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Abstract

In this report we summarize a few methods for solving the stochastic differ-
ential equations (SDE ) and the corresponding Fokker-Planck equations de-
scribing the Gompertz and logistic random dynamics. It is shown that the
solutions of the Gompertz SDE are completely known, while for the logistic
SDE ’s we can provide the solution as an explicit process, but we find much
harder to write down its distribution in closed form. Many details of possible
ways out of this maze are listed in the paper and its appendices. We also
briefly discuss the prospects of performing a suitable averaging, or a deter-
ministic limit. The possibility is also suggested of associating these equations
to the stochastic mechanics of a quantum harmonic oscillator adopted as a
tool serviceable also in the field of stochastic control: in particular we propose
to investigate the equations associated to the quantum stationary states
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1 Introduction

In the present paper we will mainly deal with two classes of one-dimensional SDE ’s
(stochastic differential equations, see Appendix B) with a non linear drift that have
been recently discussed in a number of papers (see for instance [1, 2, 3] and references
quoted therein) and that are the noisy version of their deterministic counterparts
(see Appendix A): the Gompertz and the logistic equations. The general form of a
Gompertz SDE for the process ξ(s) is

dξ(s) =
[
a1ξ(s)− a2 ξ(s) ln (b1ξ(s))

]
ds+ b1ξ(s) dβ(s) (1)

where β(s) is a Wiener process with diffusion coefficient 2δ, namely E [β2(s)] = 2δs.
Remark that a possible difference between the two coefficients b1 – that in the
logarithm argument, and the other in front of the Wiener process – can be easily
reabsorbed by redefining a1 and a2. The physical dimensions (by supposing for
instance that ξ and β are lengths L, while s is a time T ) are then

[a1] =
1

T
[a2] =

1

T
[b1] =

1

L
[δ] =

L2

T

Within a similar notation the logistic SDE is

dξ(s) = ξ(s) [a1 − a2 ξ(s)] ds+ b1ξ(s)dβ(s) (2)

with the following physical dimensions

[a1] =
1

T
[a2] =

1

LT
[b1] =

1

L
[δ] =

L2

T
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while the generalized θ-logistic SDE (θ > 0) is

dξ(s) = ξ(s)
[
a1 − a2 ξ

θ(s)
]
ds+ b1ξ(s)dβ(s) (3)

with the physical dimensions

[a1] =
1

T
[a2] =

1

LθT
[b1] =

1

L
[δ] =

L2

T

The logistic (2) is apparently recovered for θ = 1. Therefore – within the notations
of the Appendix B – the time independent coefficients of the Gompertz SDE are

a(x) = a1x− a2 x ln(b1x) b(x) = b1x (4)

those of the logistic SDE are

a(x) = a1x− a2 x
2 b(x) = b1x (5)

while for the θ-logistic we finally have

a(x) = a1x− a2 x
1+θ b(x) = b1x θ > 0 (6)

In order to simplify their look, however, it is expedient to recast these equation in
a dimensionless form so that only the essential parameters will remain in evidence.
As for the equation (1), a transformation to the dimensionless quantities

t = a1s X(t) = b1ξ

(
t

a1

)
W (t) = b1β

(
t

a1

)
D =

b21δ

a1
α =

a2
a1

would give rise to the dimensionless Gompertz SDE

dX(t) = X(t)
[
1− α lnX(t)

]
dt+X(t) dW (t) (7)

with coefficients

a(x) = x(1− α ln x) b(x) = x E
[
W 2(t)

]
= 2Dt (8)

while with the similar transformations

t = a1s X(t) =
a2
a1
ξ

(
t

a1

)
W (t) = b1β

(
t

a1

)
D =

b21δ

a1

the equation (2) becomes the dimensionless logistic SDE

dX(t) = X(t)
[
1−X(t)

]
dt+X(t) dW (t) (9)

with coefficients

a(x) = x(1− x) b(x) = x E
[
W 2(t)

]
= 2Dt (10)
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Finally the transformations

t = a1s X(t) =

(
a2
a1

)1/θ

ξ

(
t

a1

)
W (t) = b1β

(
t

a1

)
D =

b21δ

a1

will give rise to the dimensionless θ-logistic SDE

dX(t) = X(t)
[
1−X(t)θ

]
dt+X(t) dW (t) (11)

with coefficients

a(x) = x(1− xθ) b(x) = x E
[
W 2(t)

]
= 2Dt (12)

We will adopt these dimensionless notations all along the presente paper: in the
Section 2 we will give a virtually complete solution of the Gompertz SDE (7), while
in the subsequent Section 2.3 these solutions will be extended to the parametric
Gompertz equation with a time-dependent drift coefficient. As for the logistic and
θ-logistic SDE ’s (9) and (11) the Section 3 will list several partial results, in partic-
ular the explicit solutions (32) and (55) in the guise of processes whose distributions
however – albeit derivable from the existing literature [4] – can not be easily pre-
sented in a manageable closed form. The same problem is addressed again in the
Section 3.4 in the reduced form of the distribution of the integrals of geometric
Wiener processes, or even of their finite sums at different times, but here too the
results are only preliminary while a discussion of the exact results is postponed to
a forthcoming paper

The Gompertz and logistic random dynamics will also be looked at from the
standpoint of the FPE ’s (Fokker-Planck equations, see Appendix C) for their pdf
(probability density functions) and this will give in the future the opportunity of
exploring a further perspective. In a few previous papers [5, 6] we indeed analyzed
the solutions of the FPE ’s associated by the stochastic mechanics to the quantum
wave functions (see Appendix D for the particular case of the stationary states of a
QHO, quantum harmonic oscillator), and we looked into the possibility of controlling
the stochastic evolution by means of suitable potentials. We plan therefore to extend
in the near future this analysis to the Gompertz and logistic random dynamics. In
particular we will focus our attention on the relationship between these equations
for the stationary states of a QHO with frequency ω, and the Gompertz and logistic
equations: this will be listed among other suggestions for future research in the
conclusive Section 4. In a last Appendix E about quantiles and medians, definitions
and results are finally collected to serve in scattered discussions about a suitable
coarse-graining of our stochastic equations: this last step is proposed here in order
to recover the deterministic equations of the Appendix A, and therefore to show the
global consistency of these models
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2 Gompertz stochastic equations

2.1 Smoluchowsky SDE : stationary pdf

We begin implementing first the transformations presented in the Appendix B.2.2
ane leading to a Smoluchowsky SDE : since our coefficients (8) are time-independent,
the transformation (132) which is now

y = h(x) = ln x x = g(y) = ey Y (t) = lnX(t) X(t) = eY (t)

leads to b̂ (y, t) = 1, while (133) gives the drift coefficient

â (y) = 1−D − αy (13)

Therefore, provided that α > 0, the Gompertz SDE (7) becomes a Smoluchowsky
SDE that essentially turns out to be an Ornstein-Uhlenbeck (OU ) SDE with an
additional constant drift

dY (t) =
(
1−D − αY (t)

)
dt+ dW (t) (14)

This OU SDE for Y (t) can be completely solved and its Gaussian transition pdf
is well known: as a consequence we can also easily find the log-normal transition
pdf for the process X(t), but we will postpone to the next section a discussion of
these details taking a look for the time being only at the stationary solution of the
transformed Y (t) process: with a dimensionless potential χ(y), from (108) and (13)
we first have

−Dχ′(y) = â (y) = 1−D − αy χ(y) =
φ(y)

kT
(15)

and therefore

χ(y) =
α

2D
y2 − 1−D

D
y + c

so that, if α > 0 and if the integration constant c is suitably chosen, the stationary
Boltzmann distribution comes out to be a Gaussian law N

(
1−D
α
, D
α

)
as it is for

every OU process; the original process X(t) = eY (t) then is a geometric OU and its
stationary solutions are log-normal

2.2 Linearized SDE

We consider next the transformation presented in the Appendix B.2.3 and leading
to process independent coefficients, and we check first whether the compatibility
condition (142) holds for our Gompertz SDE : an answer in the affirmative follows
from a direct calculation since

b(x)

[
D b′′(x)− d

dx

(
a(x)

b(x)

)]
= α
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As a consequence, with c = α, we first have from (143) that b̂ (t) = eαt, then
from (144) it is

h(x, t) = eαt
∫

1

x
dx = eαt ln x

and finally from (145) we find that

â (t) = eαt
(
α ln x+

x− αx ln x

x
−D

)
= (1−D) eαt

The transformed Gompertz SDE for the process

Z(t) = eαt lnX(t)

is then
dZ(t) = (1−D) eαtdt+ eαtdW (t) (16)

whose solution, with Z(0) = Z0 = lnX0, from (111) is

Z(t) = Z0 + (1−D)
eαt − 1

α
+

∫ t

0

eαudW (u)

so that the solution of the SDE (7) is

X(t) = ee
−αtZ(t) = Xe−αt

0 e(1−D)(1−e−αt)/α e
∫ t
0 e−α(t−u)dW (u) (17)

It is interesting to remark moreover that, with a degenerate initial condition X0 =
x0, P -a.s. and by switching off the Wiener noise (D = 0) this solution exactly
coincides with the solution (82) of the deterministic Gompertz ODE discussed in
the Appendix A.1. It is easy to see on the other hand that for the process Y (t) =
e−αtZ(t) = lnX(t) we also have

dZ(t) = αeαtY (t)dt+ eαtdY (t)

so that by comparing it with (16) we get

dY (t) = (1−D − αY (t)) dt+ dW (t)

apparently coincident with the Smoluchowsky equation (14) already discussed in the
Section 2.1. Since moreover it is easy to see that

∫ t

s

â (u)du = (1−D)eαs
eα(t−s) − 1

α

∫ t

s

b̂ 2(u)du = e2αs
e2α(t−s) − 1

2α

from (111) and (112) we have for the solution of (16) with Z(s) = zeαs, P -a.s. at
t = s

Z(t) = zeαs + (1−D)eαs
eα(t−s) − 1

α
+

∫ t

s

eαudW (u)

∼ N

(
zeαs + (1−D)eαs

eα(t−s) − 1

α
, De2αs

e2α(t−s) − 1

α

)
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and for the solution of the Gompertz SDE (7) with lnX(s) = eαs ln y = zeαs, P -a.s.
at t = s

lnX(t) = e−αtZ(t)

= e−α(t−s) ln y +
1−D

α
(1− e−α(t−s)) + e−αt

∫ t

s

eαudW (u)

∼ N

(
e−α(t−s) ln y +

1−D

α
(1− e−α(t−s)) , D

1− e−2α(t−s)

α

)

Therefore the transition pdf f(x, t|y, s) of the Gompertz process X(t) is the
log-normal law associated to the previous Gaussian distribution which also asymp-
totically goes to the stationary log-normal distribution

lnN

(
1−D

α
,
D

α

)

already found in the section 2.1, with expectation

E [X(+∞)] = e
2−D
2α

corresponding to the asymptotic value e1/α of the deterministic Gompertz equation
when D = 0 (see Appendix A.1)

2.3 Parametric equations

In a generalization of the previous investigations, let us consider next the so called
parametric OU SDE (with a time dependent drift velocity) for a process η(s)

dη(s) = −ωa(s)η(s) ds+ b dβ(s)

where β(s) again is a Wiener process with diffusion coefficient 2δ so that E [β2(s)] =
2δs. Here ω is a frequency, b a dimensionless constant and a(s) a dimensionless
function of the time s. Since σ =

√
δ/ω has the same physical dimensions of η and β

(a length, for instance), we can now switch to a dimensionless formulation by taking
t = ωs and

Y (t) =
1

σ
η

(
t

ω

)
W (t) =

b

σ
β

(
t

ω

)
D =

δb2

ωσ2
= b2 α(t) = a

(
t

ω

)

a transformation leading to the dimensionless parametric OU SDE

dY (t) = −α(t)Y (t)dt+ dW (t) Y (0) = Y0 (18)

where W (t) is a Wiener process with diffusion coefficient 2D, namely E [W 2(t)] =
2Dt. For further purposes α(t) could also become a stochastic process, but for the
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time being we will take it just as a suitable deterministic function. If we now define
the new process X(t) as

X(t) = eY (t) Y (t) = lnX(t)

taking a(y, t) = −α(t)y and b(y, t) = 1, with x = h(y) = ey and y = g(x) = ln x,
from (95) and (96) – swapping the symbols x, y – we obtain the coefficients for the
transformed equation

â (x, t) =
[
ey
(
1− α(t)y

)]
y=lnx

= x
(
1− α(t) ln x

)

b̂ (x, t) =
[
ey
]
y=lnx

= x

finally leading to the parametric Gompertz SDE

dX(t) = X(t)
(
1− α(t) lnX(t)

)
dt+X(t) dW (t) (19)

Therefore this new equation (19), that apparently generalizes (7), can be solved by
looking first at a solution of (18): to this end we remark that, since a(y, t) = −α(t)y
and b(y, t) = 1, using again (95) and (96), the transformation

Z(t) = Y (t)e
∫ t
0α(u)du = h(Y (t), t) h(y, t) = ye

∫ t
0α(u)du

leads to the coefficients

â (z, t) = 0 b̂ (z, t) = e
∫
α(t)dt

namely to the SDE

dZ(t) = e
∫ t
0α(u)dudW (t) Z(0) = Y0

whose solution is

Z(t) = Y0 +

∫ t

0

e
∫ r
0
α(u)dudW (r)

so that we finally have

Y (t) = Y0e
−

∫ t
0
α(u)du +

∫ t

0

e−
∫ t
r
α(u)dudW (r) (20)

that with a condition at a time s becomes

Y (t) = Y0e
−

∫ t
s
α(u)du +

∫ t

s

e−
∫ t
r
α(u)dudW (r) (21)

As long as the rv Y0 ∼ N(y0, σ
2
0) is Gaussian, the process (21) is Gaussian too, and

if Y0 is degenerate the pdf of Y (t) also is the transition pdf. On the other hand
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when (21) is Gaussian their laws are completely determined by the expectations
and the covariance functions that can be explicitly calculated. In fact we first have

E [Y (t)] = y0 e
−

∫ t
s α(u)du (22)

then, by taking Ỹ0 = Y0 − y0 and

Ỹ (t) = Y (t)−E [Y (t)] = Ỹ0 e
−

∫ t
s α(u)du +

∫ t

s

e−
∫ t
r α(u)dudW (r)

from the independence of X0 and W (t) and from the usual properties (85) of the
increments dW (t), we get for t < t′

cov [Y (t), Y (t′)] = E

[
Ỹ (t)Ỹ (t′)

]

= σ2
0 e
−

∫ t
s
α(u)du−

∫ t′

s
α(u)du

+E

[∫ t

s

e−
∫ t
r
α(u)dudW (r)

∫ t′

s

e−
∫ t′

r′ α(u)dudW (r′)

]

= σ2
0 e
−

∫ t
s α(u)du−

∫ t′

s α(u)du

+E

[∫ t

s

e−
∫ t
r α(u)dudW (r)

∫ t

s

e−
∫ t′

r′ α(u)dudW (r′)

]

= σ2
0 e
−

∫ t
s α(u)du−

∫ t′

s α(u)du + 2D

∫ t

s

e−
∫ t
r α(u)du−

∫ t′

r α(u)dudr

and hence in any case

cov [Y (t), Y (t′)] = σ2
0 e
−

∫ t
s α(u)du−

∫ t′

s α(u)du + 2D

∫ t∧t′

s

e−
∫ t
r α(u)du−

∫ t′

r α(u)dudr (23)

By the way remark that the results (22) and (23) hold even if Y (t) is not Gaussian,
but when Y0 ∼ N(y0, σ

2
0) they also completely determines the distribution of the

process (21) and in particular

Y (t) ∼ N

(
y0 e

−
∫ t
s α(u)du , σ2

0 e
−
∫ t
s α(u)du + 2D

∫ t

s

e−2
∫ t
r α(u)dudr

)
(24)

With σ0 = 0 (degenerate initial condition) we moreover have

Y (t) ∼ N

(
y0 e

−
∫ t
s
α(u)du , 2D

∫ t

s

e−2
∫ t
r
α(u)dudr

)
(25)

which plays the role of the transition pdf for the processes solution of (18).
Going back now to the parametric Gompetrz SDE (19), we find that when the

parametric OU process Y (t) is Gaussian, then the process X(t) is log-normal and
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we can explicitly give all the details of its distribution, in particular from (25) and
with X(s) = y = ey0 its transition pdf f(x, t|y, s) is

X(t) ∼ lnN

(
e−

∫ t
s α(u)du ln y , 2D

∫ t

s

e−2
∫ t
r α(u)dudr

)
(26)

It is possible then to calculate also its expectation and variance according to (228)

E [X(t)] = eE[Y (t)]+V [Y (t)]/2
V [X(t)] = e2E[Y (t)]+V [Y (t)]

(
eV [Y (t)] − 1

)

that in the case (26) of degenerate initial conditions become

E [X(t)] = y e−
∫ t
s α(u)du

eD
∫ t
s
e−2

∫ t
r α(u)dudr (27)

V [X(t)] = y 2e−
∫ t
s α(u)du

e2D
∫ t
s
e−2

∫ t
r α(u)dudr

(
e2D

∫ t
s
e−2

∫ t
r α(u)dudr − 1

)
(28)

As for the median, when Y (t) is Gaussian, from (229) we simply get

M [X(t)] = eE[Y (t)] = y e−
∫ t
s α(u)du

(29)

that can be used along with (27) and (28) to analyze the oscillations of the system.
However, as hinted also in the Appendix E.3, we must keep into account that these
results about means and medians are not completely general since they hold only in
so far as the parametric OU process Y (t) is Gaussian: this is not always the case
because it requires that the initial condition itself should be Gaussian. We could
alternatively take advantage of the more general relation (232), but also in this case
there is a snag because we should calculate the median M [Y (t)] which is not always
a straightforward job for arbitrary initial conditions. The adoption of medians as a
way to retrieve the deterministic evolution has been extensively discussed in a few
previous papers [1]

3 Logistic stochastic equations

3.1 Smoluchowsky SDE : stationary pdf

The transformation (132) for the coefficients (10), namely

y = h(x) = ln x x = g(y) = ey Y (t) = lnX(t) X(t) = eY (t)

applied to the logistic SDE (9) leads to b̂ (y, t) = 1, and from (133) to the drift
coefficient

â (y) = 1−D − ey

namely to the Smoluchowsky SDE

dY (t) =
(
1−D − eY (t)

)
dt+ dW (t)
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and from (108) to a dimensionless potential

χ(y) =
φ(y)

kT
=
ey

D
− 1−D

D
y + c

that – provided now that 1 > D – gives rise to the following stationary log-gamma
Boltzmann distribution (see [7] 3.328 for the normalization integral)

e−
ey

D
+ 1−D

D
y

D
1−D
D Γ

(
1−D
D

) 1 > D

We will not elaborate further about this stationary distribution for the process
Y (t), and we will rather confine ourselves to remark that by transforming back to
the original process X(t) = eY (t) we find that its stationary density is

1

D Γ
(
1−D
D

)
( x
D

) 1−D
D
−1

e−
x
D 1 > D x > 0

namely that the stationary distribution ofX(t) is the gamma law G
(
1−D
D
, 1
D

)
. There

is no easy way instead at this stage to find the form of the transition pdf for both
the processes Y (T ) and X(t). Remark finally that the condition 1 > D, required to
have a normalizable stationary solution, amounts to the explicit condition

a1 > b21δ

among the coefficients of the original logistic SDE (2) laden with its physical di-
mensions, and hence it represent an equilibrium condition between the dynamical
and the diffusive components of the process

3.2 Linearized SDE

Considering first to the transformation to process-independent new coefficients dis-
cussed in the Appendix B.2.3, since the coefficients (10) are time-independent, we
must preliminarily check the compatibility condition (142), but we find

b(x)

[
D b′′(x)− d

dx

(
a(x)

b(x)

)]
= x

that is not constant, and hence the said compatibility condition (142) is not satisfied
by the logistic coefficients

As next step we then explore the possibility of linearizing the SDE (9) in the
sense discussed in the Appendix B.2.4: in order to check the condition (150) we find
from the coefficients (10) that

q(x) = 1−D − x b(x)q′(x) = −x 1

q′(x)

d

dx
[b(x)q′(x)] = 1
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so that the compatibility condition (150) is satisfied and from (148) and (149) we
also find

b̂ 1 = −1 p(x) =

∫
dx

b(x)
= ln x h(x) = c e−p(x) = c e− lnx =

c

x

The reciprocal transformation relations then are

Y (t) =
c

X(t)
X(t) =

c

Y (t)

and if we choose c = 1 as integration constant we get the transformation

y = h(x) =
1

x
x = g(y) =

1

y
Y (t) =

1

X(t)
X(t) =

1

Y (t)

so that with

h′(x) = − 1

x2
h′′(x) =

2

x3

from (95) and (96) we have

â (y) = h′(g(y))a(g(y)) +Dh′′(g(y))b2(g(y)) = (2D − 1)y + 1

b̂ (y) = h′(g(y))b(g(y)) = −y

namely from (121)

â 0 = 1 â 1 = 2D − 1 b̂ 0 = 0 b̂ 1 = −1

and hence the new SDE is

dY (t) =
[
(2D − 1)Y (t) + 1

]
dt− Y (t) dW (t) (30)

