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Coupling Poisson Processes by
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Abstract. We analyze a method to produce pairs of non-independent
Poisson processes M(t), N(t) from positively correlated, self-decomposable,
exponential renewals. In particular, the present paper provides the fami-
ly of copulas pairing the renewals, along with the closed form for the joint
distribution pm,n(s, t) of the pair (M(s), N(t)), an outcome which turns
out to be instrumental to produce explicit algorithms for applications
in finance and queuing theory. We finally discuss the cross-correlation
properties of the two processes and the relative timing of their jumps.
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1. Introduction

Recent studies have shown that the spot dynamics of commodity markets
displays mean reversion, seasonality and jumps [1], and some methodologies
have been proposed to take dependency into account based on correlation and
co-integration [2,3]. However, these approaches can become mathematically
cumbersome and non-treatable when leaving the Gaussian-Itô world. In this
context, it has been indeed recently proposed [4] to consider 2-dimensional
jump diffusion processes with a 2-dimensional Gaussian and a 2-dimensional
compound Poisson component, and, as also suggested in different circum-
stances [5], we show here that a revealing approach to model the dependency
of the 2-dimensional Poisson processes can be supplied on the ground of the
self-decomposability of the exponential random variables used for its con-
struction.

The present paper is in particular devoted to find both the copula func-
tion pairing our correlated renewals, and an explicit form for the joint distri-
bution pm,n(s, t) of our pair of correlated Poisson processes M(s), N(t): this
will prove to be instrumental to produce the efficient algorithms that can be
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used in financial applications [4]. If indeed the pairs of correlated, exponen-
tial random variables (rv ’s) (Xk, Yk)—used to produce the renewals in our
processes—are interpreted as random waiting times with random delays; the
proposed model can help describing their co-movement and can answer some
common questions arising in the financial context:

• Once a financial institution defaults how long should one wait for a
dependent institution to default too?

• A market receives a news interpreted as a shock: how long should one
wait to see the propagation of that shock onto a dependent market?

• What is the impact of the correlations among the shocks for different
insurance companies on a fair assessment of the risk of losses [6]?

It is worth noticing, moreover, that we achieve our aim of producing a 2-
dimensional Poisson process with dependent marginals without resorting to
an a priori copula (distributional) approach: the dependence among arrival
times will indeed be made explicit in terms of combinations of rv ’s, and we
only recover and discuss the corresponding copula functions as an outcome
of this model. As a consequence, because of this P -a.s. relationship between
the random times, the two Poisson processes can be seen as linked with a
form of co-integration between their jumps. Similar models—albeit rather less
sophisticated—were also used in order to model a multi-component reliability
system [5], while the so-called Common Poisson Shock Models [7] are in fact
quite different from that presented here.

The main practical consequence of our results is then that the price and
the Greeks of the spread options considered in the applications [4] can be
calculated in closed form using either the Margrabe formula (if the strike is
zero), or some well-known approximation [8]. In any case, our model entails
explicit algorithms for the simulation of correlated Poisson processes, and
can be used in the Monte Carlo simulations. An extension to the multi-
dimensional case, as well as to different dynamics other than Poisson, will
be considered in future studies, but, under the assumption that only two
underlyings have jump component, the price and the Greeks of spread options
can be obtained even now by the moment-matching methodology recently
proposed in [9].

The paper is organized as follows: in Sect. 2, we first show how (hith-
erto positively) correlated exponential rv ’s can be deduced from the self-
decomposability of their laws; then in Sect. 3, we briefly discuss the copula
functions produced by this model. Using pairs of these exponential rv ’s as
correlated renewals, in Sect. 4 we subsequently produce a 2-dimensional Pois-
son process with correlated components, and in Sect. 5 we explicitly deduce
their joint distributions. Finally in Sect. 6, the cross-correlation properties of
the Poisson processes are briefly analyzed, and the relative timing of their
jumps is used to shed new light on the dependence mechanism of a model
allowing for the possibility of a delayed propagation of correlated shocks. We
conclude by pointing out first that we would also be able to produce other
correlated rv ’s (Erlang, Gamma, EPT . . . ) by making use, once more, of their
self-decomposability, and then that the results of this paper should also be
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extended to negatively correlated renewals, a possibility—not open to other
procedures—that will be postponed to future inquiries. Lengthy proofs are
confined in the Appendices, together with a few details about the notation
adopted throughout the paper.

2. Correlation from Self-Decomposability

2.1. Joint Distributions

A law with density (pdf ) f(x) and characteristic function (chf ) ϕ(u) is said
to be self-decomposable (sd) [10,11] when for every 0 < a < 1 we can find
another law with pdf ga(x) and chf χa(u) such that

ϕ(u) = ϕ(au)χa(u)

This is a well-known family of laws with many relevant properties. We will
also say that a random variable (rv) X with pdf f(x) and chf ϕ(u) is sd when
its law is sd : looking at the definition this means that for every 0 < a < 1
we can always find two independent rv ’s Y (with the same law of X) and Za

(with pdf ga(x) and chf χa(u)) such that

X
d= aY + Za

We can look at this, however, also from a different perspective: if Y is sd and,
to the extent that, for 0 < a < 1, an independent Za with the suitable law is
known, we can define a third rv

X ≡ aY + Za P -a.s.

being sure that it will have the same law as Y . In the following, we will mainly
adopt this second standpoint.

We turn now, for later convenience, to give the joint laws of the triplet
(X,Y,Za): for the chf ψ(u, v, w) we easily find from the independence of Y
and Za that

ψ(u, v, w) = E
[
ei(uX+vY +wZa)

]

= ϕ(au + v)χa(u + w) = ϕ(au + v)
ϕ(u + w)

ϕ(a(u + w))

while the marginal, joint chf ’s of the pairs (X,Y ) and (X,Za), respectively,
are

φ(u, v) = ψ(u, v, 0) = ϕ(au + v)
ϕ(u)
ϕ(au)

ω(u,w) = ψ(u, 0, w) = ϕ(au)
ϕ(u + w)

ϕ(a(u + w))

As for the pdf κ(x, y, z), on the other hand, we have from an inverse Fouri-
er transform (δ(x) is the Dirac delta distribution; here and in the following
the computational details can be retrieved from an extended preprint ver-
sion [12])

κ(x, y, z) = f(y) ga(x − ay) δ[z − (x − ay)]
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so that the marginal, joint pdf ’s of (X,Y ) and (X,Za) will, respectively, be

h(x, y) = f(y) ga(x − ay) 	(x, z) =
1
a

f

(
x − z

a

)
ga(z) (2.1)

Finally, the joint cumulative distribution function (cdf ) of (X,Y ) is

H(x, y) =
∫ y

−∞
f(y′)Ga(x − ay′) dy′ Ga(z) =

∫ z

−∞
ga(z′) dz′

where Ga(z) is the cdf of Za. The particular form of H(x, y) will be instru-
mental in finding the copula functions [13] eventually pairing X and Y .

