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Fast Pricing of Energy Derivatives with Mean-Reverting 
Jump-diffusion Processes
Piergiacomo Sabino a and Nicola Cufaro Petroni b

aQuantitative Risk Management, E.ON SE, Essen, Germany; bDipartimento di Matematica and TIRES, 
Università di Bari, INFN Sezione di Bari, Bari, Italy

ABSTRACT
Most energy and commodity markets exhibit mean-reversion and 
occasional distinctive price spikes, which result in demand for 
derivative products which protect the holder against high prices. 
To this end, in this paper we present a few fast and efficient 
methodologies for the exact simulation of the spot price dynamics 
modelled as the exponential of the sum of a Gaussian Ornstein- 
Uhlenbeck process and an independent pure jump process, where 
the latter one is driven by a compound Poisson process with 
(bilateral) exponentially distributed jumps. These methodologies 
are finally applied to the pricing of Asian options, gas and hydro 
storages and swing options under different combinations of jump- 
diffusion market models, and the apparent computational advan
tages of the proposed procedures are emphasized.
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1. Introduction and motivations

The mathematical modelling of the day-ahead price in commodity and energy markets is 
supposed to capture some peculiarities like mean-reversion, seasonality and jumps. 
A typical approach consists of resorting to price processes driven either by a standard 
Ornstein-Uhlenbeck (OU) process, or by a regime switching process. The current 
literature is very rich with model suggestions: Lucia and Schwartz (2002), for instance, 
propose a one-factor Gaussian- OU with application to the Nordic Power Exchange, 
whereas a two factors version can be found in Schwartz and Smith (2000) with an 
additional Brownian Motion (BM).

The extension to models based on OU processes driven by a Normal Inverse Gaussian 
process or by a Variance Gamma process can be found among others in Benth, Kallsen, 
and Meyer-Brandis (2007), Cummins, Kiely, and Murphy (2017, 2018) and Sabino 
(2020a). Finally, a third type of proposed market models are based on mean-reverting 
jump-diffusion OU processes as originally suggested in Cartea and Figueroa (2005). In 
this paper, we focus on this last type of models and in particular, we consider mean- 
reverting jump-diffusion OU processes with exponential-like jumps superposed to stan
dard Gaussian OU processes. A similar combination has been investigated also by other 
authors: for instance Deng (2000), Kjaer (2008), Hambly, Howison, and Kluge (2009b) 
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and Nomikos and Soldatos (2008), or even Benth and Pircalabu (2018) in the context of 
modelling wind power futures.

Having selected a market model driven by a mean-reverting jump-diffusion dynamics, 
it is quite common to use Monte Carlo methods to price derivative contracts. To this end, 
it is very important to design fast and efficient simulation procedures particularly for 
real-time pricing. Indeed, risk management and trading units have to deal with a large 
number of contracts whose prices and sensitivities have to be evaluated regularly and, of 
course, the computational time may become an issue. The simulation of the skeleton of 
a Gaussian OU process is standard and efficient, whereas the generation of the path of an 
OU process with exponential jumps deserves particular attention. The simulation of this 
latter process can be based on the process definition itself, for example using a modified 
version of Algorithm 6.2 page 174 in Cont and Tankov (2004). Although sometimes 
referred with different naming convention, a mean-reverting compound Poisson process 
with exponential jumps is known in the literature as Gamma- OU process (Γ-OU) 
because it can be proven that its marginal law is a gamma law (see Barndorff-Nielsen 
and Shephard, (2001)).Recently, two different approaches have been proposed to address 
the simulation of a Γ-OU process. Based on the decomposition of the OU process into 
simple components, Qu, Dassios, and Zhao (2019) propose an exact simulation proce
dure that has the advantage of avoiding the simulation of the jump times. On the other 
hand, Sabino and Cufaro Petroni (2020) have studied the distributional properties of the 
Γ-OU and the bilateral- Γ-OU process (biΓ-OU) and they have found the density and 
characteristic function in closed form. In particular, they have proved that such a law can 
be seen as a mixture of well-known laws giving, as a side-product, very fast and efficient 
simulation algorithms.

In the present paper, we apply the new and traditional algorithms and compare their 
computational performance in the context of the pricing of complex energy derivatives 
with Monte Carlo simulations. We consider Asian options, gas and hydro storages and 
swings, that normally require a high computational effort. We assume three types of 
market models via the superposition of a Gaussian OU process to three different 
combination of Γ-OU and biΓ-OU processes and provide the risk-neutral conditions. 
In addition, we give the formal proof that a few commonly used simulation schemes (see 
for instance Benth, Di Persio, and Lavagnini (2018)) are not always applicable to standard 
market conditions. The numerical experiments performed below show that the proposed 
algorithms are unbiased and outperform any other approaches, and therefore they can 
provide a remarkable advantage in terms of computational time which constitute the 
main contribution of this paper. In the worst case, they are thirty times faster for the 
pricing of Asian options and just 40% faster for storages and swings using a Monte Carlo 
based stochastic optimization. These results show that the procedures presented in the 
following sections are by far the most efficient and are therefore suitable for real-time 
pricing.

The paper is structured as follows: in Section 2 we introduce the three market models 
driven by a mean-reverting jump-diffusion dynamics that we will adopt for the pricing of 
the energy derivatives. Then Section 3 introduces the concept of Lévy -driven OU 
processes and specifies the algorithms available for the exact simulation of a Γ-OU or a 
biΓ-OU process, whereas Section 4 illustrates the extensive numerical experiments that 
have been performed: as mentioned, the pricing of Asian options, gas storages and swings 
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have been considered. Finally, Section 5 concludes the paper with an overview of future 
inquiries and possible further applications.