As a consequence, by taking as in (123)

Z(t) = (D − 1)t−W (t) ∼ N
(
(D − 1)t , 2Dt

)

the general solution (124) of the linearized SDE (30) for Y (0) = Y0 is

Y (t) = eZ(t)

(
Y0 +

∫ t

0

e−Z(u)du

)

while the solution X(t) = 1
Y (t)

of the logistic SDE (9) for X(0) = X0 =
1
Y0

is

X(t) =
X0e

−Z(t)

1 +X0

∫ t

0
e−Z(u)du

(31)

Remark that with a degenerate initial condition X0 = x0, P -a.s. and by switching
off the Wiener noise (D = 0) we get Z(t) = −t, and the solution (31) exactly
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coincides with the solution (83) of the deterministic logistic ODE discussed in the
Appendix A.2. By taking on the other hand X0 = y, P -a.s. at a time 0 ≤ s ≤ t we
have the solution

X(t) =
y e−Z(t−s)

1 + y
∫ t

s
e−Z(u)du

(32)

whose pdf f(x, t|y, s) will be the transition pdf of our logistic process. If moreover
we define the derivable process

A(t) = X0

∫ t

0

e−Z(u)du Ȧ(t) = X0 e
−Z(t) (33)

the solution (31) takes the equivalent forms (see also [7] 3.434.2)

X(t) =
Ȧ(t)

1 + A(t)
=

d

dt
ln
(
1 + A(t)

)
=

d

dt

∫ ∞

0

e−u
1− e−uA(t)

u
du

= −
∫ ∞

0

e−u

u

d

dt
e−uA(t)du = Ȧ(t)

∫ ∞

0

e−u(1+A(t))du (34)

hinting additionally to a possible direct connection between the moments of X(t)
and the generating function of A(t), namely E

[
e−uA(t)

]

At first sight these results seem to be coherent with those elaborated in other
papers [2], where also a few procedures leading to the calculation of expectations
and variances of X(t) are discussed. For the time being however we will neglect a
detailed analysis of these claims, noting instead that an explicit, exact form of the
pdf of (32) could be retrieved only by taking advantage of a few rather intricate
results available in the literature [4]. While indeed Z(t) is a Gaussian process (it is

just a re-scaled Wiener process plus a uniform drift) so that e−Z(t) is a geometric
Gaussian process with a log-normal law, it is totally another matter to find the law
of the integral process ∫ t

s

e−Z(u)du

Extensive research [4, 8, 9, 10] has been devoted to this problem, but the available
answers are far from being easy to handle (see also the subsequent discussion in the
Section 3.4). We will therefore present in the following, for the time being, only
a few elementary approaches with their associated partial results, looking forward
instead to scrutinize the question in further detail in a forthcoming paper within
the framework of a more general setting

3.2.1 Semi-explicit transition pdf

We will present first a semi-explicit form of the transition pdf by recalling the
notations and the results referred to in the Appendix C.1. Since the coefficients (10)
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are time-independent we begin by defining the functions

y = h(x) =

∫
dx

b(x)
= ln x x = g(y) = ey

â (y) =
a(g(y))

b(g(y))
−D b′(g(y)) = 1−D − ey

so that we also find

β(y) = − â
2(y)

4D
− â ′(y)

2
= − 1

4D
(1−D − ey)2 +

ey

2

= − 1

4D
(1− ey)2 +

1

2
− D

4

As a consequence we have the following expressions

h(r) = r ln x+ (1− r) ln y eh(r) = xry1−r

W st(r) = W
(
s+ (t− s)r

)
−
(
rW (t) + (1− r)W (s)

)

β
(
W st(r) + h(r)

)
=

2−D

4
− 1

4D

(
1− xry1−reW st(r)

)2

and hence we get

Z(s, t) =

∫ 1

0

β
(
W st(r) + h(r)

)
dr =

2−D

4
− 1

4D

∫ 1

0

(
1− xry1−reW st(r)

)2
dr

=
2−D

4
− 1

4D
+

y

2D

∫ 1

0

(
x

y

)r

eW st(r)dr − y2

4D

∫ 1

0

(
x

y

)2r

e2W st(r)dr

= −(1−D)2

4D
+

y

2D

∫ 1

0

(
x

y

)r

eW st(r)dr − y2

4D

∫ 1

0

(
x

y

)2r

e2W st(r)dr

We thus find

e(t−s)Z(s,t) = e
2−D

4
(t−s) exp

{
−t− s

4D

∫ 1

0

(
1− xry1−reW st(r)

)2
dr

}

= e−
(1−D)2

4D
(t−s)

exp

{
−t− s

4D

(
y2
∫ 1

0

(
x

y

)2r

e2W st(r)dr − 2y

∫ 1

0

(
x

y

)r

eW st(r)dr

)}

so that finally for the expectation factor in our transition pdf (155) we have

E
[
e(t−s)Z(s,t)

]
= e−

(1−D)2

4D
(t−s)µ(x, t; y, s)

µ(x, t; y, s) = E

[
exp

{
−t− s

4D

(
y2
∫ 1

0

(
x

y

)2r

e2W st(r)dr − 2y

∫ 1

0

(
x

y

)r

eW st(r)dr

)}]
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Figure 1: Behavior of the function (36) for both the possible signs (beware: the plot
scales in the two pictures are rather different)

As for the other factors in (155) we first remark that

1

2D

∫ x

y

a(z)

b2(z)
dz =

1

2D

∫ x

y

1− z

z
dz =

1

2D

(
ln
x

y
− x+ y

)

− 1

4D(t− s)

(∫ x

y

dz

b(z)

)2

= − 1

4D(t− s)

(∫ x

y

dz

z

)2

= − 1

4D(t− s)
ln2 x

y

and then we find out for the transition pdf

f(x, t|y, s) =
e−

(1−D)2

4D
(t−s)

x
√

4πD(t− s)

√
y

x
e

1
2D (ln

x
y
−x+y)e−

1
4D(t−s)

ln2 x
y µ(x, t; y, s)

=
e−

(1−D)2

4D
(t−s)− 1

2
ln x

y
+ 1

2D (ln
x
y
−x+y)− 1

4D(t−s)(ln
x
y )

2

x
√

4πD(t− s)
µ(x, t; y, s)

=
e−

x−y
2D
− 1

4D(t−s)((1−D)(t−s)−ln x
y )

2

x
√

4πD(t− s)
µ(x, t; y, s) (35)

Here too, however, despite the fact that the transition pdf is given in closed form,
the calculation of the expectation in (35) depends on the knowledge of the law of the
integral of a geometric Gaussian process similar to that of the solution (32). There-
fore – at variance with the case of the Gompertz SDE – the expression (35) seems
to represent the farthest point we can reach at present along this path in our quest
for an explicit formula of the transition pdf for the logistic SDE. The main hurdle
apparently is the computation of the expectation term µ(x, t; y, s) which contains
integrals of geometric Wiener processes with non elementary distributions [4]. All
that we can easily assess for the time being is the behavior of the explicit term in
front of µ that is of the type

e−x−(±1−lnx)2

x
(36)
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This function turns out to be regular in the origin x = 0 for both the possible
signs and, coherently with the behavior of the stationary distribution, it displays a
gamma-like shape for x > 0 as can be seen from the Figure 1

3.2.2 Fokker-Planck equation

We will next turn our attention to the possible solutions of the corresponding FPE
along the lines presented in the Appendix C: for a process X(t) solution of the
logistic SDE (9) the FPE (165) is

∂tfX(x, t) = −∂x
[→
v (x)fX(x, t)

]
+ ∂2x [B(x)fX(x, t)]

= −∂x [x(1 − x)fX(x, t)] +D∂2x
[
x2fX(x, t)

]
(37)

= Dx2 ∂2xfX(x, t) + x(4D − 1 + x)∂xfX(x, t) + (2D − 1 + 2x)fX(x, t)

where
→
v (x) = a(x) = x(1 − x) B(x) = Db2(x) = Dx2

while for the transformed process Y (t) = 1
X(t)

solution of the SDE (30) we have

∂tfY (y, t) = −∂y
[→
v (y)fY (y, t)

]
+ ∂2y [B(y)fY (y, t)]

= −∂y [((2D − 1)y + 1)fY (y, t)] +D∂2y
[
y2fY (y, t)

]
(38)

= Dy2 ∂2yfY (y, t) + [(2D + 1)y − 1]∂yfY (x, t) + fY (y, t)

with
→
v (y) = â (y) = (2D − 1)y + 1 B(y) = D b̂ 2(y) = Dy2

Remark by the way that the pdf of Y (t) = 1
X(t)

can always be derived from that of

X(t) as

fY (y, t) =
1

y2
fX

(
1

y
, t

)

so that the corresponding equations could be deduced one from the other by means
of this transformation

We can then look for the solutions with eigenfunction expansions starting with (37):
since we already know that the pdf of the gamma law G

(
1−D
D
, 1
D

)

f̃X(x) =

(
1
D

) 1−D
D

Γ
(
1−D
D

) x 1−D
D
−1e−

x
D =

1

D

(
x
D

) 1−D
D
−1

Γ
(
1−D
D

) e−
x
D 1 > D (39)

is a stationary solution of (37) (this can be also checked by direct calculation), from
the Section C.3 stems that by taking

fX(x, t) =

√
f̃X(x) gX(x, t)
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we get for gX the new equation

∂tgX(x, t) = L [gX ] (x, t) (40)

where L is an operator of the Sturm-Liouville form

L [ϕ] (x) =
d

dx

[
p(x)

dϕ(x)

dx

]
− q(x)ϕ(x) (41)

that is is self-adjoint for functions satisfying suitable boundary conditions in x = 0
and x = +∞. It can be shown (and cross-checked by direct calculation) that for
our equation (37) we have in particular

p(x) = B(x) = Dx2

q(x) =

[
B′(x)− →v (x)

]2

4B(x)
−

[
B′(x)− →v (x)

]′

2
=

(x− 1)2 − 2D

4D

so that we finally get

∂tgX(x, t) = Dx2 ∂2xgX(x, t) + 2Dx∂xgX(x, t) +
2D − (x− 1)2

4D
gX(x, t)

We then separate the variables by taking

gX(x, t) = e−λtGX(x)

obtaining the eigenvalue equation

L [GX ] (x) + λGX(x) = 0

that can be explicitly written as

x2G′′X(x) + 2xG′X(x) +

[
2D − (x− 1)2

4D2
+
λ

D

]
GX(x) = 0 (42)

Now this is a totally Fuchsian equation with two singularities in x = 0 and x = +∞
and consequently can be treated with the usual methods: first of all it is possible
to check by direct calculation that λ0 = 0 is an eigenvalue for the eigenfunction

G0(x) =

√
f̃X(x). Then to simplify the notation we change the variable according

to
z =

x

D
GX(x) = GX (Dz) = ψ(z)

and we get

z2ψ′′(z) + 2zψ′(z) +

[
1 + 2λ

2D
−
(
Dz − 1

2D

)2
]
ψ(z) = 0 (43)
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Now we take

ψ(z) =
ez/2

z
u(z)

ψ′(z) =
ez/2

z

[
u′(z) +

z − 2

2z
u(z)

]

ψ′′(z) =
ez/2

z

[
u′′(z) +

z − 2

z
u′(z) +

4 + (z − 2)2

4z2
u(z)

]

and we find

u′′(z) + u′(z) +

[
1

2Dz
+

(1 + 2λ)2D − 1

4D2z2

]
u(z) = 0

that can be put in the form of a confluent hypergeometric equation (see [7] formula
9.202.1)

u′′(z) + u′(z) +

[
1
2D

z
+

1
4
− (1−D)2−4λD

4D2

z2

]
u(z) = 0 (44)

where moreover the term

µ2 =
(1−D)2 − 4λD

4D2
=

(
1−D

2D

)2

− λ

D

is required to be positive, which would happen only if

λ < D

(
1−D

2D

)2

When this happens two linearly independent solutions are ( [7] formula 9.202.2− 3)

u1(z) = z
1
2
+µ e−zΦ

(
D − 1

2D
+ µ, 1 + 2µ; z

)

u2(z) = z
1
2
−µ e−zΦ

(
D − 1

2D
− µ, 1− 2µ; z

)

where Φ(α, γ; z) is the confluent hypergeometric function (see [7] formula 9.210.1). It
is well known that the eigenvalues are found by requiring that Φ(α, γ; z) degenerates
in a Laguerre polynomial (see [7] formula 8.970.1) and that this happens when
α = −n is a negative integer (see [7] formula 8.972.1). As a consequence our
eigenvalues are selected by the requirement

D − 1

2D
± µ =

D − 1

2D
±

√(
1−D

2D

)2

− λ

D
= −n

namely

λn = D

(
1−D

D
n− n2

)
(45)



N Cufaro Petroni, S De Martino and S De Siena: Gompertz and logistic 20

However, while λ0 = 0 is confirmed as an eigenvalue, we find that just a finite
number of eigenvalues are possibly positive, and that they turn negative as soon as

n >
1−D

D

For small D this limit can be quite large, but that notwithstanding it remains a finite
number, and hence it seems apparent that we can not have the infinite sequence
of (increasing) positive eigenvalues that we would have supposed to have: this is
a puzzling point, and these results can be also checked with a shortcut through
Mathematica asking for the solutions of (42). Remark that the positivity of the
eigenvalues is directly linked to the ergodicity of the system, because it would entail
that all the eigenfunctions other than the stationary solution are wiped out in time
exponentially fast: failing to have positive eigenvalues would instead present the
case of exploding terms in the eigenfunction expansion

If on the other hand we try to look as an alternative for the eigenfunction expan-
sion of the solution of the Fokker-Planck equation (38) for the transformed process
Y (t) = 1

X(t)
we would meet again seeming insurmountable problems: we indeed

immediately find by direct calculation that the stationary solution is now, quite
understandably, the inverse gamma law inv -G

(
1−D
D
, 1
D

)
with pdf

f̃Y (y) =

(
1
D

) 1−D
D

Γ
(
1−D
D

) y− 1−D
D
−1e−

1
Dy = D

(
1
Dy

) 1
D

Γ
(
1−D
D

) e− 1
Dy 1 > D (46)

then by taking

fY (y, t) =

√
f̃Y (y) gY (y, t)

we get the equation
∂tgY (y, t) = L [gY ] (y, t) (47)

where L [ · ] is now a Sturm-Liouville operator (41) with

p(y) = B(y) = Dy2

q(y) =

[
B′(y)− →v (y)

]2

4B(y)
−

[
B′(y)− →v (y)

]′

2
=

(y − 1)2 − 2Dy2

4Dy2

so that we finally get

∂tgY (y, t) = Dy2 ∂2ygY (y, t) + 2Dy ∂ygY (y, t) +
2Dy2 − (y − 1)2

4Dy2
gY (y, t)

We next separate the variables by taking

gY (y, t) = e−λtGY (y)
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to have the eigenvalue equation

L [GY ] (y) + λGY (y) = 0

which can be explicitly written as

y2G′′Y (y) + 2y G′Y (y) +

[
2Dy2 − (y − 1)2

4D2y2
+
λ

D

]
GY (y) = 0 (48)

or equivalently as

G′′Y (y) +
2

y
G′Y (y) +

[
2Dy2 − (y − 1)2

4D2y4
+

λ

Dy2

]
GY (y) = 0

Now it is apparent that this equation has a Fuchsian singularity at y = +∞ because
its coefficients asymptotically vanish quickly enough, but also has non Fuchsian
singularity in y = 0 where its second coefficient displays a 4th order pole. As a
consequence there is no standard procedure to solve it

The two Fokker-Planck equations (37) and (38) could finally also be recast in
the form of ODE ’s by means of a Laplace transform in t

φX(x) =

∫ +∞

0

e−ptfX(x, t) dt φY (y) =

∫ +∞

0

e−ptfY (y, t) dt

∫ +∞

0

e−pt∂tfX(x, t) dt = p φX(x)− f0(x)

∫ +∞

0

e−pt∂tfY (y, t) dt = p φY (y)− g0(y)

where, to keep the notation to a minimum, we hid the explicit dependence on p:
on the other hand the variable p becomes an external parameter in the subsequent
ODE ’s which respectively are

Dx2φ′′X(x) + [x2 + (4D − 1)x]φ′X(x) + (2x+ 2D − 1− p)φX(x) = −f0(x) (49)

Dy2φ′′Y (y) + [(2D + 1)y − 1]φ′Y (y) + (1− p)φY (y) = −g0(y) (50)

where f0(x) and g0(y) are the initial pdf ’s. The associated, homogeneous equations

Dx2φ′′X(x) + [x2 + (4D − 1)x]φ′X(x) + (2x+ 2D − 1− p)φX(x) = 0 (51)

Dy2φ′′Y (y) + [(2D + 1)y − 1]φ′Y (y) + (1− p)φY (y) = 0 (52)

are exactly solved byMathematica in terms of confluent hypergeometric functions.
In particular, taking

β =
1−D

D
η(p) =

√
β2 +

p

D

the general solution of (51) for instance is

φX(x) = e−
x
Dxβ−1+η(p)

[
C1Ψ

(
−β + η(p), 1 + 2η(p),

x

D

)

+
C2

2η(p)B (1 + β − η(p), 2η(p))
Φ
(
−β + η(p), 1 + 2η(p),

x

D

)]



N Cufaro Petroni, S De Martino and S De Siena: Gompertz and logistic 22

where Φ and Ψ are confluent hypergeometric functions (see [7] 9.201.1, 9.210.2).
However, even if we can manage to find the complete solution of the non homoge-
neous equation, the problem of inverting such Laplace transforms would still stay
with us making these results rather incomplete, at least for the time being

3.3 θ-logistic SDE

We can now generalize the previous results to the θ-logistic SDE (11) and we start
by looking for a stationary Boltzmann distribution. The transformation (132) for
the coefficients (12), namely

y = h(x) = ln x x = g(y) = ey Y (t) = lnX(t) X(t) = eY (t)

applied to the θ-logistic SDE (11) leads to b̂ (y, t) = 1, and from (133) to the drift
coefficient

â (y) = 1−D − eθy

namely to the Smoluchowsky SDE

dY (t) =
(
1−D − eθY (t)

)
dt+ dW (t)

and from (108) to a dimensionless potential

χ(y) =
φ(y)

kT
=
eθy

θD
− 1−D

D
y + c

that – provided now that 1 > D – gives rise to the following stationary generalized
log-gamma Boltzmann distribution (see [7] 3.328 for the normalization integral)

e−
eθy

θD
+ 1−D

D
y

1
θ
(θD)

1−D
θD Γ

(
1−D
θD

) 1 > D

This can finally be transformed back to the original process X(t) = eY (t) giving as
stationary density

θ x
1−D
D
−1e−

xθ

θD

(θD)
1−D
θD Γ

(
1−D
θD

) 1 > D

which is the pdf of the generalized gamma law Gθ

(
1−D
D
, 1
(θD)1/θ

)

We then go on to linearize the SDE (11): from the coefficients (12) we find

q(x) = 1−D − xθ b(x)q′(x) = −θxθ 1

q′(x)

d

dx
[b(x)q′(x)] = θ

so that the compatibility condition (150) is satisfied and from (148), (149) we have

b̂ 1 = −θ p(x) =

∫
dx

b(x)
= ln x h(x) = c eb̂ 1p(x) = c e−θ lnx =

c

xθ
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If we then choose c = 1 as integration constant the reciprocal transformation rela-
tions are

y = h(x) =
1

xθ
x = g(y) =

1

y1/θ
Y (t) =

1

X(t)θ
X(t) =

1

Y (t)1/θ

so that with

h′(x) = − θ

x1+θ
h′′(x) =

θ(1 + θ)

x2+θ

from (95) and (96) we have

â (y) = h′(g(y))a(g(y)) +Dh′′(g(y))b2(g(y)) =
(
(1 + θ)D − 1

)
θy + θ

b̂ (y) = h′(g(y))b(g(y)) = −θy

namely from (121)

â 0 = θ â 1 =
(
(1 + θ)D − 1

)
θ b̂ 0 = 0 b̂ 1 = −θ

and hence the new SDE is

dY (t) =
[(
(1 + θ)D − 1

)
Y (t) + 1

]
θdt− θY (t) dW (t) (53)

Taking now as in (123)

Z(t) = θ(D − 1)t− θW (t) ∼ N
(
(D − 1)θt , 2Dθ2t

)

the general solution (124) of the linearized SDE (53) for Y (0) = Y0 is

Y (t) = eZ(t)

(
Y0 + θ

∫ t

0

e−Z(u)du

)

while the solution X(t) of the θ-logistic SDE (11) for Y0 = X−θ0 is

X(t) =

(
Xθ

0 e
−Z(t)

1 + θXθ
0

∫ t

0
e−Z(u)du

)1/θ

(54)

Remark that here too, with a degenerate initial condition X0 = x0, P -a.s. and by
switching off the Wiener noise (D = 0) we get Z(t) = −θt, and the solution (54)
exactly coincides with the solution (84) of the deterministic θ-logistic ODE discussed
in the Appendix A.2. Then again, taking X0 = y, P -a.s. at a time 0 ≤ s ≤ t we
have the solution

