concentrate the variance of ψ into the components with higher variability so that we
may profit from the higher regularity of low-discrepancy points and then reduce the
nominal dimension of ψ .

We briefly describe the LT algorithm. Consider a d dimensional normal random
vector T ∼ N (μ;), a vector w = (w1, . . . , wd) ∈ R

d and let f (T) = ∑d
i=1wi Ti

be a linear combination of T. Let C be such thatΣ = CCT and assume ε ∼ N (0, Id)

with T L= Cε. The LT approach considers C as C = CLT = CCH A, with CCH the
Cholesky decomposition of . Then, in the linear case, we can define:

g A(ε) := f (CCH Aε) =
d∑

k=1

αkεk + μ · w, (37)

where αk = CLT·k · w = A·k · B, k = 1, . . . , d and B = (CCH)T w while C·k and A·k
are the kth columns of the matrix C and A, respectively. In the linear case, setting

A∗·1 = ± B
‖B‖ , (38)

with arbitrary remaining columns with the only constrain that AAT = Id , leads to the
following expression:

g A(ε) = μ · w ± ‖B‖ε1. (39)

This is equivalent to reduce the effective dimension in the truncation sense to 1 and
this means to maximize the variance of the first component ε1.

In a non-linear framework, we can use the LT construction, which relies on the
first-order Taylor expansion of g A:

g A(ε) ≈ g A(ε̂)+
d∑

l=1

∂g A(ε̂)

∂εl
Δεl . (40)

The approximated function is linear in the standard normal random vector Δε ∼
N (0, Id) and we can rely on the considerations above. The first column of the matrix
A∗ is then:
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A·1∗ = arg max
A·1∈Rd

(
∂g A(ε̂)

∂ε1

)2

(41)

Since we have already maximized the variance contribution for
(
∂g A(ε̂)
∂ε1

)2
, we might

consider the expansion of g about d −1 different points in order to improve the method
using adequate columns. More precisely Imai and Tan (2006) propose to maximize:

A·k∗ = arg max
A·k∈Rd

(
∂g A(ε̂k)

∂εk

)2

(42)

subject to ‖A·k∗‖ = 1 and A·j∗ · A·k∗ = 0, j = 1, . . . , k − 1, k ≤ d.
Although Eq. (38) provides an easy solution at each step, the correct procedure

requires that the column vector A·k∗ is orthogonal to all the previous (and future)
columns. Imai and Tan (2006) propose to choose ε̂ = ε̂1 = E[ε] = 0, ε̂2 =
(1, 0, . . . , 0), . . . ε̂k = (1, 1, 1, . . . , 0, . . . , 0), where the kth point has k − 1 lead-
ing ones. We refer to Sabino (2009, 2011) for the details of a fast and convenient
implementation of this algorithm.

4.2 Enhancing the localization technique

The aim of the localization technique introduced in Fournié et al. (1999) is to reduce
the variance of the MC estimator for the sensitivities by localizing the integration by
part formula around the singularity. In the following, for simplicity, we illustrate the
localization technique in the case of vanilla call options.

Fournié et al. (1999) found that a (possible) expression for the delta of a call
option is:

Δ = ∂

∂x
E

[
erT (S(T )− K )+

]
= E

[
erT (S(T )− K )+

W (T )

xTσ

]
. (43)

When the one-dimensional Brownian motion W (T ) is large, the term (S(T )− K )+
W (T ) becomes even larger and has a high variance. The idea is to introduce a locali-
zation function around the singularity at K .

For δ > 0, set

Hδ(y) =
⎧⎨
⎩

0, for y ≤ K − δ,
y−K+δ

2δ for y ∈ [K − δ, K + δ],
1 for y ≥ K + δ,

(44)

and G(z) = ∫ 0
−∞ Hδ(y)dy, then consider Fδ(z) = (z − K )+ − Gδ(z). Consequently,

we have:

Δ = erT
E

[
Hδ(S(T ))

∂S(T )

∂x

]
+ erT

E

[
Fδ(S(T ))

W (T )

xTσ

]
(45)

Fδ vanishes for z ≤ K − δ and z ≥ K + δ, thus Fδ(S(T ))W (T ) vanishes when W (T )
is large.
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The same analysis, with similar results, is valid for the call-style Asian options and
the exotic option analyzed in Sect. 3. Indeed, it suffices to replace S(T ) with the aver-
age