2. Market Models

It is well-known that from a financial standpoint the day-ahead prices exhibit 
seasonality, mean reversion and jumps, so that a realistic market model has to 
capture these features. Following Kjaer (2008) and Kluge (2006), we will therefore 
assume that the dynamics of the day-ahead (spot) price can be decomposed into 
three independent factors 

SðtÞ ¼ SseasonðtÞ � SdiffðtÞ � SjumpsðtÞ

¼ Fð0; tÞehðtÞþ
PD

d¼1
XdðtÞþ

PJ

j¼1
YjðtÞ
¼ Fð0; tÞehðtÞþHðtÞ (1) 

where XdðtÞ and YjðtÞ respectively represent diffusive and jumping OU processes, hðtÞ is 
a deterministic seasonal factor and Fð0; tÞ is the initial forward price with delivery t. 
Going then to the characteristic functions we find 

φHðu; tÞ ¼ φdiffðu; tÞ � φjumpsðu; tÞ ¼ E eiu HðtÞ
h i

¼
YD

d¼1
φXd
ðu; tÞ

YJ

j¼1
φYj
ðu; tÞ (2) 

φXd
ðu; tÞ ¼ E eiu XdðtÞ

h i
φYj
ðu; tÞ ¼ E eiu YjðtÞ

h i
;

whereas according to the risk-neutral arguments of the Lemma 3.1 in Hambly, Howison, 
and Kluge (2009a), we get the deterministic function hðtÞ consistent with forward curve 

hðtÞ ¼ � lnE eHðtÞ
h i

¼ � log φHð� i; tÞ: (3) 

Hereafter, however, we will consider just the following particular representation of spot 
prices with only one diffusing and jumping processes 

SðtÞ ¼ Fð0; tÞehðtÞþXðtÞþYðtÞ (4) 

where the diffusive part is the Gaussian OU process 

XðtÞ ¼ Xð0Þe� ρ t þ σ
ðt

0
e� ρðt� sÞdWðsÞ (5) 

log φdiffðu; tÞ ¼ iuXð0Þe� ρ t �
u2σ2

4ρ
1 � e� 2ρ t� �

: (6) 

where WðtÞ is a standard BM . We instead do not consider any additional BM as done in 
Schwartz and Smith (2000), but we assume that the process Yð�Þ follows one of the three 
dynamics below:

1. In the first case the jumping part is the OU process 
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YðtÞ ¼ Yð0Þe� k t þ
XNðtÞ

n¼1
e� kðt� τnÞJn ¼ Yð0Þe� k t þ ZðtÞ (7) 

where NðtÞ is a Poisson process with intensity λ and jump times τn; Jn, n ¼ 1; 2; . . .

are independent and identically distributed (iid) random variables (rv’s) following 
a double exponential law as defined in Kou (2002), namely a mixture (with mixing 
parameters p and q ¼ 1 � p) of a positive exponential rv U , E1ðβ1Þ and a negative 
exponential rv � D with D , E1ðβ2Þ, so that the probability density (pdf) and the 
characteristic function (chf) are 

fβ1;β2;pðxÞ ¼ pβ1e� β1x1x�0 þ ð1 � pÞβ2e β2x1x< 0 (8) 

φβ1;β2;p
ðvÞ ¼ p

β1
β1 � iv

þ ð1 � pÞ
β2

β2 þ iv
¼ pφuðvÞ þ ð1 � pÞφdðvÞ (9) 

In other words, in distribution, every jump is Jn¼
d Bn Un � ð1 � BnÞDn where Bn is 

a binomial rv with distribution BðpÞ. In addition, we always assume that Jn, n ¼
1; 2; . . . are independent from the process NðtÞ.
The process Yð�Þ apparently is a mean-reverting non-Gaussian OU process (see next 
section) with mean-reversion level k > 0, and – as shown in Sabino and Cufaro Petroni 
(2020) – its jumping part turns out to be the difference ZðtÞ ¼ Z1ðtÞ � Z2ðtÞ of two 
independent processes 

Z1ðtÞ ¼
XN1ðtÞ

n¼1
e� kðt� τnÞUn Z2ðtÞ ¼

XN2ðtÞ

n¼1
e� kðt� τnÞDn 

with the same parameter k, and N1ðtÞ;N2ðtÞ two independent Poisson processes, 
respectively, of intensities λ1 ¼ pλ and λ2 ¼ ð1 � pÞλ. As a consequence we find 

φjumpsðu; tÞ ¼ e� iuYð0Þe� k t
φ1ðu; tÞφ2ð� u; tÞ (10) 

where φ1ðu; tÞ and φ2ðu; tÞ respectively are the chf’s of Z1ðtÞ and Z2ðtÞ.
2. In the second case, our jumping OU process will be the difference YðtÞ ¼ Y1ðtÞ �

Y2ðtÞ with 

Y1ðtÞ ¼ Y1ð0Þe� k1 t þ
XN1ðtÞ

n¼1
e� k1ðt� τð1Þn ÞUn ¼ Y1ð0Þe� k1 t þ Z1ðtÞ (11) 

Y2ðtÞ ¼ Y2ð0Þe� k2 t þ
XN2ðtÞ

m¼1
e� k2ðt� τð2Þm ÞDm ¼ Y2ð0Þe� k2 t þ Z2ðtÞ (12) 

where N1ðtÞ and N2ðtÞ are two independent Poisson processes with intensities λ1 and 
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λ2, respectively and Un;Dm are independent rv’s with exponential laws E1ðβ1Þ and 
E1ðβ2Þ respectively.
3. Finally in the third case the jumps Jn of the process (7) will be distributed according 

to a centred Laplace law with parameter β, and therefore the jump process Zð�Þ can 
again be seen as the difference of two independent processes ZðtÞ ¼ Z1ðtÞ � Z2ðtÞ
as in the case 2, but with the difference that here Z1ðtÞ and Z2ðtÞ have the same 
parameter k and Un and Dm are independent rv’s with the same law E1ðβÞ.