X(t) =

(
yθ e−Z(t−s)

1 + θyθ
∫ t

s
e−Z(u)du

)1/θ

(55)

whose pdf f(x, t|y, s) will be the transition pdf of our θ-logistic process. If more-
over we define the derivable process

A(t) = Xθ
0

∫ t

0

e−Z(u)du Ȧ(t) = Xθ
0e
−Z(t) (56)
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the solution (54) takes the equivalent forms (see also [7] 3.434.2)

X(t) =

(
Ȧ(t)

1 + θA(t)

) 1
θ

=

(
1

θ

d

dt
ln
[
1 + θA(t)

]) 1
θ

=

(
d

dt

∫ ∞

0

e−u
1− e−θuA(t)

θu
du

)1
θ

=

(
−
∫ ∞

0

e−u

θu

d

dt
e−θuA(t)du

) 1
θ

=

(
Ȧ(t)

∫ ∞

0

e−u(1+θA(t))du

) 1
θ

(57)

Retracing finally the procedure of the Appendix C.1 leading to the semi-explicit
transition pdf (35), from the coefficients (12) we begin by defining the functions

y = h(x) = ln x x = g(y) = ey â (y) = 1−D − eθy

so that we also find

β(y) = − 1

4D

(
1− eθy

)2
+

1 + (θ − 1)eθy

2
− D

4

Keeping then for h(r) and W st(r) the same definitions of the Section 3.2.1, we have
now

β
(
W st(r) + h(r)

)

=
2−D + 2(θ − 1)xrθy(1−r)θeθW st(r)

4
− 1

4D

(
1− xrθy(1−r)θeθW st(r)

)2

and hence we get

Z(s, t)

= −(1−D)2

4D
+

1 + (θ − 1)D

2D
yθ
∫ 1

0

(
x

y

)rθ

eθW st(r)dr − y2θ

4D

∫ 1

0

(
x

y

)2rθ

e2θW st(r)dr

We thus find for the expectation factor in the transition pdf (155)

E
[
e(t−s)Z(s,t)

]
= e−

(1−D)2

4D
(t−s)µθ(x, t; y, s)

µθ(x, t; y, s) = E

[
exp

{
−t− s

4D

(
y2θ
∫ 1

0

(
x

y

)2rθ

e2θW st(r)dr

− 2
(
1 + (θ − 1)D

)
yθ
∫ 1

0

(
x

y

)rθ

eθW st(r)dr

)}]

As for the other factors in (155) we now have

1

2D

∫ x

y

a(z)

b2(z)
dz =

1

2D

(
ln
x

y
− xθ − yθ

θ

)

− 1

4D(t− s)

(∫ x

y

dz

b(z)

)2

= − 1

4D(t− s)
ln2 x

y
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and therefore with a little algebra we find out for the transition pdf

f(x, t|y, s) = e−
xθ−yθ

2Dθ
− 1

4D(t−s)((1−D)(t−s)−ln x
y )

2

x
√

4πD(t− s)
µθ(x, t; y, s) (58)

3.4 Integrals of a geometric Wiener process

In the Section 3.2 we have discussed the solutions of the SDE ruled by a logistic
dynamics and we have found them contingent on processes basically of the type

X(t) =

∫ t

0

eW (s)ds (59)

where W (t) ∼ N(0, 2Dt) is a Wiener process with diffusion coefficient 2D. The
processes (59) are also known as Exponential Functionals of Brownian Motion and
have been extensively studied in the financial context in a rather mathematical
setting [4]. By postponing a more accurate analysis to a forthcoming paper, in
the present section we will instead scrutinize the distribution of X(t) with more
elementary tools leading of course just to partial results.

3.4.1 Moments

We will begin by looking at the moments of (59)

Mn(t) = E [Xn(t)] = E

[∫ t

0

ds1 . . .

∫ t

0

dsne
W (s1)+...+W (sn)

]

=

∫ t

0

ds1 . . .

∫ t

0

dsnE
[
e
∑n

k=1 W (sk)
]

(60)

Since it is
cov [W (s),W (t)] = 2D (s ∧ t)

we have for every choice of t1, . . . , tn that

(
W (t1), . . . ,W (tn)

)
∼ N (0, 2DA)

where 0 = (0, . . . , 0) and

A =




t1 t1 ∧ t2 t1 ∧ t3 . . . t1 ∧ tn
t2 ∧ t1 t2 t2 ∧ t3 t2 ∧ tn
t3 ∧ t1 t3 ∧ t2 t3 t3 ∧ tn

...
. . .

...
tn ∧ t1 tn ∧ t2 tn ∧ t3 . . . tn
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As a consequence

n∑

k=1

W (sk) = (1, . . . , 1)




W (s1)
...

W (sn)


 ∼ N

(
0 , 2D

n∑

j,k=1

(sj ∧ sk)
)

and e
∑n

k=1 W (sk) is the corresponding log-normal rv, so that

E

[
e
∑n

k=1 W (sk)
]
= eD

∑n
j,k=1(sj∧sk) (61)

which is apparently invariant under every permutation of the variables, while the
moments are

Mn(t) =

∫ t

0

ds1 . . .

∫ t

0

dsn e
D

∑n
j,k=1(sj∧sk) =

∫

[0,t]n
ds1 . . . dsn e

D
∑n

j,k=1(sj∧sk)

In this integral the variables sk are not ordered, but we can go around this problem
in the following way: consider the subset of [0, t]n

B = {(s1, . . . , sn) ∈ [0, t]n : 0 ≤ s1 ≤ . . . ≤ sn ≤ t}

where the variables are ordered according to their indices, and let P be the family of
the n! permutations Π of s1, . . . , sn. The n! subsets Π(B) obtained by permutations
of the variables in B are then such that

⋃

Π∈P
Π(B) = [0, t]n

while on the other hand – because of the symmetry of (61) under permutations –
all the integrals of (61) on every Π(B) take the same value. We have then that

Mn(t) = n!

∫

B

ds1 . . . dsn e
D

∑n
j,k=1(sj∧sk) = n!

∫ t

0

dsn . . .

∫ s3

0

ds2

∫ s2

0

ds1 e
D

∑n
j,k=1(sj∧sk)

and since for s1 ≤ s2 ≤ . . . ≤ sn it is

n∑

j,k=1

(sj ∧ sk) =

n∑

k=1

sk + 2
∑

j<k

(sj ∧ sk) =
n∑

k=1

sk + 2

n−1∑

j=1

n∑

k=j+1

(sj ∧ sk)

=

n∑

k=1

sk + 2

n−1∑

j=1

n∑

k=j+1

sj =

n∑

k=1

sk + 2

n−1∑

j=1

(n− j)sj

=
n∑

k=1

sk + 2
n∑

j=1

(n− j)sj =
n∑

k=1

[2(n− k) + 1]sk
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we finally get

Mn(t) = n!

∫ t

0

dsn . . .

∫ s3

0

ds2

∫ s2

0

ds1 e
D

∑n
k=1[2(n−k)+1]sk

and with the changes of variables vk = Dsk

Mn(t) =
n!

Dn

∫ t

0

dvn . . .

∫ v3

0

dv2

∫ v2

0

dv1 e
∑n

k=1[2(n−k)+1]vk

=
n!

Dn

∫ t

0

dvne
vn

∫ vn

0

dvn−1e
3vn−1 . . .

∫ v3

0

dv2 e
(2n−3)v2

∫ v2

0

dv1 e
(2n−1)v1 (62)

By looking now at the explicit calculations for the first few values of n

M1(t) =
eDt − 1

D

M2(t) =
e4Dt − 4eDt + 3

6D2

M3(t) =
e9Dt − 6e4Dt + 15eDt − 10

60D3

M4(t) =
e16Dt − 8e9Dt + 28e4Dt − 56eDt + 35

840D4
. . .

we can conjecture the following general form for the moments of (59)

Mn(t) = (−1)n
n!

Dn

n∑

k=0

(−1)k
2− δk0

(n− k)! (n+ k)!
ek

2Dt (63)

but we have yet no proof by recurrence and induction, so that (62) remains for the
time being our last validated result

3.4.2 Characteristic function

Leaving aside for now every convergence question1, starting from (63) we could
surmise that the characteristic function of X(t) takes the form

ϕ(u, t) =

∞∑

n=0

(iu)n

n!
Mn(t) =

∞∑

n=0

(−iu
D

)n n∑

k=0

(−1)k
2− δk0

(n− k)! (n+ k)!
ek

2Dt

=
∞∑

k=0

(−1)k(2− δk0)e
k2Dt

∞∑

n=k

(−iu
D

)n
1

(n− k)! (n+ k)!

1This is not at all a small detail, as it will be clear at the end of the present section. On the
other hand it is known that this problem already exists for the lognormal distributions: while all
the moments exist and are finite the generating function does not exist, and the characteristic
function can not be represented as a convergent series [11]. This is related indeed to the fact
that the lognormal distribution is not uniquely determined by its moments, and it would not be
surprising then to find that this behavior extends also to the integrals of lognormal processes
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and by changing the index n into ℓ = n− k

ϕ(u, t) =

∞∑

k=0

(
iu

D

)k

(2− δk0)e
k2Dt

∞∑

ℓ=0

(−iu
D

)ℓ
1

ℓ! (ℓ+ 2k)!

It is known on the other hand that (see [7] 8.402)

∞∑

ℓ=0

zℓ

ℓ! (ℓ+ 2k)!
= (−z)−kJ2k(2i

√
z)

where Jn(x) are the Bessel functions of the first kind, and hence

ϕ(u, t) =

∞∑

k=0

(2− δk0)e
k2DtJ2k

(
2i

√
−iu
D

)

Since in general ϕ(−u) = ϕ(u), we can restrict ourselves to u > 0 and in this case
we have

2i

√
−iu
D

= ±2ei
π
4

√
u

D
= ±(1 + i)

√
2u

D
u > 0

On the other hand we also know that J2k(−z) = J2k(z) so that we finally have

ϕ(u, t) =
∞∑

k=0

(2− δk0)e
k2DtJ2k

(
(1 + i)

√
2u

D

)

= 2
∞∑

k=1

ek
2DtJ2k

(
(1 + i)

√
2u

D

)
+ J0

(
(1 + i)

√
2u

D

)
u > 0 (64)

This result looks however only formal because the presence of terms ek
2Dt in the

sums lends no hope for a convergence whatsoever. This was moreover a foregone
conclusion since the (absolute) moments (63) utterly fail the convergence test for
the Taylor expansion of the characteristic function: the moments (63) coincide in-
deed with the absolute moments because out rv ’s are always positive (as for every
exponential function), and hence the convergence of the Taylor expansion would
require

lim
n

n
√
Mn(t)

n
< +∞

while a few numerical trials show that the limit diverges for every choice of t and D

3.4.3 Finite sums of a geometric Wiener process

Since the process X(t) in (59) is the integral of a geometric Wiener process, we could
first of all investigate the laws of sums of a geometric Wiener process at different
times. Let us begin with the simplest case

Z = eW (s) + eW (t) s ≤ t (65)
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by remarking first that the two log-normal rv ’s eW (s) and eW (t) are not independent.
The rv Z can however be put in the form of the product of two independent rv ’s

Z = eW (s)
(
1 + eW (t)−W (s)

)
= XY

where we know that X > 0 is log-normal, while Y > 1 is a 1-shifted log-normal:

X = eW (s) ∼ lnN(0, 2Ds) Y − 1 = eW (t)−W (s) ∼ lnN(0, 2D(t− s))

namely the pdf ’s respectively are

fX(x) =
e−

ln2 x
4Ds

x
√
4πDs

ϑ(x) fY (y) =
e−

ln2(y−1)
4D(t−s)

(y − 1)
√

4πD(t− s)
ϑ(y − 1) (66)

ϑ(x) being the Heaviside function. To find the pdf fZ(z) of Z we could then remark
that lnZ = lnX + lnY is the sum of two independent rv ’s where in particular
lnX = W (s) ∼ N(0, 2Ds). We could hence first calculate the pdf of lnZ as the
convolution of the pdf ’s of W (s) and lnY , and then transform it back to the pdf
of Z. It is important to remark however that lnY , as the logarithm of a 1-shifted
log-normal, by no means is a normal rv as can be apparently argued from the simple
remark that, being Y > 1, we always get lnY > 0. The pdf of lnY can of course be
explicitly calculated with the usual procedure, but it turns out to have an involuted
form which makes hard to calculate the required convolution, and still harder to find
back fZ(z). Alternatively we could try to directly calculate the pdf of the product
of two non-negative, independent rv ’s according to the following result

Proposition 3.1. If Z = XY is the product of two ac rv’s with joint pdf f(x, y),
then its pdf is

fZ(z) =

∫ ∞

0

dx

x

[
f
(
x,
z

x

)
+ f

(
−x,−z

x

)]
(67)

and when in particular we take X ≥ 0, Y ≥ 0 it becomes

fZ(z) = ϑ(z)

∫ ∞

0

dx

x
f
(
x,
z

x

)
(68)

Finally, if we also suppose that X, Y are independent with marginals fX(x) and
fY (y) the pdf is

fZ(z) = ϑ(z)

∫ ∞

0

dx

x
fX (x) fY

(z
x

)
(69)

Proof: Starting from the cdf of Z we have

FZ(z) = P {Z ≤ z} = P {XY ≤ z} =

∫∫

Dz

f(x, y) dx dy
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Figure 2: The shadowed regions show the integration domain Dz

where Dz = {(x, y) ∈ R2 : xy ≤ z}. Looking at the Figure 2 we see then that

FZ(z) =

∫ 0

−∞
dx

∫ ∞

z/x

dy f(x, y) +

∫ ∞

0

dx

∫ z/x

−∞
dy f(x, y)

=

∫ ∞

0

dx

∫ ∞

−z/x
dy f(−x, y) +

∫ ∞

0

dx

∫ z/x

−∞
dy f(x, y)

=

∫ ∞

0

dx

∫ z/x

−∞
dy f(−x,−y) +

∫ ∞

0

dx

∫ z/x

−∞
dy f(x, y)

and by introducing a new variable u = xy

FZ(z) =

∫ ∞

0

dx

∫ z

−∞

du

x
f
(
−x,−u

x

)
+

∫ ∞

0

dx

∫ z

−∞

du

x
f
(
x,
u

x

)

=

∫ z

−∞
du

∫ ∞

0

dx

x

[
f
(
x,
u

x

)
+ f

(
−x,−u

x

)]

so that at once we get the pdf (70), while the other two formulas (68) and (69)
immediately follow �

From (69) and (66) we then have the following pdf for Z

fZ(z) = ϑ(z)

∫ z

0

e−
ln2 x
4Ds

x
√
4πDs

e−
[ln(z−x)−lnx]2

4D(t−s)

(z − x)
√

4πD(t− s)
dx (70)

which again is not an easy calculation to perform, even if it looks tantalizingly near
to an explicit answer. Numerical integration shows that (70) is correctly normalized,
and numerical plots in Figure 3 display a very reasonable behavior confirming that
our calculation is so far acceptable: that notwithstanding, the unavailability of a
complete result for such a simple case as the rv Z in (65) also uphold the view that
finding the law of X(t) in (59) is a problem hard to crack
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Figure 3: Numerical instances of the pdf fZ(z) in (70): (A) 4Ds = 1.0, while
4D(t − s) = 0.1 (red) 1.0 (blue) 8.0 (black); (B) 4D(t − s) = 1, while 4Ds = 0.2
(red) 1.0 (blue) 5.0 (black)

3.4.4 Differential equations

When an ac process X(t) is solution of a SDE

dX(t) = a(X(t), t) dt+ b(X(t), t) dW (t) (71)

then X(t) is Markovian, with almost every trajectory everywhere continuous, and
its pdf fX(x, t) is solution of a Fokker-Planck equation

∂tfX(x, t) = −∂x [A(x, t)fX(x, t)] +
1

2
∂2x [B(x, t)fX(x, t)] (72)

where
a(x, t) = A(x, t) B(x, t) = 2Db2(x, t)

In this case it also satisfies a continuity equation which represents a requirement of
probability conservation: we can indeed immediately recast (72) into the form

∂tfX(x, t) + ∂x [v(x, t)fX(x, t)] = 0 (73)

provided that

v(x, t) = A(x, t)− ∂x [B(x, t)fX(x, t)]

2fX(x, t)
(74)

It is apparent however that in the present context the continuity equation (73) is
not a new equation really different from the Fokker-Planck equation (72), and this is
made clear in particular by the fact that the velocity field (74) is contingent on the
solution fX(x, t) of (72): in other words here v(x, t) does not represent an external,
given field but depends on the solution fX(x, t) so that (if A(x, t) and B(x, t) are
given) we can directly calculate v from fX , and conversely fX from v
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Not every stochastic process, however, is Markovian, and in particular X(t)
defined in (59) is not. In this case neither the process trajectories will satisfy a SDE
of the type (71), nor its pdf will be a solution of a PDE of the type (72). This is
quite understandable, and in fact every quest for some other kind (for instance) of
PDE, even if possible, is doomed to futility: since X(t) is not Markovian, in order
to find the law of the process it would be far from enough to know its one time
pdf fX(x, t) together with its transition pdf fX(x, t|y, s). We would need instead
the knowledge of every joint pdf fX(x1, t; . . . ; xn, tn) that in any case could not be
extracted from a single PDE.

On the other hand the conservation of the probability should be guaranteed in
any case, and hence the pdf fX(x, t) is supposed to satisfy some kind of continuity
equation of the type (73), but for the fact that now this continuity equation can
no longer be derived from a corresponding FPE. We must at once remark, however,
that (73) in no way can surrogate the role of a FPE : first of all its possible solutions
will not constitute the basis to build the process laws; and furthermore – as we
already have remarked – v(x, t) is not a given function independent from the solution.
In general the connection between v(x, t) and fX(x, t) will not be as simple as (74),
but in any case every possible solution will be associated to its own velocity field.

As a matter of fact, however, when the process is not Markovian we should give
up our old habit of thinking to the different processes selected by different initial
conditions for a single transition pdf as to a unified process : now every global law
(represented by the said joint pdf ’s fX(x1, t; . . . ; xn, tn)) defines a different process
and we do not see in general a way to detect homogeneous classes among them. This
means, among others, that for every continuity equation with a given v(x, t) there
will be just one possible solution of interest for us, and that a family of processes
could be located only through their mating with the velocity fields

Two remarks are in order here: first, we could revert to our initial, more narrow
aim of finding just the law of the rv ’s X(t) in (59) and not the global law of the
geometric Wiener process that these rv ’s represent for t > 0. We have found however
that even restricting the scope of our enquiry to this carefully circumscribed problem
will not make easy to pick up a meaningful solution. Second, we could try to
circumvent the non Markovianity of X(t) in a way reminiscent of an Ornstein-
Uhlenbeck procedure: the process X(t) is apparently derivable with Ẋ(t) = eW (t) =
Y (t) so that its stochastic differential is

dX(t) = eW (t)dt = Y (t) dt

This however does not constitute a SDE, and hence the pdf of X(t) (which arguably
is non Markovian, as in the Ornstein-Uhlenbeck case) does not satisfy a Fokker-
Planck equation. The process Y (t) = eW (t) on the other hand – from the Itō formula
– is a solution of the SDE for a geometric Wiener process

dY (t) = DY (t) dt+ Y (t) dW (t)
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and hence it is Markovian so that its pdf fY (y, t) obeys the corresponding Fokker-
Planck equation

∂tfY (y, t) = −D∂x [yfY (y, t)] +D∂2y
[
y2fY (y, t)

]

= Dy2∂2Y fY (y, t) + 3D∂yfY (y, t) +DfY (y, t) (75)

The pair X(t), Y (t) will thus satisfy the system

{
dX(t) = Y (t) dt
dY (t) = DY (t) dt+ Y (t) dW (t)

If then we define the vector process

Z(t) =

(
X(t)
Y (t)

)

it will be a solution of the two-components, vector SDE

dZ(t) = a(Z(t)) dt+ C(Z(t)) dW (t) (76)

where

a(z) = a(x, y) =

(
y
Dy

)
C(z) = C(x, y) =

(
0 0
0 y

)

while the vector Wiener process can be taken as

W (t) =

(
WX(t)
W (t)

)

WX(t) being any auxiliary Wiener process apparently playing no role in the discus-
sion of the SDE (76). The vector process Z(t) is then Markovian and to its vector
SDE (76) it is possible to associate a (2+1)-dimensional Fokker-Planck equation
for the pdf f(z, t) = f(x, y, t): solving this equation would lead in principle to
the complete law of the process Z(t) and hence, by marginalization, to the much
sought-after law of its component X(t)

Proposition 3.2. The Fokker-Planck equation of the process Z(t) is

∂tf(x, y, t) = D∂2y
[
y2f(x, y, t)

]
− y∂xf(x, y, t)−D∂y [yf(x, y, t)] (77)

while the marginal pdf fX(x, t) of the process X(t) obeys the continuity equation

∂tfX(x, t) + ∂x [v(x, t)fX(x, t)] = 0 (78)

where the velocity field is

v(x, t) = E

[
Ẋ(t)

∣∣∣ X(t) = x
]
= E

[
eW (t)