We can finally also calculate the correlation coefficients rXY and rXZa
:

if we put E [X] = E [Y ] = μ and V [X] = V [Y ] = σ2, from the Y,Za

independence we have

E [XY ] = E [(aY + Za)Y ] = aσ2 + μ2

and hence rXY = a. In a similar vein, to calculate rXZa
we first remark that

V [X] = a2V [Y ] + V [Za], namely V [Za] = (1 − a2)σ2, and then from

E [XZa] = E [(aY + Za)Za] = (1 − a2)σ2 + (1 − a)μ2

we finally find rXZa
= 1 − a2.

2.2. An Example: The Exponential Laws E1(λ)
It is well known that the exponential laws E1(λ) with pdf and chf (see Ap-
pendix A for the notations adopted from now on)

λf1(λx) = λe−λxϑ(x) ϕ1(u/λ) =
λ

λ − iu

are a typical example of sd laws [10], and in this case we can explicitly give
the law of Za: we have indeed

χa(u) =
ϕ1(u/λ)
ϕ1(au/λ)

=
λ − iau

λ − iu
= a + (1 − a)

λ

λ − iu
= a + (1 − a)ϕ1(u/λ)

(2.2)

which (for 0 < a < 1) is a mixture of a law δ0 degenerate in 0, and an
exponential E1(λ), namely

Za ∼ aδ0 + (1 − a)E1(λ)

so that its pdf and cdf respectively, are

ga(z) = aδ(z) + (1 − a)λe−λzϑ(z)

Ga(z) =
[
a + (1 − a)(1 − e−λz)

]
ϑ(z)

It is also easy to prove, on the other hand, that this coincides with the law of
the product of two other independent rv ’s: an exponential Z ∼ E1(λ), and a
Bernoulli B(1) ∼ B(1, 1 − a) with a = P {B(1) = 0}, so that we can always
write

Za = B(1)Z
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In short, given two exponential rv ’s Y ∼ E1(λ) and Z ∼ E1(λ), and a
Bernoulli B(1) ∼ B(1, 1 − a), all three mutually independent, the rv X
defined as

X ≡ aY + B(1)Z (2.3)

is again an exponential E1(λ). From (2.1), we also find that the joint pdf of
X,Y is

h(x, y) = λe−λyϑ(y)
[
aδ(x − ay) + (1 − a)λe−λ(x−ay)ϑ(x − ay)

]

and hence its joint cdf is

H(x, y) =
∫ y

−∞
λe−λy′

ϑ(y′)
[
a + (1 − a)(1 − e−λ(x−ay′))

]
ϑ(x − ay′) dy′

= ϑ
(
y ∧ x

a

) [(
1 − e−λ(y∧ x

a )
)

− e−λx
(
1 − e−λ(1−a)(y∧ x

a )
)]

Of course this is far from the only possible joint law with exponential marginal-
s (see also Sect. 3.1), but it is noticeable because it traces its origins back to
a model of self-decomposability of the exponentials. As for the correlations
among X,Y and Z, we already know that rXY = a. For rXZ , we first find
that

E [XZ] = E [(aY + Za)Z] =
2 − a

λ2

and then that

rXZ = 1 − a = 1 − rXY

so that for our three exponentials in (2.3), we eventually have

rXY + rXZ = 1 rXY = a rY Z = 0.

2.3. Positively Correlated Exponential rv’s

It is apparent now from the discussion in the previous section that the self-
decomposability of the exponential laws E1(λ) can be turned into a simple
procedure to generate identically distributed and correlated rv ’s: given Y ∼
E1(λ), in order to produce another X ∼ E1(λ) with correlation 0 < a < 1,
it would be enough to take Z ∼ E1(λ) and B(1) ∼ B(1, 1 − a) independent
from Y and define X as in (2.3). In other words, X will be nothing else than
the exponential Y down a-rescaled, plus another independent exponential Z
randomly intermittent with frequency 1 − a. The self-decomposability of the
exponential laws ensures then that, for every 0 < a < 1, also X marginally
is an E1(λ). Remark that we would not have the same result by taking more
naive combinations of Y and Z. Consider for instance the sum aY +(1−a)Z
of our two independent, exponential rv ’s: in this case, since aY ∼ E1

(
λ
a

)
and

(1 − a)Z ∼ E1

(
λ

1−a

)
, the law of aY + (1 − a)Z would be E1

(
λ
a

) ∗E1

(
λ

1−a

)
,

which is neither an exponential E1(λ), nor even in general an Erlang E2

because of the difference between the two parameters.
The proposed procedure can now be adapted to generate a sequence of

independent pairs of exponential rv ’s, with correlated components, (Xk, Yk),
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Figure 1. The pairs (Xk, Yk) with correlation 0.01 and 0.99

k = 1, 2, . . . (or, if we prefer, Xk, Zk) that will act in the subsequent sec-
tions as renewals for a two-dimensional point (Poisson) process: take indeed
0 < a < 1, produce two independent id exponentials Y,Z and another in-
dependent Bernoulli B(1), then define X = aY + B(1)Z and take the pair
X,Y . By independently replicating this procedure, we will get a sequence
of iid two-dimensional pairs (Xk, Yk) that will be used later to generate a
two-dimensional Poisson process with correlated renewals. Of course—not
surprisingly—the case of uncorrelated pairs of renewals (Xk, Yk), and hence
of independent Poisson processes, is retrieved from our model in the limit
a → 0, because in this case we just have X = Z which is by definition inde-
pendent from Y . On the other hand, it is also apparent that in the opposite
limit a → 1 (namely when rXY goes to 1) we tend to have X = Y, P -a.s. so
that the time pairs will fall precisely on the diagonal of the two-dimensional
time, and the two Poisson processes will simply P -a.s. coincide. To see it from
another standpoint, we could look to some simulation of the pairs (Xk, Yk):
for small correlations a, the scatter plot of our pairs (Xk, Yk) tends to evenly
spread out within the first quadrant without any apparent hint to some form
of dependence; on the other hand for a near to 1 the points tend to cluster
together along the diagonal, as can be seen in the Fig. 1.