While the simulation of a Gaussian OU process is standard and very fast, the 
stepping stone for the simulation of every jump process involved in the previous 
formulas is the generation of a rv distributed according to the law of ZðtÞ. 
Therefore, the overall computational effort will be deeply affected by that required 
to simulate these jump processes. To this end, the simulation procedure of the 
skeleton of the day-ahead price SðtÞ in (4) over a time grid t0; t1; . . . ; tM 
(Δtm ¼ tm � tm� 1 ; m ¼ 1; . . . ;M) consists of the steps illustrated in Algorithm 1, 
where we assume for simplicity Xð0Þ ¼ Yð0Þ ¼ 0. 

Algorithm 1

1: for m = 1, . . ., M do

2: hðtmÞ  �
σ2

4k 1 � e� 2ρ Δtmð Þ � log φjumpsðu; tmÞ

3: Generate a Gaussian x , N 0; σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e� 2ρ�tm

2ρ

q� �

4: Generate z1¼
d PN1ðtmÞ

n¼1 e� k1ðtm� τð1Þn ÞUn

5: Generate z2¼
d PN2ðtmÞ

,¼1 e� k2ðtm� τð2Þ
,
ÞDn

6: XðtmÞ  Xðtm� 1Þe� ρΔtm þ x

7: YiðtmÞ  Yiðtm� 1Þe� kiΔtm þ ziI = 1, 2.

8: SðtmÞ  ehðtmÞþXðtmÞþY1ðtmÞ� Y2ðtmÞ

9: end for

Although sometimes the mean-reverting jump processes with exponential jumps are 
mentioned under different names in the financial literature (e.g., MRJD in Kjaer (2008)), 
they are generally known as Gamma-OU processes (Γ-OU), because its stationary law is 
a gamma distribution. On the other hand, the processes Yð�Þ defined above are in fact 
bilateral-gamma- OU process – denoted here as biΓ-OU – because their stationary laws 
are bilateral gamma distributions, namely differences of two independent gamma laws 
(for details see Sabino and Cufaro Petroni (2020) and Küchler and Tappe (2008)). The 
exact simulation of the skeleton of Yð�Þ depends therefore on a fast generation of ZðtÞ, 
and in the following section we consider three possible alternative simulation algorithms 
available in the literature.
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3. OU Processes with Compound Poisson Noise

Take a one-dimensional Lévy process Lð�Þ, and the OU process Yð�Þ solution of the 
stochastic differential equation (SDE) 

dYðtÞ ¼ � kYðtÞdt þ dLðtÞ Yð0Þ ¼ Y0 P � a:s: k > 0 (13) 

that is 

YðtÞ ¼ Y0 e� kt þ ZðtÞ ZðtÞ ¼
ðt

0
e� k ðt� sÞdLðsÞ: (14) 

The process Lð�Þ will be called hereafter background driving Lévy process (BDLP). 
Following a Barndorff-Nielsen and Shephard (2001) convention, if �D is the law of the 
stationary solution of (13) we will say that Yð�Þ is a �D- OU process; when on the other 
hand the rv Lð1Þ of the BDLP is distributed according to the infinitely divisible (id) law D 
we will say that Xð�Þ is an OU-D process. A well-known result (see for instance Cont and 
Tankov (2004) or Sato (1999)) states that a distribution �D can be the stationary law of 
a given OU-D process if and only if �D is self-decomposable (sd, see more below). It is also 
possible to see (see also Barndorff-Nielsen, Jensen, and Sørensen (1998)) that the solution 
process (13) is stationary if and only if its chf φYðu; tÞ is constant in time and steadily 
coincides with the chf φYðuÞ of the (sd) invariant initial distribution that in its turn is 
decomposable according to 

φYðuÞ ¼ φYðue� k tÞφZðu; tÞ

where, at every given t, φZðu; tÞ denotes the chf of the rv ZðtÞ in (13) .
We recall that a law with pdf f ðxÞ and chf φðuÞ is said to be sd (see Sato (1999) or 

Cufaro Petroni (2008)) when for every 0< a< 1 we can find another law with pdf gaðxÞ
and chf χaðuÞ such that 

φðuÞ ¼ φðauÞχaðuÞ: (15) 

We will accordingly say that a rv X is sd when its law is sd: looking at the definition this 
means that for every 0< a< 1 we can always find two independent rv’s, Y (with the same 
law of X) and Za (here called a-remainder, with pdf gaðxÞ and chf χaðuÞ) such that 

X¼d aY þ Za: (16) 

As also observed in Sabino (2020a), this apparently means that the law of ZðtÞ in 
a stationary solution (14) in nothing else than the a-remainder of its sd law provided 
that a ¼ e� k t . Suppose now that the BDLP Lð�Þ in (13) is the compound Poisson process 

LðtÞ ¼
XNðtÞ

n¼0
Jn J0 ¼ 0 P � a:s: ;

with intensity λ of the Poisson process NðtÞ, and iid jumps Jn,E1ðβÞ: then the solution 
(14) becomes 

6 P. SABINO AND N. CUFARO PETRONI



YðtÞ ¼ Y0e� k t þ ZðtÞ; ZðtÞ ¼
XNðtÞ

n¼0
Jne� k ðt� τnÞ:

It is well-known (see for instance Schoutens (2003), 68) that the stationary law of this 
process is a gamma distribution, and therefore our OU process actually is a Γ-OU (k; λ; β) 
with all its parameters put in evidence. Extending this naming convention, it is also easy 
to see that the jump components of the three market models of Section 2 will simply be 
biΓ-OU processes because it can be shown (see Sabino and Cufaro Petroni (2020)) that 
their stationary laws are a bilateral gamma distributions, and in particular in the third 
market model we will have a symmetric biΓ-OU process.

All the observations above apparently point to the fact that in every jump process for 
our market models the law of ZðtÞ turns out to coincide with that of the a-remainder Za 

of the stationary law of the OU process Yð�Þ, provided that a ¼ e� k t . The said law, will 
therefore be instrumental for the derivation of efficient algorithms for the exact simula
tion of all the types of Yð�Þ introduced in the section 2 .