∣∣∣∣
∫ t

0

eW (s)ds = x

]
(79)
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Proof: The vector process Z(t) is Markovian and to its vector SDE (76) it is pos-
sible to associate a (2+1)-dimensional Fokker-Planck equation for the pdf f(z, t) =
f(x, y, t) with the coefficients

A(z) = a(z) =

(
y
Dy

)
B(z) = 2DC(z)CT (z) = 2D

(
0 0
0 y2

)

giving rise to

∂tf(x, y, t) = D∂2y
[
y2f(x, y, t)

]
− ∂x [yf(x, y, t)]− ∂y [Dyf(x, y, t)]

= Dy2∂2yf(x, y, t)− y [∂xf(x, y, t)− 3D∂yf(x, y, t)] +Df(x, y, t)

namely (180). This PDE essentially is confined to the quadrant x > 0, y > 0 because
the processes X(t) and Y (t) are positive and never vanish. When the pdf f(x, y, t)
has been found, we can calculate the marginals fX(x, t) and fY (y, t) as

fX(x, t) =

∫ +∞

0

f(x, y, t) dy fY (y, t) =

∫ +∞

0

f(x, y, t) dx

As a matter of fact, however, from the laws of a Wiener process W (t) ∼ N(0, 2Dt)
we already know that the log-normal pdf of Y (t) which is

fY (y, t) =
e−

ln2 y
4Dt

y
√
4πDt

(80)

and hence we can also perform a first check of the coherence of our joint equa-
tion (180): by x-marginalization of (180) we indeed have

∂tfY (y, t) = Dy2∂2yfY (y, t) + 3Dy∂yfY (y, t) +DfY (y, t)− y

∫ +∞

0

∂xf(x, y, t) dx

= Dy2∂2yfY (y, t) + 3Dy∂yfY (y, t) +DfY (y, t)− y [f(x, y, t)]x=+∞
x=0

= Dy2∂2yfY (y, t) + 3Dy∂yfY (y, t) +DfY (y, t) + yf(0, y, t) (81)

that coincides with (75) provided that f(0, y, t) = 0, as it is reasonable to require.
On the other hand, by taking (80) into account, we also have by direct calculation
that

∂tfY (y, t)

fY (y, t)
=

ln2 y − 2Dt

4Dt2
=
Dy2∂2yfY (y, t) + 3Dy∂yfY (y, t)

fY (y, t)
+D

so that the pdf (80) of Y (t) actually is a solution of the x-marginalized equation (81).
In the same vein we can then study the y-marginalized equation of (180): let us first
remark that

[yf(x, y, t)]y=∞y=0 =
[
y2f(x, y, t)

]y=∞
y=0

= 0

because all the moments of a log-normal distribution (which is the marginal of
f(x, y, t)) are finite so that ynf(x, y, t) must be infinitesimal for y → +∞, while
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f(x, y, t) can diverge in y → 0 to an order strictly lesser than 1. As a consequence
by y-marginalizing (180) with integrations by part (the finite terms vanish) we have
the continuity equation (78)

∂tfX(x, t) = D

∫ ∞

0

y2∂2yf(x, y, t) dy − ∂x

∫ ∞

0

yf(x, y, t) dy

+3D

∫ ∞

0

y∂yf(x, y, t) dy +DfX(x, t)

= 2DfX(x, t)− ∂x

[
fX(x, t)

∫ ∞

0

y
f(x, y, t)

fX(x, t)
dy

]

−3DfX(x, t) +DfX(x, t)

= −∂x[v(x, t)fX(x, t)]

where v(x, t) is defined in (79) �

All this is hardly surprising: we would get the same continuity equation for the
vector process constituted by the pair position/velocity of a Brownian motion in
the Ornstein-Uhlenbeck dynamical model. The continuity equation (78) however is
not very useful for us because the velocity field v(x, t) is in some sense dependent
from the form of the solution: the defining conditional expectation (79) is indeed
calculated with a law also involving the marginal fX(x, t). In other words a well
behaved pdf always satisfies a continuity equation when the velocity field is rightly
defined as in (79), and hence it expresses a consistence requirement, rather than
a true equation ... unless you already know the (well behaved) velocity field, and
hence the solution. On the other hand we do not have here an explicit expression of
v(x, t), but it would be interesting to remark here that its definition (79) seems to
hint to the need of some kind of mean-conditioning since after all the condition is
expressed in terms of a sum (integral) of rv ’s of the same kind of the averaged one:
this is a point worth of a further enquiry

Alternatively, by postponing every marginalization, we could try first to solve
the joint Fokker-Planck equation (180): separating the variables with f(x, y, t) =
g(x, y)h(t) we have

ḣ(t)

h(t)
=
Dy2∂2yg(x, y)− y [∂xg(x, y)− 3D∂yg(x, y)] +Dg(x, y)

g(x, y)
= λ

and hence

ḣ(t) = λh(t)

Dy2∂2yg(x, y)− y [∂xg(x, y)− 3D∂yg(x, y)] + (D − λ)g(x, y) = 0

Take then g(x, y) = u(x)v(y) to have

u′(x)

u(x)
= Dy

v′′(y)

v(y)
+ 3D

v′(y)

v(y)
+
D − λ

y
= −µ
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and finally with f(x, y, t) = u(x)v(y)h(t)

ḣ(t) = λh(t)

u′(x) = −µu(x)
Dy2 v′′(y) + 3Dy v′(y) + (D − λ+ µy)v(y) = 0

From the first two equations we simply have

h(t) = aeλt u(x) = be−µx

while the third can be written as

v′′(y) +
3

y
v′(y) +

(
D − λ

Dy2
+

µ

Dy

)
v(y) = 0

Comparing now this equation with the Bessel equation 8.491.12 in [7], we see that
within the notations adopted there we must require

2α− 2βν + 1 = 3 β =
1

2
β2γ2 =

µ

D
α(α− 2βν) =

D − λ

D

namely

α = 1±
√
λ

D
β =

1

2
γ = ±2

√
µ

D
ν = ±2

√
λ

D

so that the solutions will have the form

v(y) =
1

y
Z±2

√
λ
D

(
±2

√
µy

D

)

where the symbol Zν(z) denotes one of the Bessel functions J,N,H(1), H(1), as any
linear combination of them. This seems to confirm the relation with the Bessel
functions found in the Section 3.4.2.

Several remarks, however, are in order: first, to keep α and ν real we must require
λ ≥ 0; on the other hand if λ > 0 the factor h(t) will result in a time-exploding
term, so that the most reasonable option seems to be λ = 0 (stationary solution).
This choice would result in the Z0(z) Bessel functions, but empirical evidence (from
Mathematica) seems to imply that either y−1Z0(

√
y) is not always non-negative, or

it diverges for z → +∞, and in any case it diverges for y → 0 in a non integrable way
so that the normalization of these functions appears to be hopeless. For example,
the unique Bessel function giving rise to non negative, asymptotically infinitesimal
solutions is K0(z), but y

−1K0(
√
y) diverges for y → 0 at an order 1 + ǫ with ǫ > 0

arbitrarily small. This is in any case coherent with the remark that a stationary
solution is hardly conceivable for processes based on the exponentials of a Wiener
process



N Cufaro Petroni, S De Martino and S De Siena: Gompertz and logistic 37

4 Conclusions and outlooks

The present paper summarizes both a rather conclusive discussion of the solutions
of the Gompertz SDE (7), and several partial results related to the solutions of the
logistic SDE (9). By postponing to future enquiries the completion of this program,
the definition of a viable deterministic coarse-graining of these equations and a
connection between their solutions and the Nelson stochastic mechanics recalled in
the Appendix D, we will end our discussion by listing here a few among the many
points that would deserve a further elaboration

1. Random parametric Gomperts SDE ’s: The parametric Gompertz SDE
(19) with a time-dependent frequency α(t) is associated to the parametric OU
SDE (18): ask then what happens when α(t) is also random, for instance of the
type α(t) = α0(1+U(t)) where U(t) is a suitable external process (for instance
either another Wiener process independent from W (t), or W (t) itself). The
case of random coefficients can be compared to the case of systems of SDE
where the second SDE defines the new process U(t). The two equations can
be either coupled, or uncoupled

2. Modified Gompertzian growth: Can we devise some modified Gompertz
equation giving rise – beside the usual growth – either to oscillations, or to
some decrease to some other stable level? This could be done by means of two
mechanisms: either an external forcing term inscribed in the time depending
(but not necessarily random) coefficients; or some shrewd random term (as in
the previous point 1) ruling, for instance, in an unpredictable way the sign
of the exponentials of the Gompertz functions. This enquiry could lead to
compare these systems with the random Lotka-Volterra systems where the
oscillations are induced by a coupling in a system of equations describing
populations: should we think, then, to coupled Gompertzian systems?

3. Two kinds of deterministic correpondence: Take the SDE

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t)

we can recover a deterministic equation in two, non-equivalent ways: either we
can just consider that the diffusion coefficient D vanishes, drop the random
term and consider the ODE 2

ẋ(t) = a(x(t), t)

or we can take the expectation of the SDE

dE [X(t)]

dt
= E [a(X(t), t)]

2This in some sense reverses the usual procedures leading to the Langevin equation starting
from a Newton equation
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which is rather different from the previous one because E [a(X(t), t)] is not
a(E [X(t)] , t), but for the linear case. The previous ambiguity is not relevant
indeed for linear SDE of the Smoluchowsky type

dX(t) = [q(t)− p(t)X(t)]dt+ dW (t)

whose deterministic counterpart in both the cases is

ẋ(t) + p(t)x(t) = q(t), x(t) = E [X(t)]

namely the most general, first order, linear ODE whose solutions are com-
pletely known. On the other hand also the general solution of the correspond-
ing SDE is completely known, so that it would be telling to compare first
these two solutions. Contrariwise the problem for the non linear a(x, t) still
stay with us

4. Equations for the medians M [X(t)]: In the quest for the deterministic
counterpart of a SDE it could be useful to look to the medians (see Ap-
pendix E) rather than to the expectations. It is not easy however to find the
equations for the medians of a process satisfying even the simple linear SDE

dY (t) = [b(t)− a(t)Y (t)]dt+ dW (t)

because in general the medians of sums ar not sums of the medians

5. The n = 1 state of a quantum harmonic oscillator: In the Appendix D
we explicitly solved the FPE associated by the stochastic mechanics to the
n = 1 eigenstate of a quantum harmonic oscillator, but at the same time we
were not able to solve the corresponding SDE. As a matter of fact we were
not able to find a process displaying as a transition pdf that derived from
the harmonic oscillator solution. The problem is that this solution looks like
a mixture (and even in this case: what about the rv with a mixture law in
terms of the rv ’s obeying the separate mixing laws?), but in fact it is not a true
mixture because the coefficients sum up to 1, but are not in the range [0, 1]
as should be for every convex combination. It looks then more as an affine
combination, but nothing seems to be known about this case. Alternatively we
could consider our solution as a convex combination of pdf taking also negative
values. Either way we seem to be obliged to take seriously the existence of
(at least virtual) negative probabilities [19, 20, 21] and follow this path to its
bitter end trying to guess what kind of rv ’s – if any – can be distributed in
this way

6. Logistic systems: Finally, even if we choose to focus our attention on the
more manageable Gompertz systems, at least from a mathematical standpoint
it would be relevant to complete the investigation about the solutions of the
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Logistic equations that we gave in two different explicit ways (32) and (35):
these, however, are for the time being more formal than substantial because,
as we pointed out in the corresponding sections, we did not yet explicitly
elaborate the laws of the involved rv ’s that will be instead scrutinized in a
forthcoming paper
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A Deterministic Gompertz and logistic equations

In the present appendix we will briefly recall the deterministic variants of the SDE ’s
presented all along the present paper: we refer in particular to the dimensionless
SDE ’s (7), (9) and (11). These deterministic versions are attained simply by switch-
ing off the Wienerian noise W (t) of the said SDE ’s (namely by taking D = 0), and
are first order ODE ’s (ordinary differential equations) of the type

ẋ(t) = v
[
x(t), t

]

Their solutions will be used in the present paper as a benchmark to check the
consistency of the solutions of the corresponding SDE ’s. The reason why in the
said SDE ’s the noise turns out to be also proportional to the process itself will be
addressed in a forthcoming paper devoted to the deterministic ad stochastic models
of population dynamics

A.1 Gompertz equation

The deterministic version of the Gompertz SDE (7) apparently is

ẋ(t) = x(t)
(
1− α ln x(t)

)

that, with an initial condition x(0) = x0, is easily integrated by separating the
variables providing the solution

x(t) = xe
−αt

0 e(1−e
−αt)/α (82)

that is a monotonic function starting from x0 and asymptotically relaxing to the
limiting value e1/α. This asymptotic value, however, is always larger than 1 because
we require α > 0: we could nevertheless outflank this limitation by adding a new
parameter β into the equation

ẋ(t) = x(t)
(
β − α ln x(t)

)

which now has the solution

x(t) = xe
−αt

0 eβ(1−e
−αt)/α

with an asymptotic value eβ/α that can now be both larger and smaller than 1
according to the sign of β

A.2 Logistic and θ-logistic equations

The logistic ODE associated to the SDE (9) is

ẋ(t) = x(t)
(
1− x(t)

)
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with a v(x) = x(1−x), and its solution with the initial condition x(0) = x0 is again
retrieved by separating the variables:

x(t) =
x0

x0 + (1− x0)e−t
(83)

Here too we are dealing with a function monotonically going, for t→ +∞, from an
arbitrary x0 to 1. The θ-logistic ODE is finally its generalization with θ > 0

ẋ(t) = x(t)
(
1− xθ(t)

)

whose solution is easily seen to be now

x(t) =

(
xθ0

xθ0 + (1− xθ0)e
−θt

)1/θ

(84)

with the same qualitative behavior as before

B Solving stochastic differential equations

B.1 An epitome of Itō calculus

First of all let us recall in a simplified, mnemonic form a few results of the Itō
calculus that can be found for example in [12], p. 11-27. Leaving aside a rigorous
presentation, we will work here in the setting of the stochastic differentials (sdif )
whose precise meaning must be retrieved from their role and use in the standard
definition of the Itō integral ∫ b

a

X(t) dW (t)

where W (t) is a Wiener process with diffusion coefficient 2D, while X(t) is a well
behaved processes non-anticipative w.r.t. W (t) [12]. In this framework the most rel-
evant innovation w.r.t. the usual differential calculus is the fact that the differential
dW (t) of the Wiener process no longer can be deemed to be of the order dt, but we
will have instead

[dW (t)]2 = 2Ddt E [dW (t)] = 0 E [dW (t)dW (s)] = 2Dδ(s− t) ds dt (85)

that are shorthand, symbolic notations for the following integral results:

∫ b

a

X(t) [dW (t)]2 = 2D

∫ b

a

X(t) dt

E

[∫ b

a

X(t) dW (t)

]
= 0

E

[∫ b

a

X(t) dW (t)

∫ b

a

Y (s) dW (s)

]
= 2D

∫ b

a

E [X(t)Y (t)] dt
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Further conceivable differentials, as for instance

dW (t)dt [dW (t)]2dt dW (t)(dt)2 . . . (86)

will instead behave as higher order infinitesimals and will then be treated as zero
in the sense that the corresponding Itō integrals vanish. These simple rules will be
enough to formally deduce all the relevant results needed in our discussion.

In the following our one-dimensional processes X(t), Y (t) . . . defined for t ∈ [0, T ]
will be taken in H2, namely in the space of the processes such that

P

{∫ T

0

X2(t) dt < +∞
}

= 1

in order to make sure that – within a framework of suitable hypotheses pointed out
in [12] – the Itō integral is well defined, and that in general our processes will have
(again symbolically, as a surrogate for Itō integral expressions) sdif ’s of the type

dX(t) = A(t)dt+B(t)dW (t) (87)

where again the coefficients
√

|A(t)| and B(t) are taken in H2: of course the Wiener
process W (t) is retrieved when A = 0 and B = 1. Remark that when a process has
the sdif (87) its infinitesimals follow rules similar to that of the Wiener process; in
particular, as can be easily seen from (85) and (86), we have

[dX(t)]2 = 2DB2(t)dt (88)

while further powers of dX(t) and dt would be higher order infinitesimals, and hence
will be neglected. In this context we also say that, with suitable initial conditions,
a process X(t) satisfies a stochastic differential equations (SDE )

dX(t) = a (X(t), t) dt+ b (X(t), t) dW (t) (89)

when for every t ∈ [0, T ] it has the previous sdif whose coefficients A(t) = a(X(t), t)
and B(t) = b(X(t), t), P -a.s. are contingent on the process X(t) himself. In par-
ticular when the functions a(x) and b(x) are time-independent the SDE

dX(t) = a (X(t)) dt+ b (X(t)) dW (t) (90)

may also admit stationary solutions

Proposition B.1. (Itō formula) If X(t) has the sdif (87) and h(x, t) is a fairly
differentiable function, then the process Y (t) = h(X(t), t) will have the sdif

d Y (t) = d h(X(t), t)

=
[
ht(X(t), t) + hx(X(t), t)A(t) +Dhxx(X(t), t)B2(t)

]
dt (91)

+ hx(X(t), t)B(t) dW (t)

When in particular h(x) is time independent the Itō formula becomes

d Y (t) = d h(X(t)) (92)

=
[
h′(X(t))A(t) +Dh′′(X(t))B2(t)

]
dt+ h′(X(t))B(t) dW (t)
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Proof: The formula (92) can be proved by using the Taylor formula for h together
with (88), and neglecting the infinitesimals of order larger than 1:

dh(X(t)) = h(X(t+ dt))− h(X(t)) = h(X(t) + dX(t))− h(X(t))

=
∑

k≥0

h(k)(X(t))

k!
[dX(t)]k − h(X(t))

= h(X(t)) + h′(X(t))dX(t) +
1

2
h′′(X(t)) [dX(t)]2

+
∑

k>2

h(k)(X(t))

k!
[dX(t)]k − h(X(t))

= h′(X(t)) [A(t)dt+B(t)dW (t)] + h′′(X(t))DB2(t)dt

=
[
h′(X(t))A(t) +Dh′′(X(t))B2(t)

]
dt+ h′(X(t))B(t) dW (t)

The more general (91) can be proved – with minor additions – along the same lines.
These results coincide with those of the usual calculus but for the second derivative
terms that show up as soon as the diffusion coefficient D does not vanish �

Proposition B.2. Take two sdif ’s on the same Wiener process W (t)

dX(t) = AX(t)dt+BX(t)dW (t) dY (t) = AY (t)dt+BY (t)dW (t)

then for their product we have the rule

d
[
X(t)Y (t)

]
= X(t) dY (t) + Y (t) dX(t) + 2BX(t)BY (t)Ddt (93)

Proof: To prove (93) it would be enough to use (85), by neglecting other higher
order infinitesimals:

d [X(t)Y (t)] = X(t+ dt)Y (t + dt)−X(t)Y (t)

= [X(t) + dX(t)][Y (t) + dY (t)]−X(t)Y (t)

= X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t)

= X(t)dY (t) + Y (t)dX(t) +BX(t)BY (t)[dW (t)]2

= X(t)dY (t) + Y (t)dX(t) + 2BX(t)BY (t)Ddt

which again shows an extra term with respect to the usual calculus. �

B.2 SDE transformations

When a processX(t) satisfies the SDE (181) we can often exploit the Itō formula (91)
to transform this SDE in a more manageable form (see [12] p 33-39): take a fairly
differentiable, monotonic (in x) function y = h(x, t) and for every t denote x = g(y, t)
its spatial inverse, namely

h
(
g(y, t), t

)
= y g

(
h(x, t), t

)
= x



N Cufaro Petroni, S De Martino and S De Siena: Gompertz and logistic 44

Then, if X(t) satisfies the SDE (181) the Itō formula (91) implies that the trans-
formed process Y (t) = h(X(t), t) will satisfy a new SDE

dY (t) = â
(
Y (t), t

)
dt+ b̂

(
Y (t), t

)
dW (t) (94)

where now

â (y, t) =
[
ht(x, t) + hx(x, t)a(x, t) +Dhxx(x, t)b

2(x, t)
]
x=g(y,t)

(95)

b̂ (y, t) =
[
hx(x, t)b(x, t)

]
x=g(y,t)

(96)

or else, in an equivalent form,

â (h(x, t), t) = ht(x, t) + hx(x, t)a(x, t) +Dhxx(x, t)b
2(x, t) (97)

b̂ (h(x, t), t) = hx(x, t)b(x, t) (98)

When on the other hand X(t) satisfies the SDE (90) with time-independent coeffi-
cients, the transformation Y (t) = h(X(t)) with monotonic y = h(x) and x = g(y) =
h−1(y) leads the SDE

dY (t) = â (Y (t)) dt+ b̂ (Y (t)) dW (t) (99)

where now

â (y) =
[
a(x)h′(x) +D b2(x)h′′(x)

]
x=g(y)

(100)

b̂ (y) =
[
b(x)h′(x)

]
x=g(y)

(101)

namely, in an equivalent form,

â (h(x)) = a(x)h′(x) +D b2(x)h′′(x) (102)

b̂ (h(x)) = b(x)h′(x) (103)

We are now interested in transforming a SDE (181) into a new form (94) that turns
out to be simpler. To this end we will analyze first what type of coefficients â (y, t)

and b̂ (y, t) lead to elementary solution, an then under which conditions the original
coefficients a(y, t) and b(y, t) are susceptible to be transformed into that new form

B.2.1 Elementary solvable SDE ’s

1. Constant coefficients â and b̂ : In this case the SDE (94) becomes

dY (t) = â dt+ b̂ dW (t) (104)

and its solution, with P -a.s. initial condition W (0) = 0 and Y (0) = Y0,
apparently is

Y (t) = Y0 + â t + b̂ W (t) (105)
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Then the process Y (t) = Y (t)− Y0 ∼ N

(
â t , 2Db̂ t

)
is a Wiener process with

a b̂ re-scaled diffusion coefficient and a constant, deterministic drift â . For a
degenerate condition Y0 = y,P -a.s. at a time s the law of the process is then
the transition pdf

N

(
y + â (t− s), 2Db̂ (t− s)

)

We will see in the following, however, that the compatibility conditions on
a(x, t) and b(x, t) to be both transformable into new constant coefficients are
in general excessively tight, so that the corresponding solutions discussed above
are indeed of little practical interest

2. Smoluchowsky equation: We consider next the case of transformations
leading to b̂ (y, t) = 1, namely to SDE (94) of the type

dY (t) = â (Y (t), t) dt+ dW (t) (106)

that can always be considered as a Smoluchowsky equation (see [13], ch. 10),
namely as the overdamped (γ → +∞) limit of an OU (Ornstein-Uhlenbeck)
system of dynamic (Newton) SDE ’s for a derivable process Z(t)

dZ(t) = V (t) dt

dV (t) = γ
[
â (Z(t), t)− V (t)

]
dt+ γ dW (t)

where â (z, t) now represents an external field of forces, and the approximation
is understood in the sense that

lim
γ→+∞

Z(t) = Y (t) P -a.s.

