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Abstract

We review the well known Bertrand paradoxes, and we first maintain that they
do not point to any probabilistic inconsistency, but rather to the risks incurred
with a careless use of the locution at random. We claim then that these
paradoxes spring up also in the discussion of the celebrated Buffon’s needle
problem, and that they are essentially related to the definition of (geometrical)
probabilities on uncountably infinite sets. A few empirical remarks are finally
added to underline the difference between passive and active randomness, and
the prospects of any experimental decision
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1 The Bertrand paradoxes

In the first chapter of his classic treatise [1] Joseph Bertrand dwells for a while on
the definition of probability, and in particular – in the paragraphs 4-7 – he remarks
that the random models with an infinite number of possible results are prone to
particularly insidious misunderstandings1. He lists then a few examples of problems
each admitting equally legitimate, but contradictory answers and suggests then that
our questions are ill posed, or more precisely that the required probabilities, based on
some at random (au hasard) choice, “sont impossibles à assigner si la question n’est
pas précisée davantage” (see [1] p. 7). How it will be made clear later, however – and

1“L’infini n’est pas un nombre; on ne doit pas, sans explication, l’introduire dans les raison-
nements ... Choisir au hasard entre un nombre infini de cas possibles, n’est pas une indication
suffisante.” See [1] p. 4
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how it was likely clear to Bertrand himself – the crucial point is less the infinity of
the possible outcomes, than their uncountable infinity: a feature shared with other
time honored problems, as for instance that of Buffon’s needle also discussed later
in the present paper. There is room to argue indeed that even for countably infinite
sample spaces the paradoxes do not arise because the very notion of at random –
as long as it is associated with some idea either of equiprobability or of uniformity

– that has not there a straight extension, can be asymptotically retrieved in a way
free from ambiguities. Bertrand on the other hand, while correctly pointing out
that the questions proposed in his examples are fallacious exactly because our use
of the said locution is too careless, fails to elaborate further on this point leaving
the reader with the odd feeling that something could be inconsistent in the general
notion of randomness. A negligence extended – with few notable exceptions [2, 3] –
also to many of the modern textbooks that still bother to mention this topic2

The aim of the present paper is then to address this very point: what are the
root and the scope of these seeming inconsistencies? And in accomplishing our task
we will linger first in the Section 2 on the example that is widely acknowledged
today as the paradigmatic Bertrand paradox because its results look especially puz-
zling. We will then proceed in Section 3 to extend similar remarks to the Buffon
needle problem, and in Section 4 to argue that while the paradoxes certainly arise in
the event of (geometrical) probabilities defined on uncountably infinite sets, asymp-
totically equiprobable countably infinite sets (as for instance the rational numbers
discussed in the Appendix A) seem to share the fate of finite sets in avoiding these
ambiguities. In the last Section 5 we will finally conclude by adding a few remarks
about the meaning of a possible experimental discrimination among the different
legitimate solutions

2 The circle, the triangle and the chord

Usually the problem is proposed in the following way: looking at the Figure 1, take
at random a chord on the circle Γ of radius 1: what is the probability that its length
will exceed that of the edge of an inscribed equilateral triangle (namely will exceed√
3)? Three acceptable solutions are possible, but their answers are all numerically

different (we always make reference to the Figure 1):

1. To take a chord at random is equivalent to choose the location of its middle
point (its orientation would be an aftermath), and to get the chord longer than
the triangle edge it is necessary and sufficient to take this middle point inside
the concentric circle γ with radius 1/2 inscribed in the triangle. The required

2See for instance [4] whose final remarks (p. 9) are not really helpful: “We have thus found not
one but three different solutions for the same problem! One might remark that these solutions
correspond to three different experiments. This is true but not obvious and, in any case, it demon-
strates the ambiguities associated with the classical definition, and the need for a clear specification
of the outcomes of an experiment and the meaning of the terms ‘possible’ and ‘favorable’ ”
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Figure 1: Bertrand’s paradox

probability is then the ratio between the area π/4 of γ and the area π of Γ,
and consequently we have p1 =