3.1. Positive Jumps: Γ-OU Processes

A straightforward way to sample the rv ZðtÞ to generate the skeleton of a Γ-OU process 
with parameters k; λ; β (see the step 4 in Algorithm 1) could simply consist in adapting 
Algorithm 6.2 page 174 in Cont and Tankov (2004) as delineated in the following 
Algorithm 2. 

Algorithm 2

1: Generate N,PðλΔtmÞ ⊳ Poisson rv with intensity λ∆tm

2: Generate N iid uniform rv’s u ¼ ðu1; . . . ; uNÞ, Uð½0; 1�NÞ.

3: Sort u, (u(Bardou, Bouthemy, and Pagés 2009) < · · · < u[N]),

4: τn ← ∆tmu[n], n = 1, . . . N,

5: Generate N iid Jn,E1ðβÞ; n ¼ 1; . . . N, ⊳ Exponential rv with rate β

6: z  
PN

n¼1 e� kðΔtm� τnÞJn

The previous procedure, however, does not rely directly on the statistical properties of 
the process Zð�Þ, but it is rather based on its definition. Starting instead from a different 
standpoint, new simulation algorithms that are fully based on the distributional proper
ties of the Γ-OU process have been recently proposed in Sabino and Cufaro Petroni 
(2020): they rely in fact on the explicit representation of the transition law of a Γ-OU 
process. In particular, it has been shown that the law of ZðtÞ for a Γ-OU process with 
parameters ðk; λ; βÞ coincides with that of the a-remainder Za of a gamma law Γðα; βÞ
with scale parameter α ¼ λ=k and rate parameter β, provided that a ¼ e� k t .

We recall that the laws of the gamma family Γðα; βÞ (α > 0; β > 0) have the following pdf 
and chf 
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fα;βðxÞ ¼
β

ΓðαÞ
ðβxÞα� 1e� βx x > 0 (17) 

φα;βðuÞ ¼
β

β � iu

� �α

: (18) 

In particular Γðn; βÞ, with α ¼ n ¼ 1; 2; . . . a natural number, are the Erlang laws EnðβÞ, 
while Γð1; βÞ is the usual exponential law E1ðβÞ. In addition, the chf of the a-remainder Za 
of such a gamma law is 

χaðu; α; βÞ ¼
β � iau
β � iu

� �α

:

If now S is a rv distributed according to the negative binomial (a.k.a. Pólya) distribution, 
hereafter denoted �Bðα; pÞ ; α > 0; 0< p< 1, namely 

P S ¼ nf g ¼
αþ n � 1

n

� �

ð1 � pÞαpn n ¼ 0; 1; . . .

it has been shown in Sabino and Cufaro Petroni (2020) that the said chf of Za is 
representable as 

χaðu; α; βÞ ¼
β � iau
β � iu

� �α

¼
X1

n¼0

αþ n � 1
n

� �

aαð1 � aÞn
β

β � iau

� �n

(19) 

The distribution of Za turns out therefore to be an infinite, �Bðα; 1 � aÞ-weighted mixture 
of Erlang laws Enð

β=aÞ, namely the Erlang law ESð
β=aÞ with a Pólya random index S of 

the following sum of iid exponential rv’s 

XS

j¼0
Xj S, �Bðα; 1 � aÞ Xj , E1ð

β=aÞ X0 ¼ 0; P � a:s:

The previous remarks entail that the chf of ZðtÞ in a Γ-OU ðk; λ; βÞ process is 

φZðu; tÞ ¼
β � iue� kt

β � iu

� �λ
k

(20) 

so that the simulation of its innovations z can be carried on according to Algorithm 3. 

Algorithm 3

1: α ← λ/k, a ← e−k∆tm

2: b B , �Bðα; 1 � aÞ ⊳ Generate a Pólya (α, 1 − a) rv

3: z ← Eb (β/a);                                                ⊳ Generate an Erlang rv with rate β/a

A different method to simulate a Γ-OU has been recently proposed in Qu, Dassios, and 
Zhao (2019) and it is based on the following alternative representation of the chf of ZðtÞ
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φZðu; tÞ ¼ eλt φ~JðuÞ� 1ð Þ φ~JðuÞ ¼
ð1

0

βektv

βektv � iu
dv (21) 

that coincides with the chf of a compound Poisson rv with parameter λt and exponen

tially distributed jumps of random rate ~β¼d βektU (here U is uniform in ½0; 1�). This third 
procedure is summarized in Algorithm 4. Algorithms 3 and 4 avoid simulating the jump 
times of the Poisson process, while on the other hand the Algorithms 2 and 4 require 
similar operations but additional steps w.r.t. to the Algorithm 3. 

Algorithm 4

1: Generate N,PðλΔtmÞ,                                           ⊲ Poisson rv with intensity λΔtm

2: Generate N iid uniform rv’s u ¼ ðu1; . . . ; uNÞ, Uð½0; 1�NÞ.

3: ~βn  βekΔtmun ; n ¼ 1; . . . ;N.

4: Generate N iid ~Jn,E1ð~βnÞ; n ¼ 1; . . . ;N,       ⊲ Exponential rv’s with random rate ~βi

5: z  
PN

i¼n
~Jn.