There is no simple, general way to solve even the equation (106), but when
â (y) is time independent the SDE (106) takes the form

dY (t) = â (Y (t)) dt+ dW (t) (107)

where â (z) is now a stationary external field of forces, so that we can reason-
ably hope to find at least some stationary solution. If we introduce indeed a
potential φ(y) according to

â (y) = − D

kT
φ′(y) (108)

(here k is the Boltzmann constant and T the absolute temperature) then it
easy to show that there is a stationary solution with an invariant Boltzmann
distribution

e−
φ(y)
kT

∫
R
e−

φ(z)
kT dz

(109)

provided that φ(y) is such that e−
φ(y)
kT is an integrable function (for details see

Appendix C.4)
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3. Process-independent coefficients â (t) and b̂ (t): When on the other hand

â (t) and b̂ (t) of the SDE (94) are both y-independent the equation is reduced
to a sdif with deterministic coefficients

dY (t) = â (t) dt+ b̂ (t) dW (t) (110)

and its solution is just the integral of the sdif, namely

Y (t) = Y0 +

∫ t

0

â (u)du+

∫ t

0

b̂ (u)dW (u) (111)

with the initial condition Y (0) = Y0, P -a.s. This means that the process
Y (t) = Y (t)− Y0 is Gaussian

Y (t) ∼ N

(∫ t

0

â (u)du , 2D

∫ t

0

b̂ 2(u)du

)

and by taking a degenerate condition Y0 = y, P -a.s. at a time s the law of the
process is the transition pdf f(x, t|y, s)

N

(
y +

∫ t

s

â (u)du , 2D

∫ t

s

b̂ 2(u)du

)
(112)

4. Process-linear coefficients: We consider next the case of coefficients which
are linear in y

â (y, t) = â 0(t) + â 1(t)y b̂ (y, t) = b̂ 0(t) + b̂ 1(t)y (113)

namely of the SDE ’s of the form

dY (t) =
[
â 0(t) + â 1(t)Y (t)

]
dt+

[
b̂ 0(t) + b̂ 1(t)Y (t)

]
dW (t) (114)

and in particular its homogeneous counterpart with â 0(t) = 0 and b̂ 0(t) = 0

dY (t) = â 1(t)Y (t)dt+ b̂ 1(t)Y (t)dW (t) (115)

We look first for a solution of the homogeneous equation (115) and – as
long as Y (t) 6= 0 – we define a new process Z(t) through the transformation

z = h(y, t) = ln y y = g(z, t) = ez Z(t) = lnY (t) Y (t) = eZ(t)

ht(y, t) = 0 hy(y, t) =
1

y
hyy(y, t) = − 1

y2

It is easy to see then from (95) and (96) that the SDE for Z(t) is

dZ(t) =
[
â 1(t)−D b̂ 2

1(t)
]
dt+ b̂ 1(t) dW (t) (116)
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with process independent coefficients as in (110), and hence from (111) the
solution of (116) with Z(0) = Z0 is

Z(t) = Z0 +

∫ t

0

[
â 1(s)−D b̂ 2

1(s)
]
ds+

∫ t

0

b̂ 1(s) dW (s)

The (never vanishing) solution of the homogeneous SDE (115) with Y0 = eZ0

then is
Y (t) = Y0 e

Z(t) (117)

where we have introduced the process

Z(t) = Z(t)− Z0 =

∫ t

0

[
â 1(s)−D b̂ 2

1(s)
]
ds+

∫ t

0

b̂ 1(s) dW (s) (118)

which is again a solution of (116), but with the initial condition Z(0) = 0. It
turns out of course that Z(t) is a Gaussian process with

Z(t) ∼ N

(∫ t

0

[
â 1(s)−D b̂ 2

1(s)
]
ds , 2D

∫ t

0

b̂ 2
1(s)ds

)

Going back then to the non homogeneous equation (114) we first remark
that from (92) and the expression (116) of the sdif dZ(t) we have

d
(
e−Z(t)

)
=
(
−
[
â 1(t)−D b̂ 2

1(t)
]
+D b̂ 2

1(t)
)
e−Z(t)dt− b̂ 1(t)e

−Z(t)dW (t)

=
[
−â 1(t) + 2D b̂ 2

1(t)
]
e−Z(t)dt− b̂ 1(t)e

−Z(t)dW (t) (119)

and then that from (93), (114) and (119) it is

d
(
e−Z(t)Y (t)

)
= e−Z(t)dY (t) + Y (t)d

(
e−Z(t)

)

−
[
b̂ 0(t) + b̂ 1(t)Y (t)

]
b̂ 1(t)e

−Z(t)2Ddt

= e−Z(t)
(
[â 0(t) + â 1(t)Y (t)]dt + [̂b 0(t) + b̂ 1(t)Y (t)]dW (t)

)

e−Z(t)Y (t)
([

−â 1(t) + 2Db̂ 2
1(t)
]
dt− b̂ 1(t)dW (t)

)

−
[
b̂ 0(t) + b̂ 1(t)Y (t)

]
b̂ 1(t)e

−Z(t)2Ddt

=
[
â 0(t)− 2D b̂ 0(t)̂b 1(t)

]
e−Z(t)dt+ b̂ 0(t)e

−Z(t)dW (t)

By taking now into account the initial condition e−Z(0)Y (0) = Y (0) = Y0, the
previous sdif can be integrated as

e−Z(t)Y (t) = Y0 +

∫ t

0

[
â 0(s)− 2D b̂ 0(s)̂b 1(s)

]
e−Z(s)ds+

∫ t

0

b̂ 0(s)e
−Z(s)dW (s)
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so that the general solution of the non homogeneous equation (114) finally is

Y (t) = Y0e
Z(t) +

∫ t

0

[
â 0(s)− 2D b̂ 0(s)̂b 1(s)

]
eZ(t)−Z(s)ds (120)

+

∫ t

0

b̂ 0(s)e
Z(t)−Z(s)dW (s)

where the process Z(t) is defined in (118). We remark finally that in the case
of time-independent coefficients, namely when

â (y) = â 0 + â 1y b̂ (y) = b̂ 0 + b̂ 1y (121)

dY (t) =
[
â 0 + â 1Y (t)

]
dt+

[
b̂ 0 + b̂ 1Y (t)

]
dW (t) (122)

the process (118) becomes

Z(t) = (â 1 −D b̂ 2
1) t+ b̂ 1W (t) (123)

and the solution (120) is reduced to

Y (t) = Y0e
Z(t)+

(
â 0 − 2D b̂ 0b̂ 1

)∫ t

0

eZ(t)−Z(s)ds+b̂ 0

∫ t

0

eZ(t)−Z(s)dW (s) (124)

5. Time-independent coefficients â (y) and b̂ (y): There are no general for-
mulas available, but – as will be shown in the Section B.2.2 – it is always
possible to manage the transformation Y (t) = h(X(t)) in such a way that

b̂ (y) = 1 (different constant values could be easily subsumed in a redefinition
of W (t)) so that the SDE (94) takes the form of a time independent Smolu-
chowsky equation (107). Even so we already remarked however that, beside
a possible stationary solution, there is no simple, general way to solve the
equation (107). If on the other hand we try to simplyfy our problem by taking

â (y) = 0 and an arbitrary b̂ (y), then we are led to the equation

dY (t) = b̂ (Y (t)) dW (t) (125)

but again, in the general case, we have no simple solution to show so that the
problem must be dealt with on a case-by-case basis

B.2.2 Transformations to constant coefficients

We will first look for the transformations y = h(x, t) leading to constant coefficients

â and b̂ : from (97) and (98) we have

â = ht(x, t) + hx(x, t)a(x, t) +Dhxx(x, t)b
2(x, t) (126)

b̂ = hx(x, t)b(x, t) (127)



N Cufaro Petroni, S De Martino and S De Siena: Gompertz and logistic 49

From the equation (127) – as long as b(x, t) does not change its sign as a function
of x, and hence the resulting h(x, t) turns out to be monotonic and invertible in x
for every t – we immediately get the transformation

hx(x, t) =
b̂

b(x, t)
y = h(x, t) = b̂

∫
dx

b(x, t)
x = g(y, t) (128)

and since this gives

hxx(x, t) = −b̂ bx(x, t)
b2(x, t)

ht(x, t) = −b̂
∫

bt(x, t)

b2(x, t)
dx

we also obtain from (126) the equation

â

b̂
= −

∫
bt(x, t)

b2(x, t)
dx+

a(x, t)

b(x, t)
−D bx(x, t)

By x derivation we then find that a(x, t) and b(x, t) must satisfy the condition

ax(x, t)−
bx(x, t)

b(x, t)
a(x, t) = D b(x, t)bxx(x, t) +

bt(x, t)

b(x, t)

that can be solved as a first order ODE (ordinary differential equation) for a(x, t)
giving the explicit relation (α(t) is an arbitrary integration function)

a(x, t) = α(t) + b(x, t)

[
Dbx(x, t) +

∫
bt(x, t)

b2(x, t)
dx

]
(129)

that for time independent a(x) and b(x) becomes (α here is now an arbitrary inte-
gration constant)

a(x) = α +Db(x)b′(x) (130)

These are however very tight conditions that can be verified only in a few particular
cases and hence we will rather go on discussing whether at least one of the two
coefficients – either â , or b̂ – can be reasonably made constant

We begin then by requiring only b̂ (y, t) to be constant and, without a loss of

generality, we can take b̂ (y, t) = 1: every other constant value can indeed be easily
accounted for with a redefinition of the diffusion coefficient of W (t). The transfor-
mation under discussion will then lead to the Smoluchowsky SDE (106) previously

discussed in the Section B.2.1. From (127) with b̂ = 1 we now get the previous
transformation (128) in the form

y = h(x, t) =

∫
dx

b(x, t)
x = g(y, t) (131)

and then, instead of requiring the condition (126), we must recall (95) to get the
explicit expression for the new drift coefficient

â (y, t) = −
[∫

bt(x, t)

b2(x, t)
dx− a(x, t)

b(x, t)
+D bx(x, t)

]

x=g(y,t)
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giving rise to the time dependent Smoluchowsky equation (106). When in particular
a(x) and b(x) are time-independent the transformation becomes

h(x) =

∫
dx

b(x)
(132)

and the new drift is reduced to

â (y) =

[
a(x)

b(x)
−D b′(x)

]

x=g(y)

(133)

so that the transformed SDE takes the form (107) discussed in the point 5 of the pre-
vious Section B.2.1. As remarked therein, in this time-independent setting the drift
function (133) represents a stationary dynamics for the transformed process Y (t),
and when it is deduced from a potential φ(y) it can lead to an invariant Boltzmann
distribution (109) as stated in the Section B.2.1 (for details see Appendix C.4)

If we instead require only â (y, t) = â to be a constant, then from (97) h(x, t)
must satisfy the PDE (partial differential equation)

ht(x, t) + a(x, t)hx(x, t) +D b2(x, t)hxx(x, t) = â

which, if a(x) and b(x) are time-independent, is reduced to the ODE

a(x)h′(x) +D b2(x)h′′(x) = â

that can be solved to give the explicit expression of the transformation h(x) and of

the coefficient b̂ (x). For simplicity, however, we will restrict ourselves to the case
â = 0: for suitable integration constants c1 and c2 the general solution is

h(x) = c1 + c2

∫
e
−

∫ a(x)

Db2(x)
dx
dx

and from (96) the new diffusion coefficient will be

b̂ (y) = c2

[
b(x)e

−
∫ a(x)

Db2(x)
dx
]

x=g(y)

that will enter into the new SDE (125). As already remarked, however, we again
have no general solutions available, so that these SDE ’s could be tackled only case
by case

B.2.3 Transformations to process-independent coefficients

Given the simple results (111) and (112) it would be interesting, as a next step, to
find under what conditions we can transform an arbitrary SDE (181) into a new
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equation with space-independent coefficients. To this end let us first remark that
the two equations (97) and (98) become in this case

â (t) = ht(x, t) + a(x, t)hx(x, t) +D b2(x, t)hxx(x, t) (134)

b̂ (t) = hx(x, t)b(x, t) (135)

From (135) we have

hx(x, t) =
b̂ (t)

b(x, t)
hxx(x, t) = − b̂ (t)

b2(x, t)
bx(x, t) (136)

hxt(x, t) =
˙̂
b (t)b(x, t)− b̂ (t)bt(x, t)

b2(x, t)
(137)

while by deriving (134) with respect to x we find

hxt(x, t) + ∂x
[
a(x, t)hx(x, t) +D b2(x, t)hxx(x, t)

]
= 0 (138)

Then by substituting (136) and (137) into (138), after some manipulation we obtain

˙̂
b (t)

b̂ (t)
= b(x, t)

[
bt(x, t)

b2(x, t)
− ∂x

(
a(x, t)

b(x, t)

)
+D bxx(x, t)

]
(139)

By deriving (139) with respect to x again we finally get

∂x

{
b(x, t)

[
bt(x, t)

b2(x, t)
− ∂x

(
a(x, t)

b(x, t)

)
+D bxx(x, t)

]}
= 0 (140)

a condition – involving only the initial coefficients a(x, t) and b(x, t), – that must be
satisfied in order to ensure the existence of a transformation h(x, t) bringing to an
equation with space-independent coefficients. In fact, when (140) holds, the r.h.s.

of (139) must depend only on t, and hence this equation enables us to find b̂ (t).

Then by plugging this b̂ (t) into (135) we can find the transformation h(x, t), and
finally â (t) comes out of (134) whose r.h.s. too will turn out to be dependent only
on t

When in particular the coefficients a(x) and b(x) are time-independent the equa-
tion (139) becomes

˙̂
b (t)

b̂ (t)
= b(x)

[
D b′′(x)− d

dx

(
a(x)

b(x)

)]
(141)

and since now the l.h.s. depends only on t, and the r.h.s only on x, the two members
of this equation must be both equal to a constant c. Hence instead of (140) the
compatibility condition coming out of (141) is just

b(x)

[
D b′′(x)− d

dx

(
a(x)

b(x)

)]
= c (142)
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while from
b̂ ′(t)

b̂ (t)
= c (143)

we first get b̂ (t) = ect, then from (135) we have

h(x, t) = ect
∫

dx

b(x)
(144)

and finally from (134)

â (t) = ect
[
c

∫
dx

b(x)
+
a(x)

b(x)
−D b′(x)

]
(145)

where the term in square brackets is in fact constant provided that the compatibility
condition (142) is satisfied

B.2.4 Transformations to process-linear coefficients

Since we have shown that every SDE (114) with space-linear coefficients (113) can be
explicitly solved, it will be important to find under what conditions we can transform
an arbitrary SDE (181) in the new form (114). We will analyze in detail, however,
only the case of time-independent coefficients a(x), b(x) and (121) when the
new SDE is supposed to take the form (122). In this case the transformation h(x)
is time-independent too, and the conditions (97) and (98) become

â 0 + â 1h(x) = h′(x)a(x) +Dh′′(x)b2(x) (146)

b̂ 0 + b̂ 1h(x) = h′(x)b(x) (147)

If we choose first to have b̂ 1 6= 0, from the equation (147) we at once have

h(x) = c e b̂ 1p(x) − b̂ 0

b̂ 1

p(x) =

∫
1

b(x)
dx p′(x) =

1

b(x)
(148)

and hence

h′(x) = c b̂ 1
e b̂ 1p(x)

b(x)
h′′(x) = c b̂ 1

e b̂ 1p(x)

b2(x)

[
b̂ 1 − b′(x)

]

By plugging all that into (146) after some algebra we get the equation

â 0b̂ 1 − â 1b̂ 0

c b̂ 1

= e b̂ 1p(x)
[
b̂ 1q(x) +D b̂ 2

1 − â 1

]
q(x) =

a(x)

b(x)
−D b′(x)

In order then to have a condition free from constants, by a first derivation we get

0 =
d

dx

(
e b̂ 1p(x)

[
b̂ 1q(x) +D b̂ 2

1 − â 1

])

= b̂ 1e
b̂ 1p(x)

(
p′(x)

[
b̂ 1q(x) +D b̂ 2

1 − â 1

]
+ q′(x)

)
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namely from (148)

â 1 −D b̂ 2
1 = b̂ 1q(x) + b(x)q′(x)

With a second derivation we then have

0 =
d

dx

[
b̂ 1q(x) + b(x)q′(x)

]
= b̂ 1q

′(x) +
d

dx
[b(x)q′(x)]

that can be recast as

b̂ 1 = − 1

q′(x)

d

dx
[b(x)q′(x)] (149)

and finally with a third derivation

d

dx

(
1

q′(x)

d

dx
[b(x)q′(x)]

)
= 0 (150)

which is now the wanted condition involving only the coefficients a(x) and b(x) of
the initial, non linear SDE (181). When (150) is satisfied, then we can take (149)

as the value of the parameter b̂ 1, and h(x) = ce b̂ 1p(x) for some suitable value of the
constant c as the transformation able to reduce our equation to its linear form

If instead we require b̂ 1 = 0, from the equation (147) and within the same
notations we simply get

h(x) = b̂ 0p(x) + c h′(x) =
b̂ 0

b(x)
h′′(x) = −b̂ 0

b ′(x)

b2(x)

and hence after some manipulation from (146) we have

q(x) = â 1p(x) + câ 1 +
â 0

b̂ 0

then by derivation we obtain q′(x) = â 1p
′(x) namely b(x)q′(x) = â 1, and by further

derivation we finally get the condition

d

dx
[b(x)q′(x)] = 0 (151)

It is apparent that this condition (151) also implies the condition (150) which how-
ever remains the most general requirement whose compliance is needed in order to
be able to transform the SDE (181) into one with space-linear, time-independent
coefficients

C Solving Fokker-Planck equations

Given the SDE (181) the pdf of its solutions can be obtained by solving the (forward)
Fokker-Planck equation

∂tf(x, t) = −∂x [a(x, t)f(x, t)] +D∂2x
[
b2(x, t)f(x, t)

]
(152)
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that for time-independent coefficients (namely for an SDE of the form (90)) becomes

∂tf(x, t) = −∂x [a(x)f(x, t)] +D∂2x
[
b2(x)f(x, t)

]
(153)

Standard solution methods are well known, as that of the eigenfunction expansion
discussed later. We will however first give a look to a few results giving the transi-
tion pdf without solving (152), but using a few results about the expectations that
however are not easily calculated explicitly

C.1 Semi-explicit transition pdf ’s

We will first recall a formal procedure (see [12], §13, p. 91) used to find the transition
pdf of the FPE (152), namely of a process solution of a the SDE (181). Define – in
a notation only partially coherent with our previous one – the functions

y = h(x, t) =

∫
dx

b(x, t)
x = g(y, t) h(g(y, t), t) = y

then the function

â (y, t) = ht(g(y, t), t) + hx(g(y, t), t) a(g(y, t), t) +Dhxx(g(y, t), t) b
2(g(y, t), t)

=

[
−
∫

bt(x, t)

b2(x, t)
dx+

a(x, t)

b(x, t)
−Dbx(x, t)

]

x=g(y,t)

and finally

α(y, t) =
1

2D

∫
â (y, t) dy β(y, t) = − â

2(y, t)

4D
− â y(y, t)

2
− 1

2D

∫
â t(y, t)dy

Consider now for 0 ≤ s ≤ t the two-times process

Z(s, t) =

∫ 1

0

β
(
W st(u) + hst(u) , s+ (t− s)u

)
du

where for 0 ≤ u ≤ 1 we defined

hst(u) = u h(x, t) + (1− u)h(y, s)

W st(u) = W
(
s+ (t− s)u

)
−
(
uW (t) + (1− u)W (s)

)

Remark thatW st(u) is now a rectilinear Brownian bridge withW st(0) =W st(1) = 0
(see Appendix C.2). Then (we just recall the results without proofs) the transition
pdf solution of (152) is

f(x, t|y, s) = E
[
e(t−s)Z(s,t)

]

b(x, t)
√

4πD(t− s)
e−

[h(x,t)−h(y,s)]2

4D(t−s)
+α(h(x,t),t)−α(h(y,s),s) (154)
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When moreover the coefficients are time-independent the SDE takes the form (90)
and the result (154) can be simplified: we have indeed now

y = h(x) =

∫
dx

b(x)
x = g(y) h(g(y)) = y â (y) =

[
a(x)

b(x)
−D b′(x)

]

x=g(y)

and hence

α(y) =
1

2D

∫
â (y)dy β(y) = − â

2(y)

4D
− â ′(y)

2

In particular we find

α (h(x)) =
1

2D

∫ [
a(x)

b(x)
−D b′(x)

]
dx

b(x)
=

1

2D

∫
a(x)

b2(x)
dx− 1

2
ln b(x)

As a consequence, by redefining now

Z(s, t) =

∫ 1

0

β
(
W st(u) + h(u)

)
du h(u) = uh(x) + (1− u)h(y)

the transition pdf solution of (153) will become

f(x, t|y, s) =
E
[
e(t−s)Z(s,t)

]

b(x)
√

4πD(t− s)

√
b(y)

b(x)
(155)

exp

{
1

2D

∫ x

y

a(z)

b2(z)
dz − 1

4D(t− s)

(∫ x

y

dz

b(z)

)2
}

Remark however that the results (154) and (155) constitute only a semi-explicit
form of the pdf because they are apparently contingent on an expectation not easy
to calculate as it is pointed out in the Section 3.2

C.2 Random bridges

C.2.1 Non-random interpolation

Brownian bridge SDE ’s are stochastic versions of ODE ’s for trajectories interpo-
lating two, or more, fixed points (see for example [14, 15] pp. 358-360). In general
the non-random interpolating trajectories, coinciding with the expectation of the
corresponding random bridges, are supposed to be linear functions of the time t,
but we will argue here that there is no really compelling reason for this choice.