1/4

2. By symmetry the position of one chord endpoint along the circle is immaterial
to our calculations: then, for a given endpoint, the chord length will only be
contingent on the angle (between 0 and π) with the tangent line τ in the chosen
endpoint. If then we draw the triangle with one vertex in the chosen endpoint,
the chord at random will exceed its edge if the angle with the tangent falls
between π/3 and 2π/3, and the corresponding probability will be p2 =

1/3

3. Always by symmetry, the random chord direction does not affect the required
probability. Fix then such a direction, and remark that the chord will exceed√
3 if its intersection with the orthogonal diameter falls within a distance from

the center smaller than 1/2: this happens with probability p3 =
1/2

We are then left with three different (1/4,
1/3 and 1/2), but equally acceptable an-

swers. To find the paradox origin we must remember that taking a number at

random in an uncountably infinite domain usually means that this number is there
uniformly distributed. It is possible to show however (as also hinted in [2]) that
what is considered as uniformly distributed in every single proposed solution can
not at the same time be uniformly distributed in the other two: in other words,
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Figure 2: Supports of the uniform pdf ’s (1), (2) and (3): the shaded areas correspond
to the three Bertrand probabilities p1, p2 and p3

in our three solutions – by differently choosing what is uniformly distributed – we
surreptitiously adopt three different probability distributions, and consequently it
is not astonishing at all that the three answers mutually disagree

To be more precise, let us define (see Figure 1) the three rv (random variable)
pairs representing the coordinates describing the position of our chord in the three
proposed solutions:

1. the Cartesian coordinates (X, Y ) of the chord middle point

2. the angles (A,B) respectively giving the position of the fixed endpoint and
the chord orientation w.r.t. the tangent

3. the polar coordinates (R,Θ) of the chord-diameter intersection

In every instance however we apparently make the concealed (namely not explicitly
acknowledged) hypothesis that the corresponding pair of coordinates is uniformly
distributed, but these three assumptions are not mutually consistent, as we will see
at once, because they require three different probability measures on the probability
space where all our rv ’s are defined. In particular, and by adopting the notation

χ[a,b](x) =

{

1, if a ≤ x ≤ b;
0, else

the three solutions respectively assume the following uniform, joint distributions
(see also Figure 2 for a graphical account of their respective supports):

1. the joint, uniform pdf on the unit circle in R
2

fXY (x.y) =
1

π
χ[0,1](x

2 + y2) (1)

for the pair (X, Y ): here the two rv ’s X and Y are not independent
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2. the joint, uniform pdf on the rectangle [0, 2π]× [0, π] in R
2

fAB(α, β) =
1

2π2
χ[0,2π](α)χ[0,π](β) (2)

for the pair (A,B) with independent components

3. and finally the joint, uniform pdf on the rectangle [0, 1]× [−π, π] in R
2

fRΘ(r, θ) =
1

2π
χ[0,1](r)χ[−π,π](θ) (3)

for the pair (R,Θ) again with independent components

Surely enough, if we would adopt a unique probability space for all of our three
solutions, the three numerical results would be exactly coincident, but in this case
only one of the three rv pairs could possibly be uniformly distributed, while the
other joint distributions should be derived by adopting the well known procedures
established for the functions of rv ’s (see for instance [4], Sections 5.2, 6.2 and 6.3).
The crucial point here is that there are in fact some precise transformations allowing
the change from a pair of rv ’s to the other: by using these transformations we can
show indeed that if a pair is jointly uniform, then the other two can not have the
same property

Without going into the details of every possible combination in our problem, we
will confine ourselves to discuss just the relations between the solutions (1) and (3).
The transformations between the Cartesian coordinates (X, Y ) and the polar ones
(R,Θ) are well known:

{

x = r cos θ
y = r sin θ

{

r =
√

x2 + y2 0 < r
θ = arctan y/x −π < θ ≤ π

with a Jacobian determinant

J(r, θ) =

∣

∣

∣

∣

∂r/∂x
∂r/∂y

∂θ/∂x
∂θ/∂y

∣

∣

∣

∣

=

∣

∣

∣

∣

cos θ sin θ
− 1/r sin θ

1/r cos θ

∣

∣

∣

∣

=
1

r

As a consequence (see for instance [4] Section 6.3), if (X, Y ) have the joint uniform
pdf (1), then the pair (R,Θ) will not be uniform and will have instead the pdf

f
(1)
RΘ(r, θ) =

r

π
χ[0,1](r)χ[−π,π](θ)

which is apparently different from the fRΘ in (3). By taking advantage of this new

distribution f
(1)
RΘ (coherent now with the choice of a jointly uniform pair X, Y ) it is

easy to see that the required probability within the framework of the solution (3)
would be

p
(1)
3 =

∫ 1

2

0

r

π
dr

∫ π

−π

dθ =
1

4
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Figure 3: Bertrand’s paradox for Buffon’s needles

instead of p3 =
1/2, in perfect agreement with the value p1 =

1/4 of the solution (1).
Hence the paradox ghosts would daunt us just as long as we unwittingly suppose
that in our three solutions the coordinates can all be at once uniformly distributed
(hiding that under the careless locution at random), and they will disappear instead
as soon as we consistently adopt a unique probability space for all our rv ’s

3 Bertrand vs Buffon

It is interesting to remark now that, while it is known that by the turn of the century
several different solutions of the Bertrand question were added3 to the usual three
recalled in the previous section, nobody at our knowledge seem to have noticed
that the same kind of paradoxes does in fact appear also in the discussion of the
celebrated Buffon needle problem. In its simplest version4 a needle of unit length is
thrown at random on a table where a few parallel lines are drawn at a unit distance:
what is the probability that the needle will lie across one of these lines? In the
classical answer to this question, since the lines are drawn periodically on the table,
it will be enough to study the problem with only two lines by supposing that the
needle center does fall between them. The position of the said center along the
direction of the parallel lines is also immaterial. The needle position is then defined
by just two rv’s: the distance Z of its center from the left line, and the angle Θ
between the needle and a perpendicular to the parallel lines (see (1) in Figure 3).
That the needle is thrown at random here means that the pair of rv’s Θ, Z is uniform
in [−π

2
, π
2
]× [0, 1], namely that their joint pdf is

fΘZ(θ, z) =
1

π
χ[−π

2
,π
2
](θ)χ[0,1](z) (4)

3See for instance [5] quoted in [3]
4For a more complete discussion see for instance [2] and [6]
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Figure 4: Supports of the uniform pdf ’s (4) and (5): the shaded areas correspond
to the two Buffon probabilities p1 and p2

while, with −π
2
≤ θ ≤ π

2
, the needle will lie across a line either when x ≤ 1/2 cos θ,

or when x ≥ 1− 1/2 cos θ (see again (1) in Figure 3). Just by inspecting the pdf (1)
in Figure 4 it is then easy to find out that the required probability is

p1 =
2

π

∫ π/2

−π/2

cos θ

2
dθ =

2

π

In the spirit of the Bertrand paradoxes, however, we can give a different answer to
the Buffon question (see (2) in Figure 3): the needle position is now identified by
looking first to its (vertically) upper end, and by recording its distance X from the
left line. Then we consider where its other (lower) end falls and we mark down its
distance Y from the same left line. If the said left line is in the origin of a horizontal
axis, it is apparent that for every value 0 ≤ x ≤ 1 of X , the possible values of
Y will be between x − 1 and x + 1 (because apparently |x − y| ≤ 1), and in this
framework to throw the needle at random will mean that the joint distribution of
X, Y is uniform in the domain shown in (2) of the Figure 4, namely

fXY (x, y) =
1

2
χ[0,1](x)χ[0,1](|x− y|) (5)

On the other hand it is apparent that for every 0 ≤ x ≤ 1 the needle will cross a line
when either x − 1 ≤ y ≤ 0, or 0 ≤ y ≤ x + 1, so that the required probability will
correspond to the shaded area in (2) of Figure 4 and hence now p2 = 1/2. These
remarks show then that also the Buffon needle problem is not impervious to para-
doxes, and this could be more than just a trifle because of its peculiar experimental

status, as will be argued in the subsequent Section 5
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4 Counting and measuring