Several other alternative schemes based on some numerical approximation are of course 
conceivable, but they do not appear to be advantageous. Taking for instance – as it is 
often done – an equally-spaced time grid, one might use an Euler discretization with the 
assumption that only one jump can occur within each time step with probability λΔt so 
that, if Bmð1Þ,Bð1; λ�tÞ are m independent Bernoulli rv’s, it is 

YðtmÞ ¼ Yðtm� 1Þð1 � kΔtÞ þ Bmð1ÞJm; m ¼ 1; . . . M; (22) 

Setting then for simplicity b ¼ 1 � λΔt, the chf of Bmð1ÞYm is 

φmðu; tÞ ¼ bþ β
1 � b
β � iu

¼
β � ibu
β � iu

¼
β � ið1 � λΔtÞu

β � iu
:

This chf however amounts to a first order approximation of (20) only when k ¼ λ, while 
on the other hand, a reduction of the time step would by no means provide an improve
ment. As a consequence every calibration, or pricing of derivatives relying on the 
simulation of an Γ-OU with the assumption that only one jump can occur per time 
step would lead to wrong and biased results.

Following instead Benth, Di Persio, and Lavagnini (2018) in the context of Normal 
Inverse Gaussian driven OU processes, a further scheme can be developed that approx
imates in law ZðΔtÞ of (14) by means of e� kΔtLðΔtÞ so that the discretized equation of the 
process becomes 

YðtmÞ ¼ Yðtm� 1Þe� kΔt þ e� kΔt
XNðΔtÞ

n¼0
Jn; m ¼ 1; . . . M (23) 

This last approximation however is appropriate under the condition required to approx
imate in law a Pólya rv S, �Bð λ=k; 1 � e� kΔtÞ with the Poisson rv NðΔtÞ,PðλΔtÞ, namely 
in the limit k! 0: 
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P S ¼ nf g ¼
Γðλ=k þ nÞ

Γðnþ 1ÞΓðλ=kÞ
e� kΔt� � λ=k 1 � e� kΔt� �n 

¼
e� λΔt

n!

λ
k

λ
k
þ 1

� �

. . .
λ
k
þ n � 1

� �

ðkΔt þ Oðk2ÞÞ
n (24) 

¼
e� λΔt

n!
ðλΔt þ OðkÞÞn 1þ

k
λ

� �

. . . 1þ
ðn � 1Þk

λ

� �

!
e� λΔt

n!
ðλΔtÞn 

and therefore we can conclude that the proposed approximation is good only for λ� k, 
an assumption that can be rather restrictive in many financial contexts.

3.2. Time-Dependent Poisson Intensity

The jumps are often concentrated in clusters: for instance, energy markets are very seasonal 
and jumps more often occur either during a period of high demand or in a period of cold 
spell. A more realistic approach could then be to consider a non-homogeneous Poisson 

process with a time-dependent intensity λðtÞ and ΛðtÞ ¼
ðt

0
λðsÞds instead of the usual 

linear behaviour. In this case, the new Poisson process and its relative compound version 
have independent, but non-stationary increments. The modelling then becomes more 
challenging and somehow depends on the choice of the specific intensity function. In 
many cases, however, one could consider a time grid t0; t1; . . . ; tM fine enough that the non- 
homogeneous Poisson process shows some step-wise intensity, λðsÞ ¼ λm1s2Δtm . Since the 
non-homogeneous Poisson has independent increments, it behaves at time t as the sum of 
different independent Poisson processes each with a constant intensity. The main conse
quence of this simple assumption is that the generation of z at each time step m in 
Algorithm 1 – in combination to no matter which methodology illustrated in Subsection 
3.1 – is performed setting a different intensity λm for m ¼ 1; . . . M.

3.3. Positive and Negative Jumps: biΓ-OU Processes

The three market models presented in Section 2 exhibit positive and negative jumps that 
are modelled as biΓ-OU processes. As illustrated in Algorithm 1, the generation of the 
jump component is simply obtained by running twice one of the algorithms discussed in 
Subsection 3.1 . On the other hand, as shown in Sabino and Cufaro Petroni (2020), one 
can also implement simulation procedures customized for the process Zð�Þ with Laplace 
jumps. Essentially, the steps 4 and 5 of Algorithm 1 should just be packed together into 
one because now i ¼ 1, and the step 5 in Algorithm 2 should be accordingly reformu
lated: we omit the details for short. Since on the other hand the chf of ZðtÞ now is 

φZðu; tÞ ¼
β2 � u2a2

β2 � u2

� � λ=2k

a ¼ e� kt (25) 
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the distribution of the process at time t coincides with that of the a-remainder Za of 
a symmetrical bΓð λ=2k; βÞ and Algorithm 3 must be accordingly adapted to the case of 
a symmetric biΓ-OU process (we skip again the unnecessary explicit reformulation).

Recalling finally (see Sabino and Cufaro Petroni (2020)) that the chf of ZðtÞ in the case 
of a biΓ-OU can also be rewritten as 

φZðu; tÞ ¼ eλt φ~LðuÞ� 1ð Þ (26) 

where 

φ~LðuÞ ¼
ð1

0

λ2
J e2ktv

λ2
J e2ktv þ u2

dv (27) 

we also observe that the right-hand side in (27) is the chf of compound Poisson rv with 
parameter λt whose jumps are independent copies ~Jn distributed according to a uniform 
mixture of centred Laplace laws with random parameter βektU with U,Uð½0; 1�Þ. This 
result leads to the adaptation of the methodology of Qu, Dassios, and Zhao (2019) to the 
case of a symmetric biΓ-OU as specified in the Algorithm 5 

Algorithm 5

1: Generate N,PðλΔtmÞ,                                            ⊳Poisson rv with intensity λΔtm

2: Generate N iid uniform rv’s u ¼ ðu1; . . . ; uNÞ, Uð½0; 1�NÞ.

3: βðrÞn  βekΔtmun ; n ¼ 1; . . . ;N; r 2 fu; dg.

4: Generate N iid Un,E1ðβðuÞn Þ; i ¼ 1; . . . ; n,                       ⊳ Generate N independent

exponential rv’s with random rate βðdÞi

5: Generate N iid Dn,E1ðβðdÞn Þ; n ¼ 1; . . . ;N,                     ⊳ Generate N independent

exponential rv’s with random rate βðdÞn

6: z  
PN

n¼1ðUn � DnÞ

4. Numerical Experiments

We compare the computational performance of all the algorithms detailed in Section 3 in 
combination with Algorithm 1 for the simulation of the path trajectory of each market 
model introduced in Section 2. We illustrate their differences by pricing energy contracts 
namely, Asian options, swings and storages with Monte Carlo (MC) methods. The 
implementation of the pricing of such contracts with MC methods needs to be unbiased 
and fast especially if it is meant for real-time calculations.