Let us start with a trajectory x(t) connecting two possible values a and b at the
endpoints of a compact time interval [0, T ], namely

x(t) = a g

(
t

T

)
+ b h

(
t

T

)
0 ≤ t ≤ T (156)
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where we will suppose that g(s) and h(s) are derivable at least once in [0, T ], and

{
g(0) = 1
g(1) = 0

{
h(0) = 0
h(1) = 1

(157)

so that we trivially get that

x(0) = a x(T ) = b (158)

As a matter of fact, every possible function x(t) complying with the extremal con-
ditions (158) can be cast in the form (156): for a given x(t) just choose an arbitrary
g(s) satisfying (157), and then it will be enough to take

h(s) =
x(Ts)− a g(s)

b

in order to obtain (156). Remark by the way that nothing forbids an explicit depen-
dence of g(s) and h(s) from a and b, in so far as the conditions (157) are preserved.
Therefore the expression (156) can be considered as general enough for our purposes

We will look then for a first order ODE such that the trajectory (156) will
be its (unique) solution for the initial condition x(0) = a: it is straightforward
to understand that the form of this equation, albeit independent from the initial
condition a, will however explicitly depend on the final condition b aimed at by
our trajectory. A first order ODE allows indeed a free choice just for one initial
condition, while in general no independent final condition can be arbitrarily added
if we want to have a chance to find solutions. As a consequence an ODE admitting
both the extremal conditions (158) must depend on one of them: in other words
there is no unique equation fitting both the conditions (158) for arbitrary values of
a and b. In order to eliminate the initial condition x(0) = a from our ODE let us
remark that from (156) we get

ẋ(t) =
a

T
ġ

(
t

T

)
+
b

T
ḣ

(
t

T

)
(159)

so that from (156) and (159) we have

ẋ(t)− b
T
ḣ
(

t
T

)

1
T
ġ
(

t
T

) = a =
x(t)− b h

(
t
T

)

g
(

t
T

)

and rearranging the terms we find the ODE

ẋ(t) =
b
[
g
(

t
T

)
ḣ
(

t
T

)
− ġ
(

t
T

)
h
(

t
T

)]
+ x(t)ġ

(
t
T

)

T g
(

t
T

) (160)

whose solutions (156) will connect every possible initial condition a to the same final
value b inscribed into it.
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The simplest example, used for the most widespread stochastic generalization to
Brownian bridges (see [14, 15] for details), adopts the following linear functions

g(s) = 1− s h(s) = s (161)

so that the corresponding connecting trajectories

x(t) = a

(
1− t

T

)
+ b

t

T

are t-linear and satisfy the ODE

ẋ(t) =
b− x(t)

T − t

But this by no means constitutes a unique possibility. We could for instance take

g(s) = (1− s)2 h(s) = s2

and in this case we would have the parabolic trajectories

x(t) = a

(
1− t

T

)2

+ b

(
t

T

)2

solutions of the ODE

ẋ(t) =
2

T

b t− Tx(t)

T − t

As final examples among many we can either put

g(s) = cos
πs

2
h(s) = sin

πs

2

and get as trajectories

x(t) = a cos
πt

2T
+ b sin

πt

2T

and as ODE

ẋ(t) =
π

2T

b− x(t) sin πt
2T

cos πt
2T

or instead
g(s) = cos2

πs

2
h(s) = sin2 πs

2

and get as trajectories

x(t) = a cos2
πt

2T
+ b sin2 πt

2T

and as ODE

ẋ(t) =
b− x(t)

T
π tan

πt

2T
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C.2.2 Brownian bridges

A straightforward stochastic generalization of the ODE (160) discussed in the previ-
ous section is obtained just by adding a Brownian noiseW (t) with constant diffusion
coefficient 2D

dX(t) =
b
[
g
(

t
T

)
ḣ
(

t
T

)
− ġ
(

t
T

)
h
(

t
T

)]
+X(t)ġ

(
t
T

)

T g
(

t
T

) dt+ dW (t) (162)

and apparently results in a SDE with linear coefficients and initial condition X(0) =
a, P -a.s. Therefore, according to the notations adopted in the Appendix B.2.1, the
equation (162) is a SDE of the form (114) with

â 0(t) =
b

T

g
(

t
T

)
ḣ
(

t
T

)
− ġ
(

t
T

)
h
(

t
T

)

g
(

t
T

) = b g

(
t

T

)
d

dt

[
h
(

t
T

)

g
(

t
T

)
]

â 1(t) =
1

T

ġ
(

t
T

)

g
(

t
T

) =
d

dt

[
ln g

(
t

T

)]

b̂ 0(0) = 1

b̂ 1(t) = 0

and hence it is easy to find that

Z(t) =

∫
â 1(t) dt = ln g

(
t

T

)
eZ(t) = g

(
t

T

)

so that its solution after some algebra becomes

X(t) = a g

(
t

T

)
+ b h

(
t

T

)
+ g

(
t

T

)∫ t

0

1

g
(
s
T

) dW (s) (163)

Remark that the first two terms of this solution exactly coincide with the non-
random interpolating trajectories (156). In particular when we take the linear func-
tions (161) we get the solution

X(t) = a

(
1− t

T

)
+ b

t

T
+ (T − t)

∫ t

0

1

T − s
dW (s) (164)

which is exactly the rectilinear Brownian bridge discussed in [14]
Following the same line of reasoning of [14] we could now prove that the solu-

tion (163) is Gaussian with P -a.s. continuous paths, with expectation

m(t) = E [X(t)] = a g

(
t

T

)
+ b h

(
t

T

)
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and with covariance

C(s, t) = cov [X(s), X(t)] = D g

(
s

T

)
g

(
t

T

)∫ s∧t

0

1

g2
(
u
T

) du

so that its laws can now be deemed completely known. In particular for the variance
we have

V [X(t)] = C(t, t) = D g2
(
t

T

)∫ t

0

1

g2
(
s
T

) ds

In the case of the rectilinear Brownian bridge (164) these formulas give

m(t) = a

(
1− t

T

)
+ b

t

T

C(s, t) = D(T − s)(T − t)

∫ s∧t

0

du

(T − u)2
= D

(
(s ∧ t)− st

T

)

and its distributions coincide with that of a Wiener process conditioned at both the
endpoints with X(0) = a and X(T ) = b: in fact, if we take

φ(x, t|y) = e−
(x−y)2

2Dt

√
2πDt

the finite dimensional distributions of the rectilinear Brownian bridge coincide with
the following conditional pdf ’s of a Wiener process for 0 = t0 < t1 < . . . < tn < T

f(x1, t1; . . . ; xn, tn | a, 0; b, T ) =
f(x1, t1; . . . ; xn, tn; b, T | a, 0)

f(b, T | a, 0)

=
f(b, T |xn, tn) . . . f(x2, t2|x1, t1)f(x1, t1|a, 0)

f(b, T | a, 0)

=
φ(b, T − tn|xn) . . . φ(x2, t2 − t1|x1)φ(x1, t1|a)

φ(b, T |a)

In fact we will call rectilinear Brownian bridge every stochastic process with such
finite dimensional distributions. In particular it could be shown that

a

(
1− t

T

)
+ b

t

T
+

(
W (t)− t

T
W (T )

)

also is a rectilinear Brownian bridge

C.3 Eigenfunction expansion

For a FPE (152) with both a(x) and b(x) time-independent coefficients we will

here replace a(x) with
→
v (x) (the symbol that we will adopt in the Section D for

the forward velocity within the framework of the stochastic mechanics), while for
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short we will adopt the notation B(x) = D b2(x). The pdf f(x, t) of our continuous
Markov process X(t) is then a solution of the FPE

∂tf = ∂2x(Bf)− ∂x(
→
vf) = ∂x

[
∂x(Bf)−

→
vf
]

(165)

defined for x ∈ [a, b] (beware also the temporary new meaning of the symbols a and

b) and t ≥ s. We will further suppose that
→
v (x) has no singularities in (a, b), and

that
→
v (x) and B(x) are both continuous and differentiable functions. The conditions

imposed on the probabilistic solutions are of course

f(x, t) ≥ 0

∫ b

a

f(x, t) dx = 1 a < x < b s ≤ t (166)

while from (165) the second condition (166) also takes the form

[
∂x(Bf)−

→
vf
]b
a
= 0 , s ≤ t

Suitable initial conditions will be added to produce the required evolution: for
example a transition pdf f(x, t|y, s) will be selected by the initial condition

lim
t→s+

f(x, t) = f(x, s+) = δ(x− y) (167)

It is also possible to show by direct calculation that

f̃(x) = Z−1 e−
∫ B′(x)−

→
v (x)

B(x)
dx Z =

∫ b

a

e−
∫ B′(x)−

→
v (x)

B(x)
dx dx (168)

is an invariant solution of (165) satisfying the conditions (166) (for its coherence
with the Boltzmann distribution (109) see Appendix C.4). Remark that (165) is
not in the standard self-adjoint form, but if we define the new function g(x, t) by
means of

f(x, t) =

√
f̃(x) g(x, t)

it would be easy to show [5, 6] that g(x, t) obeys now an equation of the form

∂t g = L [g]

where the operator L defined on a test function ϕ as

L [ϕ] =
d

dx

[
p(x)

dϕ(x)

dx

]
− q(x)ϕ(x)

p(x) = B(x) > 0 q(x) =

[
B′(x)− →v (x)

]2

4B(x)
−
[
B′(x)− →v (x)

]′

2

is now self-adjoint. Then, by separating the variables by means of g(x, t) = γ(t)G(x)
we have γ(t) = e−λt while G must be solution of a typical Sturm-Liouville problem
associated to the equation

L [G(x)] + λG(x) = 0 (169)
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with the boundary conditions

[
B′(a)− →v (a)

]
G(a) + 2B(a)G′(a) = 0 (170)

[
B′(b)− →v (b)

]
G(b) + 2B(b)G′(b) = 0 (171)

It easy to see that λ = 0 is always an eigenvalue for the problem (169) with (170)

and (171), and that the corresponding eigenfunction is G0(x) =

√
f̃(x). The other

simple eigenvalues λn will then constitute an infinite, increasing sequence and the
corresponding eigenfunction Gn(x) will have n simple zeros in (a, b). This also means
that λ0 = 0, corresponding to the eigenfunction G0(x) which never vanishes in
(a, b), is the lowest eigenvalue so that all other eigenvalues are strictly positive. The
eigenfunctions will constitute a complete orthonormal set of functions in L2

(
[a, b]

)

so that the general solution of (165) with (166) will have the form

f(x, t) =

∞∑

n=0

cne
−λnt

√
f̃(x)Gn(x) =

∞∑

n=0

cne
−λntG0(x)Gn(x) (172)

with c0 = 1 for normalization (remember that λ0 = 0). The coefficients cn for a
particular solution selected by an initial condition

f(x, s+) = f0(x)

are then calculated from the orthonormality relations as

cn =

∫ b

a

f0(x)
Gn(x)

G0(x)
dx

and in particular for the transition pdf we have from (167) that

cn =
Gn(x0)

G0(x0)

Since λ0 = 0 and λn > 0 for n ≥ 1, the general solution (172) has a precise time
evolution: all the exponential factors vanish with t → +∞ with the only exception
of the term n = 0 which is constant, so that exponentially fast we will always have

lim
t→+∞

f(x, t) = c0

√
f̃(x)G0(x) = f̃(x)

namely the general solution will relax toward the invariant solution f̃(x)

C.4 Invariant Boltzmann distributions

Let us consider the SDE with time-independent coefficients

dX(t) = a(X(t)) dt+ b(X(t)) dW (t)
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and the corresponding FPE (see also Section C)

∂tfX(x, t) = −∂x [a(x)fX(x, t)] +D∂2x
[
b2(x)fX(x, t)

]

= −∂x
[
a(x)fX(x, t)−D∂x

(
b2(x)fX(x, t)

)]
(173)

We know then from the Section B.2.2 that the transformation Y (t) = h(X(t)) with
a monotonic h(x) and

y = h(x) =

∫
dx

b(x)
h′(x) =

1

b(x)
x = g(y) = h−1(x) (174)

will bring us to a new SDE

dY (t) = â (Y (t)) dt+ dW (t)

and to a new FPE

∂tfY (y, t) = −∂y [â (y)fY (y, t)] +D∂2yfY (y, t) = −∂y [â (y)fY (y, t)−D∂yfY (y, t)]
(175)

where now

â (y) =

[
a(x)

b(x)
−Db′(x)

]

x=g(y)

We claimed in the Section B.2.1 that if we introduce a potential φ(y) according to

â (y) = − D

kT
φ′(y)

then – provided that φ(y) is such that e−
φ(y)
kT is an integrable function – it is possible

to show that

f̃Y (y) = Z−1e−
φ(y)
kT = Z−1e

1
D

∫
â (y) dy Z =

∫

R

e−
φ(z)
kT dz (176)

is an invariant Boltzmann distribution. It is apparent indeed that, since it is

∂yf̃Y (y) =
â (y)

D
f̃Y (y)

then f̃Y (y) is a stationary solution of (175). On the other hand, when Y (t) = h(X(t))
according to the transformation (174), the respective pdf ’s are also connected by
the transformations

fY (h(x), t) = |b(x)|fX(x, t) fY (y, t) =
[
|b(x)|fX(x, t)

]
x=g(y)

and hence in particular we have

f̃X(x) =
f̃Y (h(x))

|b(x)| (177)
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that we claim to be a stationary solution for the original FPE (173)

In order to check our last statement, we will first express f̃X(x) in terms of the
coefficients a(x) and b(x) of (173): to this end let us remark that

∫
â (y) dy =

∫ [
a(x)

b(x)
−Db′(x)

]

x=g(y)

dy =

[∫ (
a(x)

b(x)
−Db′(x)

)
dx

b(x)

]

x=g(y)

because, taking for short

A(x) =
a(x)

b(x)
−Db′(x)

we have3 for the change of variable y = h(x)

∫
â (y) dy =

∫
A(g(y)) dy =

[∫
A(x)h′(x) dx

]

x=g(y)

=

[∫ (
a(x)

b(x)
−Db′(x)

)
dx

b(x)

]

x=g(y)

or also the equivalent formulation

[∫
â (y) dy

]

y=h(x)

=

∫ (
a(x)

b(x)
−Db′(x)

)
dx

b(x)

3Given a function f(x), its primitives are the functions F (x) such that

F (x) =

∫
f(x) dx F ′(x) = f(x)

Let us suppose now to have an invertible transformation of variables y = h(x) with

y = h(x) x = h−1(y) = g(y) g(h(x)) = x g′(y) =
1

h′ (g(y))

It is then easy to show that the function

F1(x) =

[∫
f(g(y))g′(y) dy

]

y=h(x)

= G(h(x)) G(y) =

∫
f(g(y))g′(y) dy

is again a primitive of f(x) because

F ′
1(x) = G′(h(x))h′(x) = h′(x) [f(g(y))g′(y)]y=h(x) = h′(x)

[
f(g(y))

h′ (g(y))

]

y=h(x)

= f(x)

As a consequence the rules for the change of variables in the indefinite integrals are

∫
f(x) dx =

[∫
f(g(y)) g′(y) dy

]

y=h(x)

[∫
f(x) dx

]

x=g(y)

=

∫
f(g(y)) g′(y) dy

To have the formula in the text just take f(x) = A(x)h′(x)
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so that from (176) and (177) we find

f̃X(x) =
e

1
D

∫
( a(x)

b(x)
−D b′(x)) 1

b(x)
dx

Z|b(x)|

On the other hand, since it is easy to see that

e
∫ b′(x)

b(x)
dx = e

∫
d
dx
| ln b(x)| dx = e ln |b(x)| = |b(x)|

we finally have

f̃X(x) = Z−1e
1
D

∫
(a(x)

b(x)
−2D b′(x)) 1

b(x)
dx (178)

Now it is easy to check that this f̃X(x) is the invariant solution of the FPE (173):
we find indeed that

D∂x

[
b2(x)f̃X(x)

]
= f̃X(x)

[
2Db(x)b′(x) + b2(x)

(
a(x)

b(x)
− 2D b′(x)

)
1

b(x)

]

= a(x)f̃X(x)

It is finally apparent that the pdf (178) also coincides with the invariant pdf (168)
because within the notation of the Section C.3 we have

−B
′(x)− →v (x)
B(x)

=

(
a(x)

b(x)
− 2D b′(x)

)
1

b(x)

By summarizing we can say that, if the pdf (176) is the invariant solution (if it exists)
of the stationary FPE (175) for the process Y (t) = h(X(t)), then the pdf (178) is
the corresponding invariant solution of the FPE (173) for the process X(t)

D An anamnesis of stochastic mechanics

Initially proposed as a possible interpretation of quantum mechanics [13, 22] with the
challenging aim of shedding new light on its enduring mysteries, over the years the
stochastic mechanics evolved into a more general theory dealing with conservative
diffusion processes [23]. Its tools are therefore valuable nowadays even beyond the
strict quantum precinct, and in particular they have been employed in the broad
field of the stochastic control [24]. We will refrain however from giving here a
comprehensive review of these topics referring the interested readers to the quoted
literature, and we will rather confine ourselves in the present appendix to recall just
the few results deemed to be instrumental for the follow-up of the present enquiry

From a quantum wave function ψ(x, t) solution of a (one-dimensional) Schrödinger
equation

i~∂tψ(x, t) = − ~2

2m
∂2xψ(x, t) + V (x, t)ψ(x, t) (179)
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we can deduce the form of the forward velocity
→
v (x, t) – here the upper arrow just

means forward, and does not denote a vector, while
←
v (x, t) will be understood as a

backward velocity – appearing in both the FPE

∂tf(x, t) = −∂x[
→
v (x, t)f(x, t)] +D ∂2xf(x, t)

= ∂x

[
D∂xf(x, t)−

→
v (x, t)f(x, t)

]
(180)

for the pdf f(x, t) = |ψ(x, t)|2, and the associated Itō SDE

dX(t) =
→
v (X(t), t)dt+ dW (t) (181)

for the corresponding Markov process X(t) in the framework of the stochastic me-
chanics: hereW (t) is a Wiener process with a constant diffusion coefficient 2D = ~

m
,

namely such that E [W (t)2] = 2D t. If ψ(x, t) is an arbitrary solution of (179), it is
well known indeed that with the usual Ansatz

ψ(x, t) = R(x, t) eiS(x,t)/~ (182)

where R and S are real functions, R2 = |ψ|2 comes out to be a particular solution
of the FPE (180) with forward velocity field of the form

→
v (x, t) =

∂xS(x, t)

m
+

~

2m
∂x
[
lnR2(x, t)

]
(183)

as it is deduced by separating the real and imaginary parts of (179). Remark that the

explicit dependence of
→
v on the form of R clearly indicates that to have a solution

of (180) which makes quantum sense we must pick-up just one, suitable solution.
In the stochastic mechanical framework, indeed, the system is ruled not only by the
FPE (180), but also by a second, dynamical equation (the imaginary part)