Since the Bertrand paradoxes arise from a careless use of the locution taking at

random, it would expedient to recall once more that this is not understood here
as the drawing of some outcome ω out of a set Ω according to some arbitrary
probability measure, but stands rather for assuming that there is no reason to think
that there are preferred outcomes ω ∈ Ω, these being supposed instead to be equally
likely. For sets of numbers this kind of randomness is enforced either by sheer
equiprobability (on the finite sets, by counting), or by distribution uniformity (on
the bounded, Lebesgue measurable, uncountable sets, by measuring). On the other
hand infinite, countable sets and unbounded, uncountable sets are both excluded
from these egalitarian probability attributions because their elements can be made
neither equiprobable (with a non vanishing probability), nor uniformly distributed
(with a non vanishing probability density). This in particular seems to point to
the fact that infinite, countable sets should be barred even from discussing the
Bertrand problems because, for instance, we can not make all the natural numbers
equiprobable with a non zero probability (neither by counting, nor by measuring),
while the paradoxes are essentially based on a misunderstanding about this kind
of randomness. In these cases however it is possible to start with some proper
(not equiprobable) probability distribution, and then to make them ever closer –
in a suitable, approximate sense – to an equiprobable one: we will then speak of
asymptotic equiprobability (see Appendix A and [7] for more details). This notion will
be used here to argue that the Bertrand paradoxes arises exclusively in connection to
uncountable infinite sets of numbers, but neither for finite, nor for countably infinite
ones

To clarify this last point it would be expedient to consider another, more simple
case among the Bertrand examples (see [1] p. 4): if we ask what is the probability
that a real number x chosen at random between 0 and 100 is larger than 50, our
natural answer is 1/2. Since however the real numbers between 0 and 100 are also
bijectively associated to their squares between 0 and 10 000, we also instinctively
feel that our question should be equivalent to ask for the probability that the square
of a real random number turns out to be larger than 502 = 2 500. When however
we think of taking this last number at random between 0 and 10 000, instinctively
again we are inclined to answer that the probability of exceeding 2 500 should now
be 3/4 instead of 1/2. The two problems look equivalent, but their two intuitive
answers (apparently both legitimate) are different

Predictably the paradox resolution is similar to that of Section 2: we would
readily concede that the probability to exceed 50 for a real number X taken at

random in [0, 100] is p1 = 1/2. When however we ask for the probability that X2

taken at random in [0, 10 000] exceeds 502 = 2 500, we surreptitiously change our
measure by supposing that now X2 is uniform in [0, 10 000] and we find p2 = 3/4.
But the fact is – as in the previous example – that if X is uniform in [0, 100], then
X2 can not be uniform in [0, 10 000], and vice-versa. More precisely, if the pdf of X
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is the uniform

fX(x) =
1

100

{

1 for 0 ≤ x ≤ 100,
0 else

then the corresponding, non uniform pdf of Y = X2 is (see again [4] Section 5.2)

fY (y) =
1

200
√
y

{

1 for 0 ≤ y ≤ 10 000,
0 else

and of course the paradox disappears because now, in agreement with p1 =
1/2, we

would have

p
(1)
2 =

∫ 2 500

0

fY (y) dy =
1

200

∫ 2 500

0

dy√
y
=

1

2

It is easy to see moreover that the paradox does not show up at all when we
consider the finite version of this problem: if we ask for the probability (p1 =

1/2)
of choosing at random an integer number n larger than 50 among the (equiprobable)
integer numbers from 1 to 100, we would in fact recover the same answer (p2 =

1/2)
also by asking to calculate the probability of choosing at random a number larger
than 2 500 among the squared integers 1, 4, 9, . . . , 10 000, because now our set is again
constituted of just 100 equiprobable elements and there are 50 larger than 2 500. The
crucial difference with the previous continuous version of the problem is that in the
case of finitely many (equiprobable) possible results we just enumerate the favorable
and the possible items (a situation not changed by squaring the numbers), while for
the continuous real numbers (geometric probabilities) we compare the length of the
intervals: all is contingent indeed on the difference between counting and measuring