3. Copulas for Bivariate Exponentials

3.1. A Family of Copula Functions

From the discussion in Sect. 2.2, we know that the pair X,Y of correlated
rv ’s deduced from their self-decomposability has the joint cdf

H(x, y) = ϑ
(
y ∧ x

a

) [(
1 − e−λ(y∧ x

a )
)

− e−λx
(
1 − e−λ(1−a)(y∧ x

a )
)]

(3.1)

with the exponential marginal cdf ’s (the notation is here slightly simplified)

F (x) = ϑ(x)
(
1 − e−λx

)
G(y) = ϑ(y)

(
1 − e−λy

)
(3.2)

To find out the copula function C(u, v) [13] pairing X,Y , we then first remark
that

e−λx = 1 − F (x) e−λy = 1 − G(y) e−aλy = [1 − G(y)]a
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while

0 ≤ x

a
≤ y ⇐⇒ e−aλy ≤ e−λx ⇐⇒ [1 − G(y)]a ≤ 1 − F (x)

0 ≤ y ≤ x

a
⇐⇒ e−aλy ≥ e−λx ⇐⇒ [1 − G(y)]a ≥ 1 − F (x)

and then that our joint cdf (3.1) takes the form

H(x, y) = F (x) for [1 − G(y)]a ≤ 1 − F (x)

H(x, y) = F (x) − [1 − G(y)]
(

1 − 1 − F (x)
[1 − G(y)]a

)
for [1 − G(y)]a ≥ 1 − F (x)

which can also be conveniently summarized as:

H(x, y) = F (x) − [1 − G(y)]
(

1 − 1 − F (x)
[1 − G(y)]a

)+

As a consequence, we get the following family of copula functions:

Ca(u, v) = u − (1 − v)
[
1 − 1 − u

(1 − v)a

]+
= u − [(1 − v)a − (1 − u)]+

(1 − v)a−1
(3.3)

which for 0 ≤ a ≤ 1 runs between two extremal copulas

C0(u, v) = uv independent marginals
C1(u, v) = u ∧ v fully positively correlated marginals

It is easy to see that C1(u, v) also coincides with the Fréchet–Höffding upper
bound C(u, v) for copulas (see Sect. 3.3).

3.2. Bivariate Exponential Distributions

Several examples—all different from (3.3)—of bivariate distributions with
exponential marginals E1(λ) and E1(μ) can be found in the literature [13,14].
First, we find the Gumbel bivariate exponential distribution [13,15] with 0 ≤
a ≤ 1 and

H(x, y) = ϑ(x)ϑ(y)
(
1 − e−λx − e−μy + e−λx−μy−aλμ xy

)

h(x, y) = ϑ(x)ϑ(y) [a(λx + μy + aλμ xy) + 1 − a] e−λx−μy−aλμ xy

Ca(u, v) = u + v − 1 + (1 − u)(1 − v)e− a
λμ ln(1−u) ln(1−v)

It is apparent that C0(u, v) = uv gives the independent exponentials, while

C1(u, v) = u + v − 1 + (1 − u)(1 − v)e− 1
λμ ln(1−u) ln(1−v)

does not seem to correspond to some notable copula. Then, there is the
Marshall–Olkin bivariate exponential distribution [13,16,17] with 0 ≤ a, b ≤ 1
and

H(x, y) =

{
ϑ(x)ϑ(y)(1 − e−λx)1−a(1 − e−μy) if (1 − e−λx)a ≥ (1 − e−μy)b

ϑ(x)ϑ(y)(1 − e−λx)(1 − e−μy)1−b if (1 − e−λx)a ≤ (1 − e−μy)b

h(x, y) =

{
1−a

(1−e−λx)a ϑ(x)λe−λx ϑ(y)μe−μy if (1 − e−λx)a ≥ (1 − e−μy)b

1−b
(1−e−μy)b ϑ(x)λe−λx ϑ(y)μe−μy if (1 − e−λx)a ≤ (1 − e−μy)b

Ca,b(u, v) = (u1−av) ∧ (uv1−b)

{
u1−av when ua ≥ vb

uv1−b when ua ≤ vb
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In this case, C0,0(u, v) = uv again is the independent copula, while
C1,1(u, v) = u ∧ v is the Fréchet–Höffding upper bound C(u, v) (see Sec-
t. 3.3): apart from these extremal values, however, also this Marshall–Olkin
copula differs from (3.3). A third family of copulas can finally be traced back
to the Raftery bivariate exponential distribution [13,18,19]: in this case, the
copula functions are

Ca(u, v) = u ∧ v +
a

2 − a
(uv)

1
a

[
1 − (u ∨ v)1− 2

a

]

and correspond to the case of correlated exponential rv ’s X,Y which are
produced by three independent exponential rv ’s U, V and Z according to the
definitions

X ≡ aU + B(1)Z Y ≡ aV + B(1)Z

Here, at variance with our model based on self-decomposability, the corre-
lation is apparently produced by the presence of the same exponential rv Z
in both the right-hand sides of the definitions. In short, it results from these
examples that our family of copulas (3.3) seems not to have been used in
advance to couple pairs of marginal exponentials.

3.3. Fréchet–Höffding Bounds

It is well known [13] that every copula function C(u, v) falls between the
Fréchet–Höffding bounds

C(u, v) = (u + v − 1)+ ≤ C(u, v) ≤ u ∧ v = C(u, v)

and we have also found in the Sect. 3.1 that the copula C1(u, v) for our
fully correlated (rXY = 1) exponential marginals coincides with the Fréchet–
Höffding upper bound. By keeping in mind a possible generalization of our
model to the case of negatively correlated exponentials, we will briefly recall in
this section a few general features of the joint cdf ’s H(x, y) = C(F (x), G(y))
produced by the pairing of two given cdf ’s F (x) and G(x) by means of the
Fréchet–Höffding lower and upper bounds.

Let us suppose for simplicity that F (x) and G(x) are continuous and
strictly increasing functions so that the inverse functions exist, and consider
first the lower bound copula C(u, v) = (u+v−1)+: in that case, the condition
F (x) + G(y) ≥ 1 is equivalent to both the inequalities

x ≥ β(y) = F−1(1 − G(y)) y ≥ α(x) = G−1(1 − F (x))

and hence from H(x, y) = (F (x) + G(y) − 1)+ we first have

∂xH(x, y) =
{

f(x) if y ≥ α(x)
0 if y < α(x)

∂yH(x, y) =
{

g(y) if x ≥ β(y)
0 if x < β(y)

where f(x) and g(y) are the corresponding marginal pdf ’s, and then the joint
pdf is

h(x, y) = ∂x∂yH(x, y) = f(x)δ(y − α(x)) = g(y)δ(x − β(y)) (3.4)
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As a consequence we can say that the joint laws produced by the copula
C(u, v) describe pairs of coupled rv ’s X,Y satisfying P -a.s. the functional
relations

X = β(Y ) = F−1(1 − G(Y )) Y = α(X) = G−1(1 − F (X)). (3.5)

A formally identical result can be proved for the case of the upper bound
2-copula C(u, v) = u ∧ v but for the fact that now the functions α(x) and
β(y) must be redefined as:

α(x) = G−1(F (x)) β(y) = F−1(G(y)).