∑
i, j wi j Si (t j ) in the equations above and consider an if, else statement to select

the localization function when the strike price is stochastic or the option is exotic. In
addition, in the above options formulas, the role of the “weight” term W (T )

xTσ is played
by the Skorohod integral. We remark that the formulas that we derived to compute the
kth component of the delta display weights that depend only on the Skorohod integral
w.r.t. the kth component of the multidimensional Brownian motion permitting to better
control the variance. If we would have chosen to control all the components of the
Skorohod integral, taking all non-zero components of the simple vector process u, we
would have needed to tune different M Brownian motions making the localization
technique less efficient and computationally more expansive.

The choice of the parameter δ is of fundamental importance for the result of the
localization technique because it influences the variance of the MC estimator. In the
following, we describe how to employ an on the fly efficient value based on adaptive
MC simulations. For ease of notation, we consider once more a vanilla call option
payoff bearing in mind that the same applies to the payoffs under study. In such cases,
we need to make the substitution illustrated above. A good candidate for δ would be
the one that minimizes the variance of the second term in Eq. (45).

δ∗ = arg min
δ>0

Var

[
Fδ(S(T ))W (T )

xσT

]
(46)

and deriving w.r.t. δ:

Var

[
− Hδ(S(T ))W (T )

xσT

]
= Var

[
−W (T )

xσT

(S(T )− K )− δ

2δ

]
= 0. (47)

At this point, we find δ such that:

W (T )

xσT

(S(T )− K )− δ

2δ
= 0, P − a.s. (48)

then

δ =
(S(T )−K )W (T )

xσT
W (T )
xσT

. (49)

In order to have an operative parameter, we then consider the following approximation:

δ =
Var
[
(S(T )−K )W (T )

xσT

]

Var
[

W (T )
xσT

] . (50)

As already mentioned, the considerations here above are still valid for the computation
of the Greeks of the options we are considering. As already illustrated, it suffices to

123



Multidimensional quasi-Monte Carlo Malliavin Greeks

replace W (T )
xTσ with the Skorohod integral and that is the reason why we have always

shown the term this term explicitly in the calculations above. The same substitutions
must be made to calculate each δ for the each component of the Delta of the call-type
Asian basket and exotic options since these results hold true in the multidimensional
setting as well.

In the spirit of adaptive MC techniques (see for instance Jourdain 2009), the vari-
ance above can be easily estimated by a MC simulation and then, by fixing the same
random draws, one runs a second MC simulation in order to estimate the Greeks.

In the case of one-dimensional digital options, the computation is slightly different.
Kohatsu-Higa and Pattersson (2002) claim that a good candidate for δ is:

δ =
( ∫∞

0 φ′(z)2dz∫∞
0 φ(z)2dzE

[
δSk(u)2

]
)1/2

. (51)

Knowing that E
[
δSk(u)

] = 0, under the assumption that φ(z) = e−|z|, we have

δ =
(

Var
[
δSk(u)

])−1/2
. (52)

The above parameter can be easily estimated by an adaptive MC simulation in the
multidimensional setting as illustrated for call-type options.

We note that in our formulas the computation of the kth delta depends only on the
kth component of the Skorohod integral making the localization technique easier to
apply and the parameter δ easy to calculate. Once more, we remark the fact that these
variance and computational reduction considerations are not possible without using
the Malliavin Calculus approach.

5 Numerical investigations

In this section, we discuss the results of the (R)QMC estimation based of the pro-
posed approaches. We consider M = 5 and M = 10 underlying securities and an
equally spaced time grid with N = 64 time points. Hence, the effective dimension
of the (R)QMC simulation is either 320 or 640. We estimate the multidimensional
Deltas (with respect to each underlying asset) of each contract discussed before. The
parameters chosen for the simulation are listed in Table 1.