This situation, albeit trickier, is not essentially changed for countably infinite

possible outcomes, but for the fact that in this case they can not be made strictly
equiprobable by direct enumeration. Take for instance the problem of asking for
the probability of choosing at random a rational number q = n/m larger than 50
among the rational numbers in [0, 100] that are famously an infinite, countable
set everywhere dense among the real numbers. It is shown in the Appendix A
that – in agreement with our intuition – this probability tends to p1 = 1/2 when,
going around the problem of actually enumerating them, the rational numbers in
[0, 100] are made asymptotically equiprobable. If however we subsequently ask to
calculate the probability of choosing at random a number larger than 2 500 among
the squared rational numbers q2 = n2

/m2 in [0, 10 000] we in fact recover the same
answer p2 = 1/2 with no possible ambiguity because now – in a way recalling the
case of integer numbers – we must make asymptotically equiprobable not all the
rational numbers in [0, 10 000], but rather only those that are squares of rational
numbers. Not every rational q is indeed a squared rational, and the (tiny, but non
zero) probability of q2 = n2

/m2 being larger than 2 500 exactly coincides with that
of q = n/m being larger than 50: there is no possible sharing of probability with the
infinitely many other (non squared) rationals that in any case would never show up
in the process of drawing at random squared rationals
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The critical feature – common to both the finite and the countably infinite cases
– appears here to be the possibility that every single element be endowed with its
own individual non vanishing probability that it also carries with him in every con-
ceivable one-to-one transformation: no amount of probability must indeed be shared
with numerical results other than the transformed results, and the distribution re-
main the same in the transformed sample space. A situation totally at variance with
that of a geometrical probability on a uncountably infinite set where every sample
is usually entitled only to strictly zero probability and the transformations usually
imply a stretching of the probability measure

5 An almost empiric conclusion

Going back to the example discussed in the Section 2, we have argued that the
paradoxes “disappear as soon as we consistently adopt a unique probability space
for all our rv ’s”, so that – paradoxes notwithstanding – there are no possible for-
mal inconsistencies within our overall probabilistic framework. But this is sheer
mathematics, and we are left anyway with three (or more) possible, coherent and
perfectly legitimate, probabilistic models giving rise to three numerically different
results: which one is true, in the sense that it corresponds to the physical reality?
This problem of course can not be solved with a calculation, and should instead be
settled – if possible – by comparing the solutions proposed with some empiric result.
In other words one should simply perform the experiment of choosing at random a

chord on a circle (or something equivalent) in order to compare then its statistics
with the calculations: something that to date, at our knowledge, has not yet been
done once and for all, and it is not even exactly tackled in recent contributions [8]
where, for all the emphasis on solving this hard part of the paradox, the discussion
seems to be essentially restricted to the mathematical models

In this vein we will add here just a few final remarks: first, the possible experi-
ment can not definitely be a simulated one performed on a computer. In this case
indeed our experimenter should a priori choose one of the three models to program
his computer to produce a particular pair of uniformly distributed coordinates: but
in so doing he would have already decided the outcomes of the experiment that
coherently will now confirm the chosen model: this apparently will prove nothing.
Second, it is possible that even in some real, physical experiment the outcome can
be influenced by the choice of what exactly we decide to measure [8]: different exper-
imental settings could point to different facets of the physical reality, and after all
the probability is not listed among the concrete things of this world (see for instance
the unconventional viewpoint displayed in [9], vol. 1, Preface) representing rather
the state of our information. Third, the previous remark also lays bare the difference
between experiments where we study a passive randomness produced by an inde-
pendent external world (think for instance to the statistics of the usual empirical
measures, or even to quantum mechanics: randomness is there completely outside of
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our control and show characters that must be discovered rather than produced), in
contrast with an active randomness where we try to produce some kind of previously
planned events, namely to empirically enforce some idea of randomness as in both
the Bertrand paradox and the Buffon needle, and from a different standpoint in ev-
ery computer simulation. These two sorts of randomness appear epistemologically
rather different and this dissimilarity could be well worth of further inquiry

We can not refrain however from pointing out in the end that the presence of
Bertrand-type paradoxes even in the discussion of Buffon’s needle sheds a different
light on this problem: it is known indeed that the classical calculation of the Buffon
needle, giving the probability p1 =