In the case of the lower bound copula C(u, v), it is interesting to remark
now that when for instance F (x) and G(y) are Gaussian cdf ’s the functions
α(x) and β(y) are linear with negative proportionality coefficients, so that the
pair X,Y is perfectly anti-correlated with rXY = −1. The same happens also
in the case of a pair of Student laws of the same order. This is true indeed
for every other pair of marginal laws of the same type and with support
coincident with R. On the other hand, when the marginals either are not of
the same type, or have an unbounded support strictly contained in R (as
happens for exponential laws), they apparently cannot reciprocally be in a
linear relation with negative proportionality coefficient and, hence, cannot be
totally linearly anti-correlated. In this case, it can still be proved by means of
Höffding’s Lemma (see [13, p. 190]) that the minimal correlation is reached
by means of the lower bound copula C, but now α(x) and β(y) can no longer
be linear functions, and rXY will be strictly larger than −1. By taking indeed
the Fréchet–Höffding lower bound C(u, v) = (u+v−1)+ as the copula for our
exponentials (3.2), we would find the pdf (3.4) and the functional relations
(3.5) where now

α(x) = − 1
λ

ln
(
1 − e−λx

)
β(y) = − 1

λ
ln
(
1 − e−λy

)

and a short calculation would then show that in this case

rXY = 1 − π2

6
≈ −0.645

so that this minimal anti-correlation allowed for exponential rv ’s would in
any case be larger than −1. It could in fact be proved in general (see [13, p.
30–32]) that, when X and Y are continuous, Y is almost surely a decreasing
function of X if and only if the copula of X and Y is C. Random variables with
copula C are often called countermonotonic. We postpone to a subsequent
enquiry a detailed study of negatively correlated exponentials.

4. Correlated Poisson Processes

Following the discussion of Sect. 2, it is easy now to produce a sequence of
rv ’s by independently iterating the definition (2.3)

Xk = aYk + Bk(1)Zk k = 1, 2, . . . (4.1)

in such a way that for every k: Xk, Yk, Zk are E1(λ), Bk(1) are B(1, 1 − a),
and Yk, Zk, Bk(1) are mutually independent. The pairs (Xk, Yk) instead will
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Figure 2. Sample pairs of the two-dimensional point process
(Tn, Sn) with correlation rXY = 0.01: on the left, the points
are compared with the average trend (n

λ , n
μ ); on the right,

they are instead plotted after centering around these aver-
ages

be a-correlated for every k. Add moreover X0 = Y0 = Z0 = 0, P -a.s. to the
list, and take then the point processes for n = 0, 1, 2, . . .

Tn =
n∑

k=0

Xk Sn =
λ

μ

n∑
k=0

Yk Rn =
n∑

k=0

Zk. (4.2)

Since the Xk ∼ E1(λ) are iid rv ’s, we know that Tn ∼ En(λ) are distributed as
Erlang (gamma) laws with pdf ’s λfn(λx) and chf ’s ϕn(u/λ) (see Appendix A
for notations) where it is understood that T0 ∼ E0 = δ0. In a similar way,
we can argue that Sn ∼ En(μ) and Rn ∼ En(λ). We will finally denote with
N(t) ∼ P(λt) and M(t) ∼ P(μt) the correlated Poisson processes associated,
respectively, with Tn and Sn.

In order to get a first look to these processes, we generate n = 1000
pairs (Xk, Yk) with the associated two-dimensional point process (Tn, Sn),
and then we simulate the corresponding Poisson processes N(t) and M(t).
The pairs (Tn, Sn) are first plotted along with their average time increases
(n

λ , n
μ ), and then after centering around these averages, namely as

Tn − n

λ
Sn − n

μ
n = 1, 2, . . . , 1 000

In this second rendering, the random behavior is magnified by consistently
reducing the plot scale to a suitable size. In the same way for the Poisson
processes, we first show samples of the pair N(t),M(t), and then that of their
compensated versions Ñ(t) = N(t) − λt and M̃(t) = M(t) − μt.

In Fig. 2, we plotted the two-dimensional point process (Tn, Sn) with
λ = μ = 1 and a = rXY = 0.01: since the correlation among the renewals
is negligible, the right-hand plots (centered around the averages) apparently
show a random behavior. In Fig. 3, instead we took a = rXY = 0.99, namely
we generated strongly and positively correlated renewals. In this second case,
as it was to be expected, the centered time pairs fall into line among them-
selves. As for the Poisson processes themselves, in Fig. 4, the trajectories on
the left-hand side have a = 0.01 correlation and look fairly independent, after
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Figure 3. Sample pairs of the two-dimensional point process
(Tn, Sn) with correlation rXY = 0.99: on the left, the points
are compared with the average trend (n

λ , n
μ ); on the right,

they are instead plotted after centering around these aver-
ages

Figure 4. On the left, sample paths of the two Poisson pro-
cesses N(t) and M(t) with correlation rXY = 0.01 are shown;
on the right, we instead have the corresponding compensated
Poisson processes Ñ(t) and M̃(t)

suitable compensation, of the right-hand side. In Fig. 5, instead we took a
correlation a = 0.99 and the compensated trajectories are now almost super-
imposed. Remark as on the left-hand sides of these figures both the Poisson
processes and the time pairs appear to be quite near to one another, and to
their averages because of a scale effect which is eliminated by compensation
and centering in the corresponding right-hand sides.