We adopt RQMC simulations, based on the enhanced version illustrated in Sect. 4.1,
and consist of 32 replications each of 2048 random points. These random draws are

Table 1 Inputs parameters
Si (0) = 100, ∀i = 1 . . . ,M

r = 5%

T = 1

σi = 10% + i−1
9 40% i = 1 . . . ,M

ρil = 50% i, l = 1 . . . ,M
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obtained from a Matouŝek affine plus random digital shift scrambled version (see
Matoušek 1998) of the Sobol sequence satisfying Sobol’s property A (see Sobol’
1976). We also avoid generating the 320- or 640-dimensional Sobol’ sequence by
using a latin supercube sampling (LSS) method (Owen 1998). Briefly, this sampling
mechanism is a scheme for creating a high-dimensional sequence from sets of lower-
dimensional sequences. For instance, a 640-dimensional low-discrepancy sequence
can be concatenated from 13 sets of a 50-dimensional low-discrepancy sequence by
appropriately randomizing the run order of the points (the last concatenation neglects
the last 10 dimensions). For theoretical justification of the LSS method, see Owen
(1998).

The computation is implemented in MATLAB on a laptop with an Intel Pentium
M, processor 1.60 GHz and 1 GB of RAM. We compute all the optimal columns for
the LT technique in Sect. 4.1. Such an LT construction is optimal if the integrand func-
tion is the payoff of the option and hence is optimal for price estimation. In contrast,
our goal is the computation of the Deltas and this would not seem to be the optimal
choice. However, if we would have applied the LT for the integrand function given by
the Malliavin approach, we would have got as many LT-decomposition matrices as
the number of assets (one for each delta). This setting would remarkably increase the
CPU time making the estimation less convenient. The numerical experiments below
justify our assumption.

5.1 Call with fix and floating strike

As a first experiment, we compute the Deltas of an Asian basket option with fixed
and floating strike. We compare the estimated values of the Deltas and the accura-
cies obtained with different approaches: finite differences, localization with different
parameters and finally localization coupled with adaptive parameters. The choice of
the parameters for the localization and finite-difference techniques is of fundamen-
tal importance because it influences the variance of the estimator (see for instance
L’Ecuyer 1995). The numerical derivative is often calculated assuming δ = 1%
(in our case 1% of the initial price of the underlying securities); this may not be
the optimal choice. In addition, in the multidimensional computation (gradient esti-
mation), one should consider different δ. Our approach based on adaptive techniques
overtakes this problem by calculating the parameters on the fly. These parameters are
optimal meaning that they provide the minimal variance of the estimator (in the sense
described in Sect. 4.2). Tables 2 and 3 show the results with different approaches
obtained for an at-the-money Asian call with fixed and floating strike and M = 10
underlying assets. All the estimated values are in statistical accordance but display
different accuracies. The finite-difference errors are higher than those obtained with
localization (with the exemption of δ = 5%). In particular, when the strike is floating,
this technique returns a completed biased Delta associated with the highest volatility.
Finally, finite-difference estimations require a computational effort that is 2.43 times
higher that those obtained with localization. The adaptive localization and standard
localization perform equally well with the former having slightly better precision and
the advantage of selecting better localization parameters for each component.
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Table 2 Call option with fixed strike, M = 10: at-the-money deltas and errors (×100)

Adaptive Localization Fin. diff.

δ = 1% δ = 5% δ = 10% δ = 1%

� ±err � ±err � ±err � ±err � ±err

5.43 0.18 5.43 0.28 5.4 2.9 5.43 0.19 5.43 0.31

5.50 0.23 5.50 0.30 5.5 2.7 5.50 0.26 5.51 0.49

5.58 0.29 5.57 0.30 5.6 2.9 5.58 0.34 5.60 0.52

5.66 0.30 5.65 0.33 5.6 2.9 5.66 0.39 5.69 0.98

5.74 0.39 5.73 0.41 5.7 3.0 5.74 0.35 5.79 0.81

5.82 0.43 5.81 0.44 5.8 3.1 5.83 0.50 5.88 0.87

5.90 0.45 5.89 0.40 5.9 2.9 5.91 0.52 5.99 1.27

5.98 0.35 5.97 0.41 6.0 3.0 6.00 0.51 6.10 0.87

6.07 0.47 6.05 0.40 6.0 3.2 6.09 0.58 6.20 1.40

6.16 0.50 6.13 0.51 6.1 3.0 6.17 0.64 6.29 1.12

Table 3 Call option with floating strike, M = 10: deltas and errors (×100)

Adaptive Localization Fin. diff.