∂tS(x, t) +
[∂xS(x, t)]

2

2m
+ V (x, t) − ~2

2m

∂2xR(x, t)

R(x, t)
= 0 (184)

known as Hamilton-Jacobi-Madelung equation
Let us consider now the Schrödinger equation (179) in the case of a time-

independent potential V (x), with a Hamiltonian

Ĥψ(x) = − ~2

2m
∂2xψ(x) + V (x)ψ(x)

with purely discrete spectrum and stationary, normalizable states, and let us use
the following notations for these states, and their eigenvalues and eigenfunctions:

ψn(x, t) = φn(x) e
−iEnt/~

Ĥφn(x) = − ~2

2m
φ′′n(x) + V (x)φn(x) = Enφn(x)
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For later convenience we will also introduce the constant

D =
~

2m
(185)

so that the previous eigenvalue equation can be recast in the following form

Dφ′′n(x) =
V (x)− En

~
φn(x)

For a stationary solution ψn(x, t) the Ansatz (182) will give

S(x, t) = −Ent , R(x, t) = φn(x)

so that for our stationary states the velocity fields are

→
v n(x) = 2D

φ′n(x)

φn(x)
(186)

D.1 The FPE for stationary states

From (186) we see that the forward velocities
→
v n(x) for stationary states are time-

independent, and that they have singularities in the zeros (nodes) of the eigen-
function. Since the n-th eigenfunction of a quantum system with bound states has
exactly n simple nodes x1, . . . , xn, the coefficients of the FPE

∂tf(x, t) = −∂x[
→
v n(x)f(x, t)]+D ∂2xf(x, t) = ∂x

[
D∂xf(x, t)−

→
v n(x)f(x, t)

]
(187)

diverge in these n points and we will be obliged to solve it in separate intervals
by imposing suitable boundary conditions connecting the different sections (see Ap-
pendix C for further details). As a matter of fact, these singularities effectively
separate the real axis in n + 1 sub-intervals with impenetrable (to the probability
current) walls. Hence the process will not have an unique invariant measure and

will never cross the boundaries fixed by the singularities of
→
v n(x): if we start at t0

in one of the intervals in which the axis is divided we will always remain therein.
As a consequence, with an arbitrary initial distribution, we must require that the
integrals ∫ xk+1

xk

f(x, t) dx

be kept at a constant value for t ≥ t0: this values will not, in general, be equal
to 1 (only their sum will amount to 1) and, since the separate intervals can not
communicate, they will be fixed by the choice of the initial conditions. The boundary
conditions are hence imposed by the conservation of the probability in [xk, xk+1] and
that entails the vanishing of the probability current in (187) at the end points of the
intervals: [

D∂xf(x, t)−
→
v n(x)f(x, t)

]
xk,xk+1

= 0 , t ≥ t0
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Therefore, since every particular solution is selected by the initial conditions, we
are first interested in finding the transition pdf f(x, t|y, s) which is singled out by
the condition

lim
t→s+

f(x, t) = f(x, s+) = δ(x− y) (188)

The evolution of any other initial condition f0(x) at t = s is subsequently ruled by
the Chapman-Kolmogorov equation

f(x, t) =

∫ +∞

−∞
f(x, t|y, s)f0(y) dy (189)

To solve (187) in every interval [xk, xk+1] (both finite or infinite), when we already
know the invariant, time-independent solution φ2

n(x), we usually put

f(x, t) = φn(x)g(x, t)

in order to reduce (187) to the form

∂tg = Lng (190)

where Ln is now the self-adjoint operator defined on [xk, xk+1] as

Lng(x) =
d

dx

[
p(x)

dg(x)

dx

]
− qn(x)g(x)

p(x) = D > 0 qn(x) =

→
v

2

n(x)

4D
+

→
v
′
n(x)

2

To solve (190) it is then advisable to separate the variables into g(x, t) = γ(t)G(x),
so that we immediately have γ(t) = e−λt, while G(x) must be a solution of the
Sturm-Liouville eigenvalue problem associated to the equation

LnG(x) + λG(x) = 0 (191)

with the boundary conditions

[
2DG′(x)− →v n(x)G(x)

]
xk, xk+1

= 0 (192)

The general behavior of the solutions obtained as expansions in the system of the
eigenfunctions of (191) has already been discussed elsewhere [5, 6]

D.2 The Itō SDE for stationary states

If on the other hand we would like to see the problem from the standpoint of the Itō
SDE ’s for some Markov process X(t) we will be confronted with the Smoluchowsky
equations of the type (107)

dX(t) =
→
v n(X(t))dt+ dW (t) (193)
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which are the path-wise counterparts of the FPE ’s (187). It is well known from our
discussion inthe Appendix C.4 that in this case, if

e
1
D

∫ →
v n(x)dx

is an integrable function, then

e
1
D

∫ →
v n(x)dx

∫
R
e

1
D

∫ →
v n(x)dxdx

(194)

is the pdf of the stationary solution of (193). On the other hand we also know that
there is no simple way to find the general solutions of (193) without scrutinizing it
in particular cases

D.3 QHO stationary states

Let us then consider in detail the particular example of a QHO with the potential

V (x) =
m

2
ω2x2

It is well-known that its eigenvalues are

En = ~ω

(
n +

1

2

)
; n = 0, 1, 2 . . .

while, with the notation

σ2 =
~

2mω
=
D

ω
(195)

the eigenfuncions are

φn(x) =
1√

σ
√
2π2nn!

e−x
2/4σ2

Hn

(
x

σ
√
2

)

where Hn are the Hermite polynomials (see [7] 8.95). The corresponding forward
velocity fields are then easily calculated from (186)

→
v n(x) = ωσ

√
2
H ′n

(
x

σ
√
2

)

Hn

(
x

σ
√
2

) − ωx = ωσ
√
2

[
2nHn−1(z)

Hn(z)
− z

]

z= x
σ
√

2

(196)

and the first examples are
→
v 0(x) = −ωx
→
v 1(x) = −ωx+ ωσ

2σ

x
→
v 2(x) = −ωx+ ωσ

4σx

x2 − σ2

→
v 3(x) = −ωx+ ωσ

6σ(x2 − σ2)

x(x2 − 3σ2)

→
v 4(x) = −ωx+ ωσ

8σx(x2 − 3σ2)

x4 − 6σ2x2 + 3σ4
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Figure 4: The dimensionless forward velocities
→
v n

ωσ
√
2
for n = 1, 2, 3, 4 plotted in

function of the dimensionless variable x
σ
√
2
. The case n = 0 leads to the straight line

with singularities in the zeros xk of the Hermite polynomials. These velocities are
piecewise (between two subsequent singularities) monotonic decreasing functions as
displayed in the Figure 4

D.4 The processes for the QHO stationary states

We first recall a few general remarks about the solution methods of the eigenvalue
problem (191) which for our forward velocities

→
v n(x), with ǫ = ~λ, can be written

as

− ~2

2m
G′′(x) +

(
m

2
ω2x2 − ~ω

2n + 1

2

)
G(x) = ǫG(x)

in every interval [xk, xk+1], k = 0, 1, . . . , n between two subsequent singularities of
→
v n(x), with the boundary conditions

[φn(x)G
′(x)− φ′n(x)G(x)]xk,xk+1

= 0

Since φn(x) (but not φ
′
n(x)) vanishes in the xk’s, the actual boundary conditions to

impose are
G(xk) = G(xk+1) = 0

where it is understood that in x0 = −∞ and xn+1 = +∞ this respectively means

lim
x→−∞

G(x) = 0 lim
x→+∞

G(x) = 0
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In a dimensionless form, by using z = x
σ
, µ = ǫ

~ω
= λ

ω
and χ(z) = G(σz), our

eigenvalue problem then becomes

χ′′(z)−
(
z2

4
− 2n+ 1

2
− µ

)
χ(z) = 0 χ(zk) = χ(zk+1) = 0 (197)

where zk, zk+1 are the new dimensionless endpoints. If now µm and χm(z) are the
eigenvalues and eigenfunctions, the general solution of the FPE (187) will be

f(x, t) =

∞∑

m=0

cme
−µmωtφn(x)χm

(x
σ

)

where the coefficients cm will be fixed by the initial conditions and by the non-
negativity and normalization requirements for f(x, t) along all its evolution. We
finally remember that two linearly independent solutions of the ordinary differential
equation (197) are

χ(1)(z) = e−z
2/4M

(
− µ+ n

2
,
1

2
;
z2

2

)

χ(2)(z) = z e−z
2/4M

(
− µ+ n− 1

2
,
3

2
;
z2

2

)

where M(a, b; z) are the confluent hypergeometric functions [7]

D.4.1 The ground state n = 0

When n = 0 the FPE (187) takes the form

∂tf(x, t) = ωσ2∂2xf(x, t) + ∂x[ωxf(x, t)] (198)

while the corresponding Itō SDE (193) is

dX(t) = −ωX(t)dt+ dW (t) (199)

where W (t) is a Wiener process with diffusion coefficient D = ωσ2. In both cases
we at once recognize an OU process with transition pdf

f(x, t|y, s) = 1

β(t− s)
√
2π

e−[x−α(t−s)]
2/2β2(t−s) t ≥ s (200)

where we used the notation

α(t) = ye−ωt β2(t) = σ2
(
1− e−2ωt

)
(201)

This solution of (198), which obeys the initial condition f(x, s) = δ(x − y), is also
the pdf of the solution of the SDE (199) with initial condition X(s) = y, P -a.s.,
namely

X(t) = ye−ω(t−s) +

∫ t

s

e−ω(t−t
′)dW (t′)
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The stationary process is instead selected by the initial condition X(0) ∼ N(0, σ2)
namely by the invariant initial pdf

f(x, 0) =
1

σ
√
2π

e−x
2/2σ2

which is also the asymptotic pdf for every initial condition when the evolution
is ruled by (200), so that the invariant distribution plays also the role of the limit
distribution. It is remarkable that this invariant pdf also coincides with the quantum
stationary pdf φ2

0(x) = |ψ0(x, t)|2: in other words, the process associated by the
stochastic mechanics to the ground state of a QHO is a stationary OU process

D.4.2 The the first excited state n = 1

In the case n = 1 the forward velocity
→
v 1(x) has a singularity in x = 0, the FPE is

∂tf(x, t) = ωσ2∂2xf(x, t) + ∂x

[(
ωx− 2ωσ2

x

)
f(x, t)

]
(202)

while the corresponding Itō SDE (193) is

dX(t) =

(
−ωX(t) +

2ωσ2

X(t)

)
dt+ dW (t) (203)

The FPE (202) is then reduced to the eigenvalue problem (197) with x0 = −∞,
x1 = 0 and x2 = +∞, namely (with z = x/σ)

χ′′(z)−
(
z2

4
− 3

2
− µ

)
χ(z) = 0 χ(−∞) = χ(0) = χ(+∞) = 0 (204)

This problem should be separately solved for z ≤ 0 and for z ≥ 0. The eigenvalues
turn out to be µm = 2m with m = 0, 1, . . . and the complete set of eigenfunctions
(for both z ≥ 0, and z ≤ 0) is

χm(z) = ze−z
2/4M

(
−m, 3

2
;
z2

2

)
=

(−1)mm!√
2(2m+ 1)!

e−z
2/4H2m+1

(
z√
2

)

In particular it is easy to see that the relation with the quantum eigenfunction φ1 is

φ1(x) =
χ0(x/σ)√
σ
√
2

χ0(z) = ze−z
2/4

and that the solution of (202) for an initial condition imposed at the time s is

f(x, t) =
∞∑

m=0

cme
−2mω(t−s)φ1(x)χm

(x
σ

)
t ≥ s
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where the cm’s are fixed by the initial condition. For the transition pdf from (188)
we have

cm =
2√
σ
√
2π

(2m+ 1)!!

(2m)!!

χm(y/σ)

χ0(y/σ)

and by summing up the series [5, 6] we will have with the notations (201)

f(x, t|y, s) = Θ(xy)
x

α(t− s)

e
− [x−α(t−s)]2

2β2(t−s) − e
− [x+α(t−s)]2

2β2(t−s)

β(t− s)
√
2π

(205)

where Θ(z) is the Heaviside function. In particular we have

lim
t→+∞

f(x, t|y, s) = 2Θ(xy)
x2e−x

2/2σ2

σ3
√
2π

= 2Θ(xy)φ2
1(x)

and for an arbitrary initial condition f(x, s+) = f0(x) we have

lim
t→+∞

f(x, t) = lim
t→+∞

∫ +∞

−∞
f(x, t|y, s)f0(y) dy

= 2φ2
1(x)

∫ +∞

−∞
Θ(xy)f0(y) dy = Γ(q; x)φ2

1(x)

where we have defined the function

Γ(q; x) = qΘ(x) + (2− q)Θ(−x) ; q = 2

∫ +∞

0

f0(y) dy

Remark that q = 1 when the initial probability is equally shared on the two (positive
and negative) half-lines, and in this case we have Γ(1; x) = 1 so that the asymptotical
pdf exactly coincides with the quantum stationary pdf φ2

1(x). If on the other hand
q 6= 1 the asymptotical pdf has the same shape of φ2

1(x) but with different weights
on the two half-lines. The transition pdf (205) is however less elementary of what
it looks like at first sight. It is possible for instance to calculate expectations, but
the results are not very simple: for instance we have

E [X(t) |X(0) = y] =

∫ ∞

0

x2

α(t)

e
− [x−α(t)]2

2β2(t) − e
− [x+α(t)]2

2β2(t)

β(t)
√
2π

=

√
2

π
β(t)e

− α2(t)

2β2(t) +
α2(t) + β2(t)

α(t)

[
2Φ

(
α(t)

β(t)

)
− 1

]

where as usual

Φ(z) =

∫ z

−∞

e−
x2

2

√
2π

dx
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while α(t) and β(t) are defined in (201). If on the other hand X(0) is not degenerate
in y but has a pdf f0(y), the expectation E [X(t)] would be calculated as an y-
integral of E [X(t) |X(0) = y] f0(y) dy, by recalling of course that the variable y is
hidden into α(t)

The transition pdf (205) anyhow completely solves the problem of the FPE (202),
and hence also completely defines the law of the Markov process solution of the
(non linear) SDE (203): it is then puzzling to remark that apparently we do not
know any simple procedure to solve (203) as a SDE. For instance we could think of
changing (203) in some other, more manageable form by means of a transformation
Y (t) = h(X(t)) with the Itō formula (see Appendix B). Given the form of our
equation, the simplest idea could seem to be to take Y (t) = X2(t). Now (203) is an
Itō SDE with the following coefficients

a(x) =
→
v 1(x) = −ωx+ 2ωσ2

x
b(x) = 1 (206)

but our transformation y = h(x) = x2 ≥ 0 (with h′(x) = 2x, h′′(x) = 2) is only
piecewise monotonic separately on the two real half-lines, so that we should separate
the process in two regions according to the sign of x = g(y) = ±√

y: a procedure
a bit confusing if done by hand. This of course corresponds to the fact that the
a(x) has a singularity in x = 0 which effectively separates the two half-lines. The
Itō calculus implies that Y (t) will satisfy a new SDE with the coefficients (100)
and (101), namely (with D = ωσ2)

â (y) = −2ωy + 6ωσ2 b̂ (y) = ±2
√
y

so that we will have one of the two equations for Y (t) ≥ 0

dY (t) =
(
6ωσ2 − 2ωY (t)

)
dt± 2

√
Y (t)dW (t)

which in fact are not much easier to handle than the original one, and also seem not
to be on a very firm ground because of the piecewise monotonicity of h(x)

On the other hand there not seems to be any hope of transforming (203) in a
SDE with linear coefficients by means of some other clever transformation because
the compatibility conditions [12] are not satisfied: in fact, from (206) and with

q(x) =
a(x)

b(x)
−Db′(x) = a(x) = −ωx+ 2ωσ2

x

we have
1

q′(x)

d

dx
[b(x)q′(x)] =

−4ωσ2

ωx(x2 + 2σ2)

which apparently is not x-independent, as instead it is required by the compatibil-
ity conditions (see [12] p 39). In any case, since we completely know the law of
X(t) through the transition pdf (205), some effort could be produced in the hope of
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gaining an insight into the process X(t) solution of (203) from the fact that (205)
turns out to be some kind of combination of symmetrically separated OU solutions.
The proposed transformation y = x2, however, looks rather preposterous because
h(x) = x2 is not a monotonic function: we will discuss a possible monotonic modi-
fication in the Section D.6 of the present appendix

D.4.3 The second excited state n = 2

If n = 2 the velocity
→
v 2(x) has singularities in x = ±σ, the FPE is

∂tf(x, t) = ωσ2∂2xf(x, t) + ∂x

[(
ωx− 4ωσ2x

x2 − σ2

)
f(x, t)

]
(207)

while the corresponding Itō SDE (193) is

dX(t) =

(
−ωX(t) +

4ωσ2X(t)

X2(t)− σ2

)
dt+ dW (t) (208)

The FPE (207) is then reduced to the eigenvalue problem (197) with x0 = −∞,
x1 = −σ, x2 = σ and x3 = +∞, namely (with z = x/σ)

χ′′(z)−
(
z2

4
− 5

2
− µ

)
χ(z) = 0 χ(−∞) = χ(±1) = χ(+∞) = 0 (209)

that should be separately solved in the three intervals (−∞,−1], [−1, 1] and [1,+∞).
The two linearly independent solutions are now

χ(1)(z) = e−z
2/4M

(
− µ+ 2

2
,
1

2
;
z2

2

)
χ(2)(z) = ze−z

2/4M

(
− µ+ 1

2
,
3

2
;
z2

2

)

and it is easy to check that µ = 0 is an eigenvalue for all the three intervals with
eigenfunction

χ0(z) = e−z
2/4M

(
−1,

1

2
;
z2

2

)
= e−z

2/4H2

(
z√
2

)
= 2e−z

2/4(z2 − 1)

so that the relation with the quantum eigenfunction now is

φ2(x) =
χ0(x/σ)√
8σ

√
2π

As for the other eigenvalues and eigenfunction they can be obtained only numeri-
cally: for example it can be shown that, beyond µ0 = 0, the first eigenvalues in the
interval [−1, 1] can be calculated as the first values such that

M

(
− µ+ 1

2
,
3

2
;
1

2

)
= 0

and are µ1 ∼ 7.44, µ2 ∼ 37.06, µ3 ∼ 86.41. Also for the unbounded interval [1,+∞)
(the analysis is similar for (−∞,−1]) the eigenvalues are derivable only numerically.
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D.5 The macroscopic limit

From the SDE (193) one could hope to derive some macroscopic, deterministic equa-
tion describing the behavior of some global characteristic of the process. However
it is easy to see that by taking the expectation of (193) we just have

dE [X(t)]

dt
= E

[→
v n(X(t))

]

but that we can not deduce any equation for E [X(t)] because the velocities
→
v n(x)

are not linear functions (with the only exception of
→
v 0(x)), and hence the term

E

[→
v n(X(t))

]
can not be put in the form

→
v n (E [X(t)]). We could surmise that (at

least when the form of
→
v n(x) is explicitly given, as for the QHO) some function

hn(x) can be found such that

E

[→
v n(X(t))

]
= hn (E [X(t)])

but this seems not to be an easy task, even for the simplest case of
→
v 1(x). The

outlook seems not to be much brighter if we take the medians of (193) instead of
the expectations: as a matter of fact in this case – because of the non linearity of
the functional M [. . .] – we can not even suppose that M [dX(t)] is simply reduced
to dM [X(t)], and hence the hope to obtain a differential equation for the median
is dashed from the beginning

The unique viable way to have deterministic equations from (193) seems then to
be to switch off the Wiener noise by taking a vanishing diffusion coefficient D = 0,
while still keeping a non-zero Planck constant ~ in order to have non-trivial values
for σ in the

→
v n(x): this means of course that the relation (185) no longer holds, so

that now in some sense we are out of the framework of the stochastic mechanics.
In any case it could be instructive to see what kind of deterministic trajectories are
solutions of the dynamical systems

ẋ(t) =
→
v n(x(t)) (210)

associated to the forward velocities of the stationary states of a QHO. Since our
forward velocities (196) are time-independent functions, the ODE ’s (210) can be
solved by separation of the variables for t ≥ 0 with initial condition x(0) = y

∫ x/σ
√
2

y/σ
√
2

Hn(z)

2nHn−1(z)− zHn(z)
dz = ωt (211)

but since there is no general formula giving the solutions for every n we will be
obliged to show them one by one: for n = 0 the equation is

ẋ(t) = −ωx(t)



N Cufaro Petroni, S De Martino and S De Siena: Gompertz and logistic 76

and from (211) we have

[ln z]
x/σ
√
2

y/σ
√
2
= −ωt

so that every initial condition will eventually go to x(+∞) = 0 according to

x(t) = ye−ωt (212)

For n = 1 the equation is

ẋ(t) = −ωx(t) + 2ωσ2

x(t)

the solution is [
ln(z2 − 1)