Proposition 4.1. The rv’s

ζn ≡
n∑

k=0

Bk(1)Zk

turn out to be the sum of a (random) binomial number B(n) ∼ B(n, 1−a) of
iid exponentials E1(λ), and hence they follow an Erlang law with a random
index B(n) (here B(0) = 0), namely

ζn =
B(n)∑
k=0

Zk ∼ EB(n)(λ)
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Figure 5. On the left, sample paths of the two Poisson pro-
cesses N(t) and M(t) with correlation rXY = 0.99 are shown;
on the right, we instead have the corresponding compensated
Poisson processes Ñ(t) and M̃(t)

Proof. This is better seen from the point of view of the mixtures by remarking
that, if ϕ1(u/λ) is the chf of E1(λ), we have from (2.2) (see also Appendix A)

ϕζn
(u) = E

[
eiuζn

]
= E

[
n∏

k=0

eiuBk(1)Zk

]
=

n∏
k=0

E
[
eiuBk(1)Zk

]

=
[
a + (1 − a)ϕ1

(u

λ

)]n

=
n∑

k=0

(
n

k

)
an−k(1 − a)kϕk

1

(u

λ

)

=
n∑

k=0

βk(n)ϕk

(u

λ

)

which, if ϕk(u) = [ϕ1(u)]k are the chf of Ek(1), eventually is a mixture of
Erlang laws Ek(λ) with the binomial weights βk(n). It is understood here
that ϕ0

1(u) = 1, so that E0(λ) = δ0 and f0(x) = δ(x) (see Appendix A). �

A straightforward consequence of the previous proposition (which ap-
parently just amounts to acknowledge a subordination) is that now from

n∑
k=0

Xk = a

n∑
k=0

Yk +
n∑

k=0

Bk(1)Zk

we will also have

Tn =
aμ

λ
Sn + ζn =

aμ

λ
Sn +

B(n)∑
k=0

Zk =
aμ

λ
Sn + RB(n) (4.3)

where RB(n) ∼ EB(n)(λ) is the point process Rn with a random index B(n).
It is worthwhile to notice that the previous results also substantiate the

well-known fact that the Erlang rv ’s are self-decomposable too: the explicit
knowledge of the ζn law allows indeed to construct pairs of dependent Erlang
rv ’s with correlation a.



MJOM Coupling Poisson Processes Page 13 of 25 69

5. The Joint Distribution

Our main task is now to explicitly calculate the joint distribution of our
Poisson processes at arbitrary times s, t ≥ 0 and n,m = 0, 1, 2, . . .

pm,n(s, t) = P {M(s) = m, N(t) = n}
= P {Sm ≤ s < Sm+1, Tn ≤ t < Tn+1}

and to this effect we first remark (in a slightly simplified notation) that

pm,n = P {M(s) ≥ m, N(t) ≥ n} − P {M(s) ≥ m + 1, N(t) ≥ n}
−P {M(s) ≥ m, N(t) ≥ n + 1} + P {M(s) ≥ m + 1, N(t) ≥ n + 1}

= qm,n − qm+1,n − qm,n+1 + qm+1,n+1 (5.1)

where

qm,n(s, t) = P {M(s) ≥ m, N(t) ≥ n} = P {Sm ≤ s, Tn ≤ t}
so that by taking

w =
λr

a
y =

λt

a
z =

λt − aμs

a
< y

from (4.3) we are reduced to calculate (see also Appendix A).

qm,n = P
{

Sm ≤ s,
aμ

λ
Sn + RB(n) ≤ t

}

=
n∑

�=0

β�(n)
∫ ∞

0

drλf�(λr)

P
{

Sm ≤ s,
aμ

λ
Sn + RB(n) ≤ t

∣∣∣R� = r,B(n) = 	
}

= λ

n∑
�=0

β�(n)
∫ t

0

drf�(λr)P
{

Sm ≤ s, Sn ≤ λ
t − r

aμ

}

= a

∫ y

0

dw hn(aw)P
{

Sm ≤ y − z

μ
, Sn ≤ y − w

μ

}
(5.2)

where λhn(λx) is the (Erlang binomial mixture) pdf of RB(n).

Proposition 5.1. For n,m = 0, 1, 2, . . . and ρ, τ ≥ 0, we have

P {Sm ≤ ρ, Sn ≤ τ} = Πm∨n (μ(ρ ∧ τ))

+ [Θn−mϑ(τ − ρ) + Θm−nϑ(ρ − τ)]

×
(m∨n)−1∑
k=m∧n

Π(m∨n)−k (μ|ρ − τ |) πk (μ(ρ ∧ τ))

with the notations adopted in the Appendix A for the Poisson laws.

Proof. See Appendix B for a detailed proof. �
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Of course in (5.2), we take in particular

ρ =
y − z

μ
= s τ =

y − w

μ
= λ

t − r

aμ

It is apparent that this result will be instrumental to calculate first qm,n(s, t)
in (5.2), and then the distributions pm,n(s, t).

Proposition 5.2. If aμs ≥ λt, then pm,n(s, t) = 0 whenever m < n

Proof. Since our renewals Xk, Yk, Zk are all non-negative rv ’s, the point pro-
cesses are always non-decreasing

Sm ≤ Sm+1 Tn ≤ Tn+1 m,n = 0, 1, 2, . . .

while

Tn =
aμ

λ
Sn +

B(n)∑
k=0

Zk ≥ aμ

λ
Sn

Now, if M(s) = m and N(t) = n, we must have both Sm ≤ s < Sm+1 and
Tn ≤ t < Tn+1. Suppose now 0 ≤ m < n, namely m+1 ≤ n and Sm+1 ≤ Sn:
then

aμ

λ
s <

aμ

λ
Sm+1 ≤ aμ

λ
Sn ≤ Tn ≤ t

which apparently contradicts the hypothesized inequality. �

As a consequence when aμs ≥ λt we can always restrict our calculations to
the case m ≥ n ≥ 0. We can now finally state our complete results about the
joint distributions pm,n(s, t).

Proposition 5.3. Take for short

y =
λt

a
> 0 z =

λt − aμs

a
< y

Then, when aμs > λt, namely z < 0, we have

pm,n(y, z) =

⎧
⎨
⎩

0 n > m ≥ 0
Qn,n(y, z) m = n ≥ 0
Qm,n(y, z) − Qm,n+1(y, z) m > n ≥ 0

(5.3)

where we defined

Qm,n(y, z) = a

∫ y

0

dw hn(aw)
m∑

k=n

πm−k(w − z)πk(y − w) m ≥ n ≥ 0

(5.4)

When instead aμs < λt, and hence 0 < z < y, we have

pm,n(y, z)

=

⎧
⎨
⎩

Am,n(y, z) − Am,n+1(y, z) + Bm,n(y, z) − Bm,n−1(y, z) n > m ≥ 0
An,n(y, z) − An,n+1(y, z) + Bn,n(y, z) + Cn,n(y, z) m = n ≥ 0
Am,n(y, z) − Am,n+1(y, z) + Cm,n(y, z) − Cm,n+1(y, z) m > n ≥ 0

(5.5)
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where we defined

Am,n(y, z) = a

∫ z

0

dw hn(aw)πm(y − z) n,m ≥ 0

(5.6)

Bm,n(y, z) = a

∫ z

0

dw hn+1(aw)
n−m∑
k=0

πk(z − w)πm(y − z) n ≥ m ≥ 0

(5.7)