δ = 1% δ = 5% δ = 10% δ = 1%

� ±err � ±err � ±err � ±err � ±err

0.04 0.19 0.04 0.19 0.04 0.17 0.04 0.13 0.04 0.11

0.12 0.20 0.12 0.23 0.11 0.30 0.12 0.19 0.13 0.19

0.19 0.32 0.19 0.35 0.19 0.32 0.20 0.26 0.22 0.33

0.27 0.36 0.27 0.38 0.27 0.36 0.28 0.32 0.31 0.44

0.34 0.29 0.35 0.37 0.34 0.45 0.36 0.43 0.41 0.45

0.42 0.35 0.43 0.35 0.42 0.47 0.45 0.44 0.51 0.63

0.50 0.39 0.50 0.47 0.50 0.47 0.53 0.51 0.61 0.77

0.58 0.50 0.59 0.55 0.58 0.61 0.62 0.57 0.71 0.98

0.67 0.45 0.67 0.55 0.67 0.64 0.71 0.51 0.81 1.65

0.74 0.64 0.75 0.64 0.75 0.58 1.72 233.73 7 × 104 2 × 207

In order to have a complete picture of the sensitivity of the discussed techniques,
we repeat the experiment considering only M = 4 assets and several strike prices.
This further analysis cannot be performed for Asian option with floating strike. Fig-
ures 1 and 2 show the estimated Deltas and errors, respectively. Since for at-the-money
options the finite-difference approach provided lower accuracy, we avoided to report
its results. In term of precision, in this setting as well, the standard localization with
δ = 1% and the adaptive localization return the most accurate results. In particular,
these two approaches perform equally well with the former one having a more constant
trend across all the moneyness.
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Fig. 1 Call option with fixed strike, M = 4: estimation errors. Adaptive: Solid line, loc. δ = 0.01: Dashed
line, loc. δ = 0.1: Dotted line, loc. δ = 0.05: Dash-dotted line

5.2 Digital call

The aim of this subsection is to describe the results of our numerical investigation
assuming Asian digital options. The following discussion and description have a dou-
ble purpose. Since the payoff of digital option can be seen as the derivative (in the sense
of distribution) of the payoff of a call option, the methodology and the localization
parameters described in Sect. 3.1 can be rearranged and used to compute the Gamma
(and cross-sensitivities in the multidimensional setting) of a call option (naturally with
some changes). In addition, the Delta of a digital option is a more demanding task due
to the irregular payoff that is pathologically not differentiable.

We repeat the organization of our discussion as done for the Asian call options and
consider only a fixed strike price. Table 4 shows the estimated multidimensional Deltas
and their errors for an at-the-money digital option on M = 10 underlying securities.
The best accuracy with the standard localization technique is not achieved anymore
with δ = 1%, that means that in some situations it is not the optimal choice. In con-
trast, the adaptive localization is the best performing technique in terms of precision.
It returns better localization parameters that provide an unbiased estimator with lower
variance.
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Fig. 2 Call option with fixed strike, M = 4: Estimated deltas with the adaptive localization

Table 4 Digital option with fixed strike, M = 10: at-the-money deltas and errors

Adaptive Localization Fin. diff.

δ = 1% δ = 5% δ = 10% δ = 1%

� ±err � ±err � ±err � ±err � ±err

0.30 0.15 0.30 0.75 0.31 3.8 0.30 0.18 0.30 0.19

0.29 0.23 0.29 0.86 0.31 3.5 0.29 0.31 0.29 0.27

0.29 0.29 0.30 0.74 0.31 3.6 0.29 0.31 0.28 0.34

0.29 0.45 0.29 0.80 0.30 3.2 0.28 0.38 0.28 0.45

0.29 0.48 0.29 0.78 0.31 3.6 0.28 0.41 0.26 0.49

0.29 0.56 0.29 0.88 0.31 3.4 0.27 0.49 0.25 0.49

0.28 0.56 0.28 0.82 0.31 3.6 0.27 0.64 0.24 0.65

0.27 0.55 0.28 0.98 0.30 3.6 0.25 0.48 0.23 0.50

0.27 0.58 0.28 0.80 0.29 3.9 0.24 0.72 0.22 0.77

0.27 0.60 0.27 0.86 0.30 3.4 0.24 0.70 0.20 0.60

As done before, we run a QMC simulation considering only M = 4 assets and
analyze the results by varying the strike price. Figures 3 and 4 show the estimated
Deltas and errors, respectively. Once more the adaptive localization approach displays
the lowest error.
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Fig. 3 Digital option with fixed strike, M = 4: estimation errors. Adaptive: Solid line, loc. δ = 0.01:
Dashed line, loc. δ = 0.1: Dotted line, loc. δ = 0.05: Dash-dotted line