2/π, also stimulated several experiments used to
get an empirical determination of the approximate value of the number π (four of
these tests dated from 1850 to 1901 are listed for instance in [2]), and famously known
as pioneering examples of theMonte Carlo method. Despite a few reservations about
the reliability of these results [2], it is striking that all these four experiments point to
a number in the range between 3.14 and 3.16, while our second, proposed alternative
solution with p2 =

1/2 would require results clustering around 4.00. It is possible – as
suggested above – that the quoted results are biased by some unaware bent toward π,
but if confirmed they would suggest that there could be an empirical meaning in the
locution at random because, at least in the case of Buffon’s needle, the experiments
appear to be able to favor one among several formally legitimate solutions. But it
is also apparent by now that a possible answer to these questions would lie outside
the reach of this paper, so that for the time being we will stay content with having
just clarified the meaning and the scope of the Bertrand paradoxes and their link
to the Buffon needle, by leaving to future inquiries the practical task of empirically
deciding among the mathematical models

Acknowledgements: The author would like to thank A. Andrisani, S. Pascazio
and C. Sempi for stimulating discussions and suggestions

A Taking rational numbers at random

Rational numbers are famously countable, and hence they can be put in a sequence.
Since however they are a dense subset of the real numbers, every rational number is a
cluster point, and hence no sequence encompassing all of them can ever converge, not
to say be monotone. In any case their countability certainly allows the allotment of
discrete distributions with non vanishing probabilities for every item: since they are
infinite, however, they can never be exactly equiprobable. In this appendix (further
details are available in [7]) we will outline a procedure to give distributions on the
rationals in [0, 1], a set that we will shortly denote as Q0 = Q ∩ [0, 1], and we will
investigate if and how they can be made asymptotically equiprobable

It is however advisable to assert right away that the distribution of a rv Q taking
values in Q0 must anyhow be of a discrete type, allotting (possibly non vanishing)
probabilities to the individual rational numbers q ∈ Q0: conceivable continuous set
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n

m 0 1 2 3 4 5 6 7 8 . . .
1 0 1
2 0 1/2 1
3 0 1/3

2/3 1
4 0 1/4

2/4
3/4 1

5 0 1/5
2/5

3/5
4/5 1

6 0 1/6
2/6

3/6
4/6

5/6 1
7 0 1/7

2/7
3/7

4/7
5/7

6/7 1
8 0 1/8

2/8
3/8

4/8
5/8

6/8
7/8 1

...
...

. . .

Table 1: Table of rational numbers q = n/m with repetitions: many fractions are
reducible to canonical forms already present in earlier positions

functions – namely with continuous, albeit perhaps not absolutely continuous, cdf
(cumulative distribution function) – would turn out to be not countably additive,
and hence would not qualify as measures, not to say as probability distributions.
Every continuous cdf for Q would indeed entail that at the same time P {Q = q} =
0, ∀q ∈ Q0, and P {Q ∈ Q0} = 1, while Q0 apparently is the countable union
of the disjoint, negligible sets {q}: in plain conflict with the countable additivity.
This in particular rules out for the numbers in Q0 the possibility of being uniformly

distributed (an imaginable surrogate of equiprobability evoked by the density of the
rational numbers): this property would in fact require a continuous cdf

Taking advantage now of the well known diagram used to prove the countability
of the rational numbers, we will consider two dependent rv ’s M and N with integer
values

m = 1, 2, . . . n = 0, 1, 2, . . . , m

and acting respectively as denominator and numerator of the random rational num-
ber Q = N/M ∈ [0, 1]. As a consequence Q will take the values q = n/m arrayed
in a triangular scheme as in Table 1. It is apparent however that in this way every
rational number q shows up infinitely many times due to the presence of reducible
fractions: for instance – with the usual notation for repeating decimals – we have

0.5 = 1/2 =
2/4 =

3/6 = . . . 0.3 = 1/3 =
2/6 = . . . 0.75 = 3/4 =

6/8 = . . .