Cm,n(y, z) = a

∫ y

z

dw hn(aw)
m∑

k=n

πm−k(w − z)πk(y − w) m ≥ n ≥ 1

(5.8)

while for m ≥ n = 0 we always have Cm,0(y, z) = 0. Moreover, both the
results for z < 0 and for 0 < z < y connect with continuity in z = 0 in the
sense that

pm,n(y, 0−) = pm,n(y, 0+) m,n ≥ 0

Proof. Take first the case aμs > λt, namely z < 0, and recall that for the
integration variable in (5.2) it is 0 ≤ w ≤ y. As a consequence, when the
Proposition 5.1 in used in(5.2), we will always have

0 ≤ τ =
y − w

μ
≤ y − z

μ
= s = ρ (5.9)

On the other hand, since the conditions of the Proposition 5.2 are met, we
can also restrict ourselves to evaluate pm,n(s, t) for 0 ≤ n ≤ m. Then, by
considering separately the cases m = n ≥ 0 and m > n ≥ 0, from (5.2) and
from the Proposition 5.1 we first calculate qm,n, qm+1,n, qm,n+1 and qm+1,n+1,
and finally (lengthy algebra is omitted [12]) from (5.1) we find (5.3).

When, on the other hand, aμs < λt (namely y > z > 0 and 0 < w < y)
and we use Proposition 5.1 in (5.2), instead of (5.9) we find

0 ≤ τ =
y − w

μ
0 ≤ ρ = s =

y − z

μ
(5.10)

so that ρ and τ can now be in an order whatsoever. As a consequence, Propo-
sition 5.2 does not hold, and we must consider all the possible orderings of
m,n. Following then, the same line of reasoning as before, and always taking
separately the different n,m orderings, a tedious calculation [12] gives first
the q’s from (5.2), and eventually the p’s of our proposition from (5.1).

We finally show that the values of pm,n(y, z) separately listed in the
Proposition 5.3 for z < 0 and z > 0 connect with continuity in z = 0, in the
sense that for every y > 0

pm,n(y, 0−) = pm,n(y, 0+)
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For z < 0 (namely aμs > λt) the results are given in (5.3) and (5.4), so that
for z ↑ 0− and every m,n ≥ 0, we simply have

pm,n(y, 0−) = 0 n > m ≥ 0
(5.11)

pn,n(y, 0−) = a
y∫
0

dw hn(aw)π0(w)πn(y − w) n = m ≥ 0

(5.12)

pm,n(y, 0−) = a
y∫
0

dw {hn+1(aw)πm−n(w)πn(y − w) m > n ≥ 0

+ [hn(aw) − hn+1(aw)]
∑m

k=n πm−k(w)πk(y − w)}
(5.13)

On the other hand, when z > 0 (namely aμs < λt) we have (5.5), (5.6),
(5.7) and (5.8), so that now z appears also as an integration limit, and some
care should be exercised for z ↓ 0+. When indeed the integrand contains
the distribution δ(x), as in fact happens in every first term of hn(x) which is
β0(n)δ(x) = anδ(x) (see also Appendix A), we have for every regular function
ξ(x)

lim
z↓0+

∫ z

0

ξ(x)δ(x) dx = ξ(0) lim
z↓0+

∫ y

z

ξ(x)δ(x) dx = 0.

As a consequence, we have

lim
z↓0+

∫ z

0

dx ξ(x)hn(x) = anξ(0)

lim
z↓0+

∫ y

z

dx ξ(x)hn(x) =
∫ y

0

dx ξ(x)
n∑

k=1

βk(n)fk(x).

With this provisions in mind, it is then only a question of sheer calculation
[12] to show that the pm,n(y, z) for z > 0 as given in (5.5), (5.6), (5.7)
and (5.8) correctly converge to the values (5.11), (5.12) and (5.13) for every
possible ordering of n,m. For instance for n > m ≥ 0, with x = aw and
recalling also that πk(0) = δk,0 (so that πn−m(0) = 0 because n > m), in the
limit z ↓ 0+, we immediately have

pm,n(y, 0+)

= πm(y)
∫ 0+

0

dx

[
an − an+1 + anπn−m(0) − (an − an+1)

n−m∑
k=0

πk(0)

]
δ(x)

= πm(y)

[
an − an+1 − (an − an+1)

n−m∑
k=0

δk,0

]
= 0

and so on for the other two cases. �

Proposition 5.4. The terms Q,A,B and C in the Proposition 5.3 can be
expressed in terms of finite combinations of elementary functions: when z < 0
(namely aμs > λt), we have for m ≥ n ≥ 0
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Qm,n(y, z) =
m∑

k=n

m∑
j=k

(−1)j−k

aj

(
j

k

) n∑
�=0

β�(n)

πm−j(y − z)πj+�(ay)Φ(j + 1; j + 	 + 1; ay) (5.14)

Here and in the following Φ(α;β;x) are confluent hypergeometric functions.
When instead z > 0 (namely aμs < λt), we have for every n,m ≥ 0

Am,n(y, z) = πm(y − z)
n∑

k=0

βk(n)

⎡
⎣1 + πk(az) −

k∑
j=0

πj(az)

⎤
⎦ (5.15)

while for n ≥ m ≥ 0 it is

Bm,n(y, z) = πm(y − z)
n−m∑
k=0

πk (z)
n+1∑
�=0

β�(n + 1) (5.16)

× (az)�k!
(k + 	)!

Φ (	, k + 	 + 1, (1 − a)z)

and for m ≥ n ≥ 1 (for m ≥ n = 0 we always have Cm,0(y, z) = 0), it is

Cm,n(y, z) =
e−(1−a)(y−z)

am

n∑
�=1

β�(n)
m∑

k=n

�−1∑
j=0

(−1)�−1−j

(
k + 	 − j − 1

k

)

πj(ay)πm+�−j(a(y − z))Φ(k + 	 − j,m + 	 − j + 1, a(y − z)) (5.17)

Finally, since the parameters α, β of the Φ(α, β, x) involved in the previous
equations are integer numbers with 0 ≤ α < β, our confluent hypergeometric
functions are just finite combinations of powers and exponentials according
to the following formulas:

Φ(0 , β, x) = 1 β > α = 0

Φ(α, β, x) = ex
α∑

γ=1

(−1)α−γ

(
β − γ − 1
β − α − 1

)
πγ−1(x)
πβ−1(x)

Πα−γ+1(x) β > α ≥ 1

Proof. The detailed proof unfolds along a sequence of integrations based on
known results and is here omitted for the sake of brevity [12]. �
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We end this section with a short list of a few explicit examples of joint
probabilities holding in the region aμs ≥ λt:

p0,0(s, t) = e−μs

p1,0(s, t) =
e−μs

a

[
(1 − a)(1 − e−λt) + aμs − λt

]

p1,1(s, t) =
e−μs

a

[
λt − (1 − a)(1 − e−λt)