In our numerical experiments, we have decided to assign different mean-reversion 
rates to the jump and to the diffusive components to better capture the spikes. For 
example, with respect to the parameter settings used in Deng (2000) and Kjaer (2008), the 
mean-reversion rates of our jump components are larger than those of their diffusion 
counterparts. The parameter combination in Kjaer (2008) assumes indeed that the 
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process Hð�Þ has just one – and small – mean-reversion rate with a high λ, so that λ=k ’ 7 
and one could implement the simplified version of Algorithm 3 based on the binomial 
mixture of Erlang laws as explained in Sabino and Cufaro Petroni (2020).

All the simulation experiments in the present paper have been conducted using 
MATLAB R2019a with a 64-bit Intel Core i5-6300 U CPU, 8GB. As an additional 
validation, the comparisons of the simulation computational times have also been 
performed with R and Python leading to the same conclusions.

4.1. Numerical Experiments: Asian Options

The first numerical experiment that we have conducted refers to the pricing of an Asian 
option with European exercise style using MC under the assumption that the jump 
process Yð�Þ of the market model (4) is given by (7) (case 1). In virtue of the Lemma 3.1 in 
Hambly, Howison, and Kluge (2009a), risk-neutral conditions are met if 

hðtÞ ¼ �
σ2

4ρ
1 � e� 2ρ t� �

�
pλ
k

log
β1 � e� kt

β1 � 1

� �

�
ð1 � pÞλ

k
log

β2 � e� kt

β2 � 1

� �

:

Recalling that the payoff of such an option at maturity T is 

AðTÞ ¼
PM

m¼1 SðtmÞ

M
� K

 !þ

;

we consider an at-the-money Asian option K ¼ S0 ¼ 22 having one year maturity 
(T ¼ 1) with daily settlement (M ¼ 360) and with realistic market parameters shown 
in Table 1 with a flat forward curve.

MC methods are known to be slower than FFT techniques. To this end, one could, for 
instance, base and benchmark the pricing of discrete Asian options on the Fourier cosine 
expansion method illustrated in see Zhang and Oosterlee (2013a). In alternative, one 
could compute optimal bounds relying on the methods of Fusai and Kyriakou (2016) or 
of Kyriakou et al. (2017). Nevertheless, the MC approach also provides a view on the 
quantiles of the distribution of the potential cash-flows of derivative contracts giving 
a precious information to risk managers or to trading units.

Table 2 shows the estimated prices per number of simulations NS, the standard errors 
(SE), defined as the sample standard deviations, the percentage errors (%err), defined as 

%err ¼
benchmark value � estimated value

benchmark value 

and the total CPU times in seconds using the different methodologies for the simulation 
of the process Yð�Þ. We select the MC estimated price with NS¼ 107 simulations obtained 
using traditional Algorithm 2 as the benchmark.

As expected, in terms of convergence and SE’s, all the approaches are equally perform
ing while instead, the CPU times are radically different. Algorithm 2 and Algorithm 4 

Table 1. Parameters for spot (day-ahead) dynamics (case 1).
S0 ρ σ k p λ2 β1 β2

22 67 0:25 50 0:6 20 10 20
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have similar computational effort; therefore, their CPU times are comparable as observed 
in Figure 1(b). From Table 2 it is evident that our methodology provides a remarkable 
computational advantage.

Indeed, what requires minutes for Algorithms 2 and 4 only requires seconds for 
Algorithm 3. For example with NS ¼ 5� 105 simulations, with our computer, the pricing 
of the Asian option above, is accomplished in almost 2 min whereas, it takes almost 1 
h with the other alternatives. Figure 1(b) clearly shows that, in the worst case, our 
simulation procedure is at least thirty times faster than any other alternative being then 
suitable for real-time applications.

4.2. Numerical Experiments: Gas and Hydro Storages

Denote by CðtÞ the volume of a (virtual) gas storage or a hydro pump storage (VPS) or 
virtual hydro plant (VHP) at time t with Cmin � CðtÞ � Cmax.

The holder of such an energy asset is faced with a timing problem that consists in 
deciding when to inject, to withdraw or to do-nothing.

Denoting Jðt; x; cÞ the value of such an energy facility at time t given SðtÞ ¼ x, 
CðtÞ ¼ c, one can write: 

Jðt; x; cÞ ¼ sup
u2U

E

ðT

t
ϕu SðsÞð Þdsþ q SðTÞ;CðTÞð ÞjSðtÞ ¼ x;CðtÞ ¼ c

" #

; (28) 

where U denotes the set of the admissible strategies, uðtÞ 2 f� 1; 0; 1g is the regime at 
time t such that 

ϕ� 1ðSðtÞÞ ¼ � SðtÞ � Kinain; injection
ϕ0ðSðtÞÞ ¼ � KN ; donothing
ϕ1ðSðtÞÞ ¼ SðtÞ � Koutaw withdrawal

8
<

:
; (29) 

ain and aw are the injection (or pump for VPS’s) and withdrawal rates, Kin, Kout and KN , 
respectively, represent the costs of injection, do-nothing and withdrawal, and q takes into 
account the possibility of final penalties.

Figure 1. Asian options.
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This problem is similar to the choice of the trading strategy of an American option, 
although in this case, the decision is more challenging because of the several volumetric 
constrains and the possibility of multiple actions. For example, VHP’s generally have an 
exogenous inflow that is either described in the contract or is dependent on the nature of 
the asset and there is no pump flexibility. This particular feature prevents the do-nothing 
action because one is forced to inject. VPS’s might also have an external inflow, but that is 
not always the case.