]x/σ√2
y/σ
√
2
= −2ωt

and hence
x2(t) = 2σ2 + (y2 − 2σ2)e−2ωt (213)

The trajectory x(t) will then exponentially go from y to ±σ
√
2 where the sign of

the square root will be decided according to the sign of the initial value y: in this
second case we have indeed two attracting points. For n = 2 on the other hand the
equation is

ẋ(t) = −ωx(t) + 4ωσ2x

x2(t)− σ2

and we have [
ln z(2z2 − 5)2

]x/σ√2
y/σ
√
2
= −5ωt

namely the trajectories are implicitly defined by

x(t)
[
x2(t)− 5σ2

]2
= y(y2 − 5σ2)2e−5ωt (214)

and, while not easy to be calculated explicitly, they will have now three asymptotic
attracting points in x = 0 and x = ±σ

√
5. The solutions are much less elementary

for n ≥ 3: for instance with n = 3 the trajectories are implicitly defined by

[
ln(

√
57 + 9− 4z2)19+

√
57(

√
57− 9 + 4z2)19−

√
57
]x/σ√2
y/σ
√
2
= −76ωt

and we are able to find explicitly only the four asymptotic attracting points

x = ±σ

√
9 +

√
57

2
= ±2.8766 σ x = ±σ

√
9−

√
57

2
= ±0.8515 σ

Subsequent solutions would grow increasingly complicated and will not be displayed
here
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D.6 Looking deeper into the n = 1 case

By looking into the transition pdf (205) for the n = 1 eigenstate we see that it is a
combination of two OU transition pdf ’s (200) with opposite expectations ±α. This
combination, however, does not qualify as a proper mixture because of the opposite
sign of the two terms. Remark in any case that, these signs notwithstanding, the
pdf (205) is assembled in such a way that it turns out to be always non-negative
over R, as it must be for a pdf. It would be interesting then to understand the
nature of this combination because this could possibly shed some light on the kind
of combination of OU processes constituting a solution of (203)

Proposition D.1. If p(x) is a pdf with finite expectation α =
∫
R
xp(x) dx, and if

p(x) ≥ p(−x) ∀x ≥ 0 (215)

then α ≥ 0, and when α > 0

f(x) = Θ(x)
x

α
[p(x)− p(−x)] =

{
x
α
[p(x)− p(−x)] x ≥ 0

0 x ≤ 0
(216)

is a pdf, while

f(x) =
x

2α
[p(x)− p(−x)] (217)

is a symmetric pdf in the sense that f(−x) = f(x). On the other hand, if α = 0 we
have p(x) = p(−x) (namely p(x) must be symmetric) and f, f must be defined – if
possible – as a limit for α → 0

Proof: First of all we have

α =

∫ ∞

−∞
xp(x) dx =

∫ 0

−∞
xp(x) dx+

∫ ∞

0

xp(x) dx

= −
∫ ∞

0

xp(−x) dx+
∫ ∞

0

xp(x) dx =

∫ ∞

0

x[p(x)− p(−x)] dx ≥ 0

because all the terms in the integral are non-negative. Then it is immediate to check
that the function

q(x) = x[p(x)− p(−x)] x ∈ R

is symmetric (namely q(x) = q(−x)) and non-negative for every x ∈ R with q(0) =
0. Now it is easy to see that

∫ ∞

0

q(x) dx =

∫ ∞

0

xp(x) dx−
∫ ∞

0

xp(−x) dx =

∫ ∞

−∞
xp(x) dx = α

and hence also that ∫ ∞

−∞
q(x) dx = 2α
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It is apparent then that (216) is a pdf concentrated on the positive half-line, while (217)
is a symmetric pdf defined on R. Finally, since we have seen that

α =

∫ ∞

0

x[p(x)− p(−x)] dx =

∫ ∞

0

q(x) dx

and q(x) ≥ 0, then α can not be zero unless q(x) = 0, namely p(x) = p(−x). In this
case f and f can not be defined as (216) and (217) and we must resort to a limit
for α→ 0 hoping that the Theorem of l’Hôpital brings it to a finite result �

It is apparent then that the pdf (205) is a particular case of (216) where p(x) is
the Gaussian law (200) of an OU process. It is not clear, instead, what kind of
combination of rv ’s – if any – admits either f(x) or f(x) as their pdf ’s: let us
suppose that X is a rv with pdf p(x). Then p(−x) will play the role of the pdf for
−X , and the condition (215) could be formulated as

P {X ∈ B} ≥ P {X ∈ −B}

where B ∈ B(R+) is a Borelian on the positive half-line R+, while we define −B =
{x ∈ R | − x ∈ B}. Our problem then can be formulated as follows: is either f(x),
or f(x) the pdf of some combination of X and −X? Could such a combination obey
some simpler form of our SDE (203)? We do not know an answer at this point, but
we can add just a final remark about the expectations of f and f : because of the
symmetry we immediately have

∫ ∞

−∞
xf(x) dx = 0

while on the other hand
∫ ∞

−∞
xf(x) dx =

∫ ∞

0

x2

α
[p(x)− p(−x)] dx =

∫ ∞

0

x2

α
p(x) dx−

∫ ∞

0

x2

α
p(−x) dx

=

∫ ∞

0

x2

α
p(x) dx−

∫ 0

−∞

x2

α
p(x) dx =

∫ ∞

−∞

x|x|
α
p(x) dx

In other words the expectation of a rv Y with pdf f(x) seems to coincide with the
expectation of the rv 1

α
X|X|, if X has the pdf p(x) (namely the pdf which defines

f(x) according to (216) in the Proposition E.2). Remark however that, if X has the
pdf p(x), f(x) defined in (216) would not be the pdf of Y = X|X| which instead,
after a short calculation, would be

fY (y) =
1

2
√
|y|
p

( |y|
y

√
|y|
)

This discussion, however, in some sense suggests a role for the transformation
Y (t) = h(X(t))

y = h(x) = x|x| =
{
x2 x ≥ 0
−x2 x ≤ 0
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which, at variance with x2, is now a monotonic transformation with

h′(x) = 2|x| h′′(x) = 2
|x|
x

x = g(y) =

{ √
y y ≥ 0

−√−y y ≤ 0

Now, ifX(t) is a solution of the Itō SDE (203) with the coefficients (206), the Itō cal-
culus implies that Y (t) = h(X(t)) will satisfy a new SDE with the coefficients (100)
and (101), namely (with D = ωσ2)

â (y) = −2ωy + 6ωσ2 |y|
y

b̂ (y) = 2
√
|y|

so that we will have

dY (t) =

(
6ωσ2 |Y (t)|

Y (t)
− 2ωY (t)

)
dt+ 2

√
|Y (t)|dW (t)

E Quantiles and medians: a reminder

E.1 Definitions

The law of a rv (random variable) X whatsoever is characterized by a cdf (cumula-
tive distribution function) F (x) = P {X ≤ x} which is a monotonic, non decreasing
function of x confined between 0 and 1, and right-continuous wherever it jumps. It
can also show flat spots where no probability is present. The qf (quantile function)
is then usually defined as

Q(p) = inf{x ∈ R : p ≤ F (x)} 0 ≤ p ≤ 1 (218)

This results in a well defined, one-valued function with Q(0) = −∞, while Q(1) =
+∞ when F (x) only asymptotically reaches the value 1. In the case of continuous
laws (no jumps), however, the definition (218) can be reduced to

Q(p) = inf{x ∈ R : p = F (x)} (219)

and when F (x) is also strictly increasing (no flat spots) we finally have

Q(p) = F−1(p) (220)

It is apparent now that Q(p) jumps wherever F (x) has flat spots, while it has flat
spots wherever F (x) jumps. A closer inspection of the definition (218) shows more-
over that in its discontinuities Q(p) is left-continuous. In fact every non-decreasing,
left-continuous function is a possible qf. An extensive presentation of both the prop-
erties and the statistical applications of (220) can be found in [16]. In the framework
of this notation all the quantiles – and in particular the median – have a non am-
biguous definition
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Figure 5: Medians according to the Definition E.2 for cdf ’s F (x) with possible
jumps, but without flat spots: the value of m is unique and coincides with the mX

of the Definition E.1

Definition E.1. The median M [X ] of a rv X is the quantile of order 1/2, namely

mX = M [X ] = Q
(
1/2
)

(221)

There is however another, more general definition which allows for multi-valued
medians in the sense that they can also coincide with a full, closed interval of
numbers (the median segment), this definition being of interest mostly when we
deal with the limits of sums of independent random variables [17, 18]

Definition E.2. The median M [X ] of a rv X is any number m such that

P {X ≤ m} ≥ 1/2 and P {X ≥ m} ≥ 1/2 (222)

It is possible to see in fact that when the median defined as in (222) corresponds
to an interval of numbers, then – due to the presence of the inf{. . .} – the median
mX defined as in (221) coincides with the left endpoint of the said interval. On the
other hand, when the Definition E.2 gives rise to a unique value, the two definitions
apparently coincide. This shows that in any case mX of Definition E.1 always
take one (the smallest) of the possible values m of the Definition E.2. Examples
of applications of the Definition E.2 are displayed in the Figures 5 and 6, and in
particular it is easy to see that, according to the two definitions, for a Bernoulli rv
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Figure 6: Medians according to the Definition E.2 for cdf ’s F (x) with flat spots
and possible jumps: the values of m fill a non degenerate interval [a, b] whenever
the flat spot falls at level 1/2 as in A and B. In these cases the median mX of the
Definition E.1 coincides with the left endpoint a of the said interval

X taking values 1, 0 with probabilities respectively p and 1 − p (for 0 ≤ p ≤ 1) we
have

Definition E.1 Definition E.2

M [X ] =

{
0 0 ≤ p ≤ 1

2

1 1
2
< p ≤ 1

M [X ] =





0 0 ≤ p < 1
2

[0,1] p = 1
2

1 1
2
< p ≤ 1

We finally remember that sometimes in statistics, when the median segment does
not degenerate in a single point, the median is not its left endpoint but rather
some other intermediate point, for example its middle point: we will not however
elaborate more on these additional possibilities here

E.2 Properties

Proposition E.3. Every rv X admits a median according to the Definition E.2,
and if T (x) is a monotonic function then it is

M [T (X)] = T (M [X ])
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In particular, with λ, η ∈ R, we always have

M [−X ] = −M [X ] M [λ+ ηX ] = λ+ ηM [X ]

Proof: If m is a median for X , then from Definition E.2 both the following inequal-
ities must hold

P {X ≤ m} ≥ 1/2 and P {X ≥ m} ≥ 1/2

But with T (x) monotonic these are also equivalent to the pair of inequalities

P {T (X) ≤ T (m)} ≥ 1/2 and P {T (X) ≥ T (m)} ≥ 1/2

so that, always from Definition E.2, T (m) is a median for T (X) �

On the other hand it is neither easy to compute the medians of a sum in terms of
the medians of the summands, nor to relate the medians of an integrable random
variable to its mean value. Nonetheless many relevant results can be deduced and
we will select here a few among them

Proposition E.4. Given a rv X with E [|X|p] < +∞ for some p ≥ 1 (namely
endowed at least with the expectation, and possibly also with higher order moments),
for every possible value of M [X ] according to the Definition E.2, and for every
a ∈ R we always have

∣∣M [X ]− a
∣∣ ≤

(
2E [|X − a|p]

) 1
p (223)

In particular for p = 2 and a = E [X ] it is straightforward to see that

∣∣M [X ]−E [X ]
∣∣ ≤

√
2V [X ]

Proof: From the Chebyshev inequality for every p ≥ 1, a ∈ R and ǫ > 0 we first
of all have

P {|X − a| ≥ ǫ} = P {|X − a|p ≥ ǫp} ≤ E [|X − a|p]
ǫp

so that by taking ǫp = 2E [|X − a|p] we get

P

{
|X − a| ≥

(
2E [|X − a|p]

) 1
p

}
≤ 1

2

and since

P

{
|X − a| ≥ (2E [|X − a|p])

1
p

}

= P

{
X ≥ a + (2E [|X − a|p])

1
p

}
+ P

{
X ≤ a− (2E [|X − a|p])

1
p

}

both the following two inequalities hold simultaneously

P

{
X ≥ a+ (2E [|X − a|p])

1
p

}
≤ 1

2
P

{
X ≤ a− (2E [|X − a|p])

1
p

}
≤ 1

2
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Now it is apparent that a − (2E [|X − a|p])
1
p ≤ a + (2E [|X − a|p])

1
p , so that from

the Definition E.2 we deduce that M [X ] must fall somewhere in between these two
numbers, namely

a− (2E [|X − a|p])
1
p ≤ M [X ] ≤ a + (2E [|X − a|p])

1
p

and hence (223) is completely proved �

Remark however that there are many, perfectly legitimate, laws which possess a
median, but do not have a well defined expectation (such as, for example, the Cauchy
law), and hence are not in the framework of the Proposition E.4 hypotheses: as a
consequence the scope of this result is less wide than it looks like at first sight.

It is well known that for rv ’s with E [|X|2] < +∞ the expectation E [X ] can be
characterized as the value of the variable a ∈ R that minimizes the mean square error
E [|X − a|2]. A similar result holds for the medians of rv ’s X with E [|X|] < +∞,
but in terms of the mean absolute error

Proposition E.5. Given a rv X with E [|X|] < +∞, a number m is a possible
value of the median M [X ] according to the Definition E.2 if and only if

E [|X −m|] = min
a∈R

E [|X − a|]

Proof: See [18] p. 43 �

A rv X and its law are said to be µ-symmetric if µ−X has the same distribution
as X − µ for some parameter µ. This means that for 0 -symmetric (or symmetric
tout-court) rv ’s we have

P {X ≤ x} = P {−X ≤ x} ∀ x ∈ R

namely (by changing for convenience the explicit sign of x)

P {X ≤ −x} = P {−X ≤ −x} = P {X ≥ x} = 1− P {X < x} ∀ x ∈ R

or, in terms of the cdf F (x),

F (−x) + F (x−) = 1 ∀ x ∈ R (224)

In particular for x = 0 the equation (224) implies that

F (0) + F (0−) = 1

and hence either F (0) = 1/2 (when F (x) is continuous in x = 0), or F (0−) and F (0)
are symmetrically located around the central value 1/2 (when F (x) jumps in x = 0).
Obviously, when the expectations exist, we have E [X ] = 0 for every symmetric rv,
and also the most natural choice for the median of a symmetric random variable
seems to be 0, but in this case some qualification is in order
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Proposition E.6. Given a symmetric rv X, either M [X ] = 0 if the median is
unique, or the non-degenerate median segment is [−a, a] for some suitable a > 0

Proof: When F (x) is continuous in x = 0 (without being constant in a neighbor-
hood of it) then we have seen that F (0) = 1/2 and hence the median has the unique
value M [X ] = 0. The same result holds when F (x) jumps in x = 0 because in this
case we know that F (0−) < 1/2 and F (0) > 1/2. On the other hand when F (x) in
continuous and constantly takes the value 1/2 in a neighborhood of x = 0, then we
have a non-degenerate median segment which must be symmetric around x = 0. If
indeed m > 0 belongs to this segment, also −m must be a median value because

F (−m) = 1− F (m−) = 1− F (m) = 1− 1/2 =
1/2

Then the median segment apparently is [−a, a] for some suitable a > 0 �

When a cdf F (x) is continuous without flat spots on all its support the median is
always uniquely defined, the two Definitions E.1 and E.2 give rise to the same value,
and we can simply take Q (1/2) as the median. In this case the qf Q(p) has many
other properties that can be found for example in [16]. In particular it is possible
to describe – by means of suitable parameters – entire types of qf ’s starting from
some basic form S(p): if for instance S(p) is the qf of some rv X , then it is easy to
see that all the functions

Q(p) = λ+ ηS(p)

with λ ∈ R and η > 0, would be good qf ’s for the rv ’s the type λ+ ηX spanned by
X . If in fact F (x) and G(x) respectively are the cdf ’s of Q(p) and S(p), it is easy
to see that from the previous equation we also have

F (x) = G

(
x− λ

η

)

namely F (x) belongs to the type spanned by G(z): if indeed X is distributed as
G(x), then λ + η X is distributed as F (x). This property however can be put in a
more general form as follows

Proposition E.7. If QX(p) is the qf of the continuous rv X, and Z = T (X) we
have

QZ(p) =

{
T (QX(p)) if T (x) is continuous, monotonic increasing
T (QX(1− p)) if T (x) is continuous, monotonic decreasing

Proof: When T (x) is increasing we have

p = FZ(z) = P {Z ≤ z} = P {T (X) ≤ z} = P
{
X ≤ T−1(z)

}
= FX

(
T−1(z)

)

and hence T−1(z) = QX(p), namely z = T (QX(p)), so that finally QZ(p) = z =
T (QX(p)). If on the other hand T (x) is decreasing, being our rv ’s continuous we
find that

p = FZ(z) = P {Z ≤ z} = P {T (X) ≤ z} = P
{
X ≥ T−1(z)

}
= 1− FX

(
T−1(z)

)
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and hence, as before, we get QZ(p) = T (QX(1− p)) �

Remark finally that, when T (x) is simply monotonic, from both the previous results
we get

QZ

(
1/2
)
= T

(
QX

(
1/2
) )

so that
M [T (X)] = M [Z] = mZ = T (mX) = T (M [X ])

namely we again obtain the result about the medians stated in the Proposition E.3

E.3 Expectations and medians for symmetric laws

To avoid possible ambiguities in this section we will confine ourselves to continuous
(namely absolutely continuous) laws equipped with a non vanishing pdf. Gener-
ally speaking expectations and medians do not coincide, except in particular cases:
for instance, the pdf f(x) of a µ-symmetric rv X is an even function around the
parameter µ

f(µ+ x) = f(µ− x)

then (if the expectation exists) it is easy to see that E [X ] = M [X ] = µ. We know
on the other hand from the Proposition E.3 that the medians show a particular
property not shared with the expectations: when y = T (x) is a monotonic function
defined on the set of values of the rv X and we define Y = T (X), we get

M [T (X)] = T (M [X ]) (225)

It is apparent then that if X is µ-symmetric we also have

M [T (X)] = T (E [X ]) (226)

and in particular this is true for the Gaussian rv ’s X ∼ N(µ, σ2) that are famously
µ-symmetric and will be briefly discussed herein

If, to begin with, X is a dimensionless Gaussian rv, then Y = eX ∼ lnN(µ, σ2)
is a dimensionless log-normal, and hence we have

E [X ] = M [X ] = µ V [X ] = σ2 (227)

E [Y ] = eµ+
σ2

2 M [Y ] = eµ V [Y ] = e2µ+σ2
(
eσ

2 − 1
)

(228)

In particular, in agreement with (226), we have the following relations

E [lnY ] = E [X ] = lnM [Y ] M
[
eX
]
= M [Y ] = eE[X] (229)

that are instrumental in the discussion of the present paper, and then will deserve
a few additional remarks

First of all the equations (229) apparently hold for dimensionless Gaussian rv ’s
X and for their log-normal counterparts Y = eX , but a dimensionally complete
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formulation is always possible: let us suppose that our Gaussian X ∼ N(µ, σ2) is
no longer dimensionless, but it is for instance a length. In this case, by taking
advantage of the standard deviation σ that is a length too, we remark first that
X/σ ∼ N(µ/σ, 1) is now dimensionless, and then that Z = eX/σ ∼ lnN(µ/σ, 1) is a
dimensionless log-normal with

E [Z] = e
µ
σ
+ 1

2 M [Z] = e
µ
σ V [Z] = e

2µ
σ
+1 (e− 1)

Going then to the dimensional variable Y = σZ = σeX/σ, we at once have

E [Y ] = σe
µ
σ
+ 1

2 V [Y ] = σ2e
2µ
σ
+1 (e− 1)

while from the Proposition E.3 for the median we have

M [Y ] = σM [Z] = σe
µ
σ

In particular the relations (229) are accordingly changed into

E

[
σ ln

Y

σ

]
= E [X ] = σ ln

M [Y ]

σ
M

[
σe

X
σ

]
= M [Y ] = σe

E[X]
σ (230)

Remark that these results should be suitably adjusted when dealing with a Gaussian
process X(t) because its variance could possibly be time-dependent: in this case it
would be appropriate to find some other constant parameter to play the role of σ

We must remark moreover that, if face the problem of writing down some deter-
ministic evolution either as expectation, or as median of a process, it is possible to
consider several alternatives by taking for instance into account also the variances.
For example we found that the expectation of Y = σeX/σ

E [Y ] = σe
µ
σ
+ 1

2 (231)

is a function of the expectation µ and of the variance σ2 of the original normal
rv X : as a consequence, since for the processes discussed in the present paper,
both E [X(t)] and V [X(t)] are explicitly known, for our required evolutions we can
always resort to the expectations rather than to the medians

Of course the relations (229), (230) and (231) perfectly agree with (225) drawn
from the Proposition E.3 but for the fact that here, being X a Gaussian rv, we also
take advantage of the relation E [X ] = M [X ] which only holds for µ-symmetric
distributions as discussed at the beginning of this section: for example with X
arbitrarily distributed and Y = σeX/σ, we always have

M [Y ] = M
[
σeX/σ

]
= σe

M [X]
σ (232)

while (230) only holds for a Gaussian X
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