]

p2,0(s, t) =
e−μs

2a2

[
2(1 − a)(1 + aμs)(1 − e−λt) + (aμs − λt)2 − 2(1 − a)λt

]

p2,1(s, t) =
e−μs

a2

[
(1 − a)(a − 4 − (1 − a)λt − aμs)(1 − e−λt)

+λt(a2 − 5a + 4 + aμs − λt)
]

p2,2(s, t) =
e−μs

2a2

[
2(1 − a)(3 − a + (1 − a)λt)(1 − e−λt)

+λt(λt − 2(1 − a)(3 − a))]

6. Cross-Correlations and Relative Timing

In this section, we will briefly discuss the main correlation properties of the
two processes. We first of all look at the point processes and we remark that,
by recasting the self-decomposability equation (4.1) in the form

Xk =
aμ

λ
Wk + Bk(1)Zk Wk =

λ

μ
Yk ∼ E1(μ)

the point processes appear as

Tn =
n∑

k=0

Xk Sn =
n∑

k=0

Wk

where now Xk ∼ E1(λ) and Wk ∼ E1(μ) play at once the role of the correlated
renewals. It is interesting to point out then that, at variance with other
models [7], we are no longer tied to take truly coincident shocks: we will show
indeed that with non-zero probabilities the values of the paired and correlated
renewals Xk,Wk (waiting times) can be in an order whatsoever, and they
would almost never coincide. As a consequence, the propagation of the shocks
from a process to the other will quite plausibly happen with delays whose
random sizes (and directions) could also be modeled by suitably choosing our
parameters a, λ and μ. And moreover the random times Tn and Sn will be
correlated by the summing up of the renewals, but will never fall at the same
instant. This relative timing apparently allows for an enhanced flexibility of
the model in the practical applications, because we no longer have to rely on
common shocks, but rather on correlated and randomly delayed ones.

More precisely, we can now single out two possible regimes for our pro-
cesses: aμ/λ ≤ 1 and aμ/λ > 1. It is then easy to see that for every k = 1, 2, . . .

Xk =
aμ

λ
Wk + Bk(1)Zk ≥ aμ

λ
Wk > Wk

aμ

λ
> 1
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Figure 6. Cross-correlation ρ(s, t) of the two Poisson pro-
cesses M(s) and N(t) estimated by Monte Carlo simulations.
Here, a = 0.5, and λ = μ = 20, namely aμ/λ = 0.5 < 1

and, hence, we first of all have

P {Xk > Wk} = 1
aμ

λ
> 1

On the other hand for aμ/λ ≤ 1, the probability P {Xk > Wk} can still be
explicitly calculated by taking into account the laws specified in the Sect. 4,
and in this case it is possible to show that

P {Xk > Wk} =
(1 − a)μ

λ + (1 − a)μ
aμ

λ
≤ 1

a value ranging from 0 to 1 according to the different possible choices of the
parameters a, λ and μ.

As for the relative timings Tn, Sm of the shocks along the point processes
themselves, an explicit calculation of P {Tn ≤ Sm} is certainly possible, but
its results would turn out to be rather cumbersome because it would involve
two or three convolutions of (positive and negative) Erlang laws with different
parameters. We will then confine ourselves here to produce just the cross-
correlations between Tn, Sm: since it is easy to check that

cov [Xk,W�] =
a

λμ
δk�

it is also apparent that

cov [Tn, Sm] =
n∑

k=1

m∑
�=1

cov [Xk,W�] =
a

λμ

n∑
k=1

m∑
�=1

δk� =
a

λμ
m ∧ n

and, hence, the cross-correlation coefficient of Tn, Sm will simply be

rnm = a
n ∧ m√

nm
=
{

a
√

n/m for n ≤ m

a
√

m/n for n ≥ m
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Figure 7. Cross-correlation ρ(s, t) of the two Poisson pro-
cesses M(s) and N(t) estimated by Monte Carlo simulations.
Here, a = 0.8, λ = 20 and μ = 40, namely aμ/λ = 1.6 > 1

Finally, even closed formulas for the cross-correlation coefficient ρ(s, t)
between the Poisson processes M(s) and N(t) are still derivable on the ground
of our previous results about the joint distributions, but it would be too long
to thoroughly elaborate them here. As an alternative we have chosen to show
the plots of their estimates based on a sample of 105 Monte Carlo simulations
of their trajectories as shown in the Figs. 6 and 7. There the behavior is
displayed of ρ(s, t) as a function of t for different, fixed values of s. More
precisely, in Fig. 6 we have taken a = 0.5 and λ = μ = 20 as the values for
the relevant parameters of our coupled processes (then we have aμ/λ < 1),
while in the Fig. 7 the same parameters are a = 0.8, λ = 20 and μ = 40 (and
then aμ/λ > 1). It is apparent from these pictures that the behavior of ρ(s, t)
is comparable to that of the self-correlation of a simple Poisson process, but
for the fact that the cumulative effect of the correlate renewals produces a
smoothing of the shape around the maximum values near t = s. At first sight,
this could look as a little difference, but in the domain, for instance, of the
financial applications even small deviations among the models could produce
huge differences in gains and losses.

7. Conclusions and Further Inquiries

It is apparent that, within the model discussed in the Sect. 2, from the self-
decomposability alone we can only get pairs of rv ’s X,Y with positive cor-
relations 0 < rXY < 1 steered by the value of a parameter a. It would be
interesting, however, to widen the scope of our models to achieve also Pois-
son processes whose correlation can span over all its possible values (both
positive and negative) by changing the value of some numerical parameter.
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In this respect, it is important to remark—as pointed out in the Sect. 3.3—
that while two rv ’s X and Y which are, for instance, marginally exponentials
can also be totally correlated (rXY = 1), they cannot instead be totally anti-
correlated (rXY = −1) because this would imply some linear dependence
with a negative proportionality coefficient, and that would be at odds with
the fact that both our rv ’s take arbitrary large, but only positive values.
Hence, two exponential rv ’s X and Y can always have a negative correlation,
but only up to a minimal value which in any case must be larger than −1.
We also showed in Sect. 3.3 that this minimum is reached; when between X
and Y there is a peculiar kind of mutual functional, decreasing dependence,
albeit clearly not a linear one. A model to produce pairs X,Y of rv ’s which
are marginally exponentials, and which—following the value of a numerical
parameter a—show all the possible correlation values will be discussed in a
subsequent paper.