Based on the Bellman recurrence equation (see Bertsekas (2005)), one can perform the 
following backward recursion for m ¼ 1; . . . ;M: 

Jðtm; x; cÞ ¼ sup
k2f� 1;0;1g

ϕkSðtmÞ þ E J tmþ1; Sðtmþ1Þ;~ckð ÞjSðtmÞ ¼ x;CðtmÞ ¼ c½ �
� �

(30) 

where 

~c� 1 ¼ minðcþ ain;CmaxÞ

~c0 ¼ c
~c1 ¼ minðc � aw;CminÞ:

8
<

:
(31) 

Several approaches may be adopted to solve the recursion above: for instance, one may 
adapt the method proposed by Ben-Ameur et al. (2007) or use the quantization method 
as explained in Bardou, Bouthemy, and Pagés (2009), or even rely on Fourier techniques 
described for instance in Jaimungal and Surkov (2011). In our numerical example we 
consider the modified Least-Squares Monte Carlo (LSMC) method of Boogert and de 
Jong (2008, 2011) for gas storages. In contrast to the original version introduced in 
Longstaff and Schwartz (2001) in the context of American options, this modified 
approach complies with the fact that storages have volumetric restrictions, can have 
positive and negative payoffs and that the holder must decide among multiple actions at 
all moment of time (see Boogert and de Jong (2008, 2011) for details). The backward 
recursion is thus obtained by defining a finite grid of G steps for the admissible capacities 
c of the plant, c 2 fCmin ¼ c1; . . . ;Cmax ¼ cGg, and then by approximating the continua
tion value per volume step g ¼ 1; . . . ;G and m ¼ 1; . . . ;M with a linear regression 

E J tmþ1; Sðtmþ1Þ;~ckð ÞjSðtmÞ;CðtmÞ ¼ cg
� �

’ a0 þ a1SðtmÞ þ . . . ;þaBSBðtmÞ:

In our experiments, we consider an equally-spaced volume grid with G ¼ 100 and use 
simple power polynomials with B ¼ 3, but the regression may be performed on 
a different set of basis functions as well (see Boogert and de Jong (2011) for 
a comparison with other basis functions).

We focus then on the LSMC methodology and perform a few numerical experiments 
selecting the three-factors spot model with the jump component covered by the second 
case in Section 2 because we want to capture asymmetric jumps (we set Hð0Þ ¼ 0Þ: in this 
case, because of (3) and (20) for β1; β2 > 1 it results 

hðtÞ ¼ �
σ2

4ρ
1 � e� 2ρ t� �

�
λ1

k1
log

β1 � e� k1t

β1 � 1

� �

�
λ2

k2
log

β2 � e� k2t

β2 � 1

� �

:

Going back to the initial problem, without loss of generality we consider gas storages 
only, indeed, apart from a potential hourly stochastic optimization, the pricing technique 
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for VHP or VPS is practically the same. We assume that the units of Cð0Þ;CðTÞ and Cmax 
are in MWh, those of the injection and withdrawal rates are in MWh/day, whereas S0 can 
be taken in €/MWh; in addition we suppose a flat forward curve. The remaining model 
parameters are shown in Table 3 and can be considered realistic.

Finally, we consider a one-year (M ¼ 360) fast-churn storage with the parameters 
shown in Table 4 such that 20 days are required to fill or empty the storage as shown in 
Figure 2(a).

In line with that observed for the pricing of Asian options, Table 5 and Figure 3(a) 
show that the three types of implementation apparently return comparable gas storage 
values. Moreover, defining the benchmark as the MC estimated price with Algorithm 2 
with NS¼ 106 simulations, one can observe that all approaches are equally convergent 
with an acceptable error already with NS ¼ 2� 104.

On the other hand, the ratio of total CPU times (CPUTOT in Figure 3(b)) is not as 
extreme compared to the Asian option case. Algorithm 3 is ‘only’ 40% faster, in the worst 
case, compared to the other two solutions. The reason of this apparent different conclu
sion compared to the previous section is that the pricing procedure consists of two steps: 
the simulation of the price trajectory and the stochastic optimization, the latter one being 
the more computationally intensive. To this end, Table 5 also displays the CPU times 
required for the path simulation only (CPUPATH) where one can observe that 
Algorithm 3 is once again tens of times faster. Using Algorithms 2 and 4 the path 
generation step has a relevant impact on the total time, whereas using our approach it 
is as if the overall cost coincides with that required by the stochastic optimization. This 

Table 3. Parameters for spot (day-ahead) dynamics (case 2).
S0 ρ σ k1 k2 λ1 λ2 β1 β2

22 67 0:25 50 40 20 20 10 20

Table 4. Fast storage parameters.
Cð0Þ CðTÞ ain aw Cmax

0 0 1 1 20

Figure 2. Gas storages.
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fact provides a computational advantage when one needs to calculate the sensitivities of 
the storage because a high number of simulations is required.

We finally remark that all the approaches rely on the sequential simulation of the price 
trajectory forward in time. In combination with LSMC methods, this is not the optimal 
approach because the entire set of trajectories and simulations are stored in memory with 

Table 5. Storage evaluation: prices and computational times in seconds. CPUTOT represents the total 
time, whereas CPUPATH is time required by the path-generation only.

Algorithm 3 Algorithm 2 Algorithm 4

NS Price CPUTOT CPUPATH Price CPUTOT CPUPATH Price CPUTOT CPUPATH

103 282:7 8:5 0:3 282:9 15:3 6:03 281:3 16:7 7:4
104 285:6 136:3 1:8 286:7 186:6 57:09 285:8 198:7 69:2
2� 104 287:7 237:2 3:3 287:2 357:1 113:85 287:0 381:3 138:1
5� 104 287:4 674:7 8:3 286:8 1002:1 290:34 286:8 1063:7 351:9
105 287:5 1197:0 17:9 287:0 1818:3 582:05 286:9 1936:5 700:3

Figure 3. Gas storage results.