If we adopt however the notation

q
.
= n/m

to indicate that n/m is the unique irreducible representation of a rational number q,
namely that n and m are co-primes, the previous examples will be listed as

0.5
.
= 1/2 0.3

.
= 1/3 0.75

.
= 3/4
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By introducing now a joint distributions of N and M

P {M = m} m = 1, 2, . . .

P {N = n |M = m} n = 0, 1, 2, . . . , m

P {N = n,M = m} = P {N = n |M = m} P {M = m}
we will have for every rational 0 ≤ q

.
= n/m ≤ 1 the discrete distribution

P {Q = q} =

∞
∑

ℓ=1

P {N = ℓn,M = ℓm}

=

∞
∑

ℓ=1

P {N = ℓn |M = ℓm} P {M = ℓm} (6)

This also allows to define the cdf of Q as (here of course x ∈ R)

FQ(x) = P {Q ≤ x} = P {N ≤ Mx} =
∞
∑

m=1

P {N ≤ mx |M = m}P {M = m}

=

∞
∑

m=1

FN(mx|M = m)P {M = m} (7)

and hence also the probability of Q falling in (a, b] for 0 ≤ a < b ≤ 1 real numbers:

P {a < Q ≤ b} = FQ(b)− FQ(a)

=

∞
∑

m=1

[

FN (mb|M = m)− FN (ma|M = m)
]

P {M = m} (8)

Notice that the conditional cdf of N can also be given as

FN(x|M = m) = P {N ≤ x |M = m} =
m
∑

n=0

P {N = n |M = m}ϑ(x− n)

=

⌊x⌋
∑

n=0

P {N = n |M = m} (9)

where

ϑ(x) =

{

1 x ≥ 0
0 x < 0

is the Heaviside function, while for every real number x, the symbol ⌊x⌋ denotes the
floor of x, namely the greatest integer less than or equal to x. As a consequence the
equations (7) and (8) also take the form

FQ(x) =
∞
∑

m=1

P {M = m}
⌊mx⌋
∑

n=0

P {N = n |M = m} (10)

P {a < Q ≤ b} =
∞
∑

m=1

P {M = m} (1− δ⌊ma⌋,⌊mb⌋)

⌊mb⌋
∑

n=⌊ma⌋+1

P {N = n |M = m} (11)
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where the Kronecker delta takes into account the fact that when ⌊mb⌋ = ⌊ma⌋ the
difference vanishes, so that ⌊mb⌋ ≥ ⌊ma⌋ + 1.

Let us suppose now for simplicity that for a given denominator m ≥ 1 the m+1
possible values of the numerator n = 0, 1, . . . , m are equiprobable in the sense that

P {N = n |M = m} =
1

m+ 1
n = 0, 1, . . . , m

In this case for the distribution, with n,m co-primes and 0 ≤ n ≤ m, from (6) we
have

P {Q = q} =
∞
∑

ℓ=1

P {M = ℓm}
ℓm+ 1

q
.
= n/m (12)

while for the cdf (10) we have from (9)

FN (mx |M = m) =
1

m+ 1

m
∑

n=0

ϑ (mx− n) =







0 x < 0
⌊mx⌋+1
m+1

0 ≤ x < 1

1 1 ≤ x

FQ(x) =
∞
∑

m=1

P {M = m}
m+ 1

m
∑

n=0

ϑ (mx− n)

=







0 x < 0
∑

m≥1P {M = m} ⌊mx⌋+1
m+1

0 ≤ x < 1

1 1 ≤ x

(13)

and the probability (11) with 0 ≤ a < b ≤ 1 becomes

P {a < Q ≤ b} =

∞
∑

m=1

P {M = m} ⌊mb⌋ − ⌊ma⌋
m+ 1

(14)

By denoting now as pm = P {M = m} the distribution of M , and as s = supm pm
the supremum of all its values, let us take now a sequence of denominators {Mk}k≥1

with distributions {pm(k)}k≥1, and with sk vanishing for k → ∞ in such a way that

lim
k

sk ln k = 0 (15)

In other words we consider a sequence of distributions that are increasingly (and
uniformly) flattened toward zero, so that the denominators too are increasingly
equiprobable. Ready examples of these sequences with k = 1, 2, . . . are for instance
the geometric distributions

pm(k) = wk(1− wk)
m−1 m = 1, 2, . . .