Our results in any case show that the self-decomposability, joined with
the subordination techniques, can be a promising tool to study dependency
beyond the Gaussian-Itô world. We have shown indeed how to obtain de-
pendent exponential (gamma) rv ’s that can be used to create and simulate
dependent Poisson processes without resorting to definitely coincident jumps,
but the path is now open to produce more general dependent gamma (Erlang
at first) rv ’s to simulate dependent variance gamma processes. A further ex-
tension could then be to study the self-decomposability of density function-
s that have a strictly proper rational characteristic function (Exponential
Polynomial Trigonometric, EPT laws) in order to construct 2-dimensional
correlated EPT rv ’s (see for instance [20,21]). Finally, it would be expedi-
ent to explore the Markov properties of the 2-component Poisson processes
(M, (t), N(t)) with dependent marginals that we have introduced in this pa-
per and the Master equations ruling them: this too will be the subject of
future inquiries.
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Appendix A: Notations

All along this paper we will adopt the following notations: for a Poisson law
P(α), we will introduce the symbols

πn(α) =
αn

n!
e−α Πn(α) =

∞∑
k=n

πk(α) α > 0 n = 0, 1, 2 . . .

and for a binomial law B(n, 1 − a) the notation

βk(n) =
{

1 n = 0, k = 0(
n
k

)
an−k(1 − a)k n = 1, 2, . . . , k = 0, . . . , n

0 ≤ a ≤ 1
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It will be understood moreover that

πn(0+) = δn,0

We will also use but the Heaviside function ϑ, and the Heaviside symbol Θ

ϑ(x) =
{

1 x ≥ 0
0 x < 0 Θj =

{
1 j ≥ 1
0 j ≤ 0 j = 0,±1,±2, . . .

The pdf and chf of a standard Erlang law En(1) moreover will be denoted
as:

fn(x) =

{
δ(x)

xn−1

(n−1)!e
−xϑ(x) ϕn(u) =

{
1 n = 0(
1

1−iu

)n

n = 1, 2, . . .

where it is understood for the Dirac delta δ(x) that for every b > 0

∫ b

0

δ(x) dx = 1 lim
z↓0+

∫ b

z

δ(x) dx = 0

Remark also that apparently

fn(x) = πn−1(x)ϑ(x) n = 1, 2, . . .

We will finally define for later convenience the functions

hn(x) =
n∑

k=0

βk(n)fk(x) n = 0, 1, 2, . . .

which are the pdf ’s of the mixtures of Erlang laws Ek(1) with binomial
B(n, 1 − a) weights for their indices k.

Appendix B: A Proof of Proposition 5.1

To evaluate P {Sm ≤ ρ, Sn ≤ τ}, we first remark that

P {Sm ≤ ρ, Sn ≤ τ} = P {M(ρ) ≥ m, M(τ) ≥ n}

and then that, being a Poisson process, M(t) is non-decreasing: as a conse-
quence

m ≤ n and τ ≤ ρ =⇒ M(τ) ≤ M(ρ) hence {M(τ) ≥ n} ⊆ {M(ρ) ≥ m}
n ≤ m and ρ ≤ τ =⇒ M(ρ) ≤ M(τ) hence {M(ρ) ≥ m} ⊆ {M(τ) ≥ n}

In the case m ≤ n we then have for τ ≤ ρ

P {M(ρ) ≥ m, M(τ) ≥ n} = P {M(τ) ≥ n}
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while for ρ ≤ τ from the general properties of a Poisson process, we get

P {M(ρ) ≥ m, M(τ) ≥ n}

=
∞∑

k=m

P {M(ρ) ≥ m, M(τ) ≥ n |M(ρ) = k} P {M(ρ) = k}

=
n∑

k=m

P {M(τ) ≥ n |M(ρ) = k} P {M(ρ) = k} + P {M(ρ) > n}

=
n∑

k=m

P {M(τ − ρ) ≥ n − k} P {M(ρ) = k} + P {M(ρ) > n}

In the same vein, when n ≤ m we have for ρ ≤ τ

P {M(ρ) ≥ m, M(τ) ≥ n} = P {M(ρ) ≥ n}
while for τ ≤ ρ we get

P {M(ρ) ≥ m, M(τ) ≥ n}

=
∞∑

k=m

P {M(ρ) ≥ m, M(τ) ≥ n |M(τ) = k} P {M(τ) = k}

=
m∑

k=n

P {M(ρ) ≥ m |M(τ) = k} P {M(τ) = k} + P {M(τ) > m}

=
m∑

k=n

P {M(ρ − τ) ≥ m − k} P {M(τ) = k} + P {M(τ) > m}

Remark that for m = n both the cases lead to the same result, namely

P {M(ρ) ≥ n, M(τ) ≥ n} =
{

P {M(τ) ≥ n} when τ ≤ ρ
P {M(ρ) ≥ n} when ρ ≤ τ

that can also be conveniently summarized as:

P {M(ρ) ≥ n, M(τ) ≥ n} = P {M(ρ ∧ τ) ≥ n}
On the other hand for m < n, we have

for τ ≤ ρ P {M(τ) ≥ n}

for ρ ≤ τ P {M(ρ) ≥ n} +
n−1∑
k=m

P {M(τ − ρ) ≥ n − k} P {M(ρ) = k}

that can also be put in the form

P {M(ρ ∧ τ) ≥ n} + ϑ(τ − ρ)
n−1∑
k=m

P {M(τ − ρ) ≥ n − k} P {M(ρ) = k}

while for m > n it is

for τ ≤ ρ P {M(τ) ≥ m} +
m−1∑
k=n

P {M(ρ − τ) ≥ m − k} P {M(τ) = k}

for ρ ≤ τ P {M(ρ) ≥ m}
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namely

P {M(ρ ∧ τ) ≥ m} + ϑ(ρ − τ)
m−1∑
k=n

P {M(ρ − τ) ≥ m − k} P {M(τ) = k}

In both cases, the first terms can expressed as P {M(ρ ∧ τ) ≥ m ∨ n}, and
in this form they also coincide with the previous result for m = n. On the
other hand, the extra term with the sum (which is absent for m = n) must be
taken in consideration either when we have both m < n and ρ ≤ τ , or when
it is m > n and τ ≤ ρ. All these provisions can then be comprehensively
taken into account in the formula

P {Sm ≤ ρ, Sn ≤ τ}
= P {M(ρ ∧ τ) ≥ m ∨ n} + [Θn−mϑ(τ − ρ) + Θm−nϑ(ρ − τ)]

·
(m∨n)−1∑
k=m∧n

P {M(|ρ − τ |) ≥ (m ∨ n) − k} P {M(ρ ∧ τ) = k}

which finally takes the form of Proposition 5.1 using the notations adopted
in the Appendix A for the Poisson distributions and the Heaviside symbols.
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