5.3 Exotic option

As a last experiment, we perform a QMC numerical simulation in order to esti-
mate the Deltas of an exotic option. Table 5 and Figs. 5 and 6 present the results
of this experiment. In this last example, all the approaches perform equally well,
and the exotic structure of the payoff makes its estimator unsensitive to the dif-
ferent localization parameter. The finite difference is also performing well but is
less precise if we take into account the computational burden that is 2.61 times
higher.

6 Concluding remarks

In this paper, we have investigated the use of Malliavin calculus in order to
calculate the Greeks of multiasset complex path-dependent options by QMC sim-
ulation. The main purpose of our study is to evaluate the performance of Mal-
liavin-based estimators from the computational and variance reduction points of
view.
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Fig. 4 Digital option with fixed strike, M = 4: estimated deltas with the adaptive localization

Table 5 Exotic, M = 10: at-the-money deltas and errors (×100)

Adaptive Localization Fin. diff.

δ = 1% δ = 5% δ = 10% δ = 1%

� ±err � ±err � ±err � ±err � ±err

6.4 1.1 6.5 1.3 6.5 1.8 6.5 0.8 6.5 1.0

6.6 1.6 6.6 1.2 6.6 1.8 6.6 1.0 6.6 1.1

6.8 1.3 6.7 1.2 6.7 1.9 6.7 0.9 6.8 1.3

7.0 1.5 6.9 1.4 6.9 1.7 6.9 1.2 6.9 2.0

7.2 1.9 7.0 1.1 7.0 1.8 7.1 1.1 7.1 2.0

7.4 1.5 7.2 1.4 7.2 1.8 7.2 1.3 7.3 2.2

7.6 1.7 7.3 1.4 7.3 1.9 7.4 1.3 7.5 2.1

7.8 1.9 7.5 1.5 7.5 1.6 7.5 1.7 7.7 2.1

8.0 2.1 7.6 1.5 7.6 1.7 7.7 1.4 7.9 2.4

8.2 1.7 7.8 1.7 7.8 1.8 7.9 1.5 8.1 1.8

Adopting the same approach as done by Montero and Kohatsu-Higa (2004) in
the single asset case, we derive formulas for multidimensional setting. Indeed, the
multidimensional setting shows the advantage of the Malliavin Calculus approach
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Fig. 5 Exotic option, M = 4: estimation errors. Adaptive: solid line, loc. δ = 0.01: Dashed line, loc.
δ = 0.1: Dotted line, loc. δ = 0.05: Dash-dotted line

over alternative techniques that have been previously proposed. These different tech-
niques are hard to implement and, in particular, are computationally time-consum-
ing when considering multiasset derivative securities. In addition, their estimators
potentially display a high variance (see for instance Chen and Glasserman 2007).
In contrast, the use of the generalized integral by part formula of Malliavin Cal-
culus gives enough flexibility in order to find unbiased estimators with low var-
iance. In the multidimensional context, we have found convenient formulas that
are easy and flexible to employ and permit to improve the localization technique.
Finally, we have performed a detailed analysis on how the localization parameters
can influence the precision of the estimators. Moreover, we have proposed an alter-
nate approach, based on adaptive (Q)MC techniques that returns convenient param-
eters that can be obtained on the flight in the simulation. This approach provides
a better precision with the same computational burden. However, further studies
would be necessary to enhance its accuracy assuming different dynamics and payoff
functions.

The proposed procedures, coupled with the enhanced version of Quasi-Monte
Carlo simulations as illustrated in Sabino (2009), are discussed based on the numerical
estimation of the Deltas of call, digital Asian-style and exotic basket options with a
fixed and a floating strike price in a multidimensional BS market.
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Fig. 6 Exotic option, M = 4: estimated deltas with the adaptive localization
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