with infinitesimal wk, and the Poisson distributions

pm(k) = e−λk
λm−1
k

(m− 1)!
m = 1, 2, . . .

with divergent λk
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Lemma A.1. Within the previous notations and conditions we have

µk = E
[

1/Mk

]

=
∞
∑

m=1

pm(k)

m

k−→ 0 (16)

Proof: The positive series defining µk is certainly convergent because

µk =
∞
∑

m=1

pm(k)

m
<

∞
∑

m=1

pm(k) = 1

and hence we can always write

µk =

∞
∑

m=1

pm(k)

m
=

k
∑

m=1

pm(k)

m
+Rk

where

Rk =

∞
∑

m=k+1

pm(k)

m
k−→ 0

is an infinitesimal remainder. On the other hand, under our stated conditions

k
∑

m=1

pm(k)

m
< sk

k
∑

m=1

1

m
= skHk

where Hk denotes the kth harmonic number, namely the sum of the reciprocal inte-
gers up to 1/k: it is well known ([10] 0.131) that for k → ∞ the Hk grow as ln k,

so that from (15) we have skHk
k−→ 0, and finally µk = skHk +Rk

k−→ 0 �

Proposition A.2. If Q = N/M and FQ(x) is its cdf , then, within the notation and

conditions outlined above, we have

lim
k

P {Q = q} = 0 lim
k

P {a < Q ≤ b} = b− a (17)

lim
k

FQ(x) =







0 x < 0
x 0 ≤ x < 1
1 1 ≤ x

(18)

Proof: Since our series have positive terms the first result in (17) follows from (12)
and (16) because, with q

.
= n/j

P {Q = q} =
∞
∑

ℓ=1

pℓj(k)

ℓj + 1
<

∞
∑

m=1

pm(k)

m+ 1
<

∞
∑

m=1

pm(k)

m
= µk

k−→ 0
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As for the second result in (17), since for every real number x it is x− 1 ≤ ⌊x⌋ ≤ x,
for every k = 1, 2, . . ., and 0 ≤ a < b ≤ 1, we have from (14)

∞
∑

m=1

pm(k)
m(b− a)− 1

m+ 1
≤ P {a < Q ≤ b} ≤

∞
∑

m=1

pm(k)
m(b− a) + 1

m+ 1

namely

b− a+ (a− b− 1)

∞
∑

m=1

pm(k)

m+ 1
≤ P {a < Q ≤ b} ≤ b− a+ (a− b+ 1)

∞
∑

m=1

pm(k)

m+ 1

so that, since a− b− 1 ≤ 0 and a− b+ 1 ≥ 0, it is

b− a + (a− b− 1)µk ≤ P {a < Q ≤ b} ≤ b− a+ (a− b+ 1)µk

The second result (17) follows then from (16). In a similar way we finally find
for (18) that

∞
∑

m=1

pm(k)
mx

m+ 1
≤ FQ(x) ≤

∞
∑

m=1

pm(k)
mx+ 1

m+ 1
0 ≤ x ≤ 1

namely

x− x
∞
∑

m=1

pm(k)

m+ 1
≤ FQ(x) ≤ x+ (1− x)

∞
∑

m=1

pm(k)

m+ 1

and hence
x− xµk < FQ(x) < x+ (1− x)µk

so that the result again follows from (16) �

From this proposition we see that in the limit k → ∞, while the probability of every
single rational number rightly vanishes, the probability of these numbers lumped
together in intervals does not: a behavior highly reminiscent of what happens to
continuously distributed real rv ’s. For the reasons presented at the beginning of this
appendix, however, the previous result by no means imply that we can implement
a uniform limit distribution on Q0 (as we said: there is not such a thing), but it
rather suggests that our random rational numbers Q – at least for denominators
m distributed in a fairly flat way, and numerators n conditionally equiprobable be-
tween 0 and m – asymptotically behave as uniformly distributed in [0, 1], and hence
they quite reasonably correspond to our intuitive idea of taking rational numbers at

random.
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