Figure 4. Market model.
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a risk of memory allocation issues. For instance, Pellegrino and Sabino (2015) and Sabino 
(2020b) have shown that the backward simulation is preferable with LSMC. 
Unfortunately, although we know the law of the standard Gaussian-OU bridge, we do 
not know the law of the Γ-OU bridge which will be one of the topics of our future studies.

4.3. Numerical Experiments: Swings

A swing option is a type of contract used by investors in energy markets that lets the option 
holder buy a predetermined quantity of energy at a predetermined price (strike), while 
retaining a certain degree of flexibility in both the amount purchased and the price paid.

We consider a 120-120 swing option having a one year maturity and M ¼ 360 with the 
specifications of Table 7. Such a contract can also be seen as a simplified gas storage 
where ain ¼ 0, KN ¼ 0 and Kw is the strike of the contract, therefore we rely on the LSMC 
method illustrated before by plugging Cð0Þ ¼ 120, CðTÞ ¼ 0, ain ¼ 0, aw ¼ 1, Cmax ¼

120 into ((28)) with an injection cost equal to the strike (see Hambly, Howison, and 
Kluge (2009a) for an application of the LSMC method to the pricing of swing options). In 
alternative, one can also use the tree method of Jaillet, Ronn, and Tompaidis (2004) or the 
Fourier cosine expansion in Zhang and Oosterlee (2013b) taking advantage of the explicit 
form of the chf of the process.

In this last example, we now choose the third market model in Section 2 that consists in 
a two-factors model with one Gaussian OU diffusion and one symmetric biΓ-OU process – 
a compound Poisson with Laplace jumps– where once more we set Hð0Þ ¼ 0. We also 
consider a step-wise daily approximation of the following time-dependent intensity 

λðtÞ ¼
2θ

1þ jsin πωðt � τÞð Þj
(32) 

so that for m ¼ 1; . . . ;M and β > 1 we have 

hðtmÞ ¼
σ2

4ρ
1 � e� 2ρ tm
� �

�
λm

2k
log

β2 � e� 2ktm

β2 � 1

� �

with the parameters of Table 6; we also consider a flat forward curve. The value of θ is selected 
such that the average number of jumps per year is about 40 as in the storage example.

Due to the fact that jump component has now symmetric Laplace jumps, the simula
tion of the skeleton of Yð�Þ can be accomplished adapting Algorithms 2, 3 to the case of 

Table 6. Parameters for spot (day–ahead) dynamics (case 3).
S0 ρ σ k θ ω τ β

22 67 0:25 50 32 2 0:25 20

Table 7. Parameters of 120-120 take-or-pay swing.
ACQmin ACQmax DCQmin DCQmax MðdaysÞ

120 120 1 1 360
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a symmetric biΓ-OU process or using Algorithm 5. The time-dependent intensity func
tion and a sample trajectory of the price are shown in Figure 4.

The conclusions that we can derive from the numerical experiments are very much in 
line with what is observed for the gas storages. We also define the benchmark as the MC 
estimated price with Algorithm 2 with NS¼ 106 simulations. As expected, the estimated 
values of the swing option obtained with the three types of implementation are similar 
and setting 2� 104 is already sufficient to achieve a small error as visible in Figure 5(a).

Table 8 and Figure 5(b) show that the total CPU times (CPUTOT in Table 8) using 
Algorithm 3 are far lower that those required by the other solutions resulting in 
a competitive advantage of about 40% (in the worst case). This factor becomes even 
higher if one focuses on the time required by the path-generation (CPUPATH in Table 8).

The contribution of the stochastic optimization step to the total cost is again of about 
75% using Algorithm 2 or Algorithm 5, while instead, with our Algorithm 3, the impact 
of the path generation step becomes almost negligible. We can therefore conclude that 
Algorithm 3 is the preferable solution for the simulation of the jump component in the 
market model (4).

5. Conclusions and Future Inquiries

In this paper we have considered the problem of pricing complex energy derivatives with 
Monte Carlo simulations using mean-reverting jump-diffusion market models. The 

Table 8. Swing evaluation: prices and computational times in seconds. CPUTOT represents the total 
time, whereas CPUPATH is time required by the path-generation only.

Algorithm 3 Algorithm 2 Algorithm 5

NS Price CPUTOT CPUPATH Price CPUTOT CPUPATH Price CPUTOT CPUPATH

103 118:0 7:2 0:2 117:2 12:3 5:32 120:2 13:6 5:3
104 117:6 137:2 1:2 117:1 181:8 50:45 118:7 193:9 50:4
2� 104 117:9 237:4 2:4 117:5 335:9 102:04 118:4 360:1 102:0
5� 104 118:0 625:4 5:7 117:9 849:2 257:82 118:5 910:8 257:8
105 118:0 1147:2 11:7 117:6 1603:5 519:85 118:2 1721:7 519:8

Figure 5. Swings.

APPLIED MATHEMATICAL FINANCE 19



jump component that we have chosen is a compound Poisson process with exponentially 
or bilateral exponentially distributed jumps known in the literature as Γ-OU process or 
biΓ-OU process, respectively. Although, this is a simple and standard approach, the 
simulation of the price trajectories may soon become very computational expensive, 
especially for the pricing of complex derivative contracts. Indeed, the generation of 
skeleton of the jump process has a relevant impact on the total computational cost.

Based on our results in Sabino and Cufaro Petroni (2020), we have designed new and fast 
algorithms for the simulation of the spot prices that potentially could be used for real-time 
pricing. In addition, in contrast to some other simulation schemes based on numerical 
approximations, our approach is applicable with parameters reflecting any market condition.

We have illustrated the applications of our findings in the context of the pricing of Asian 
options with standard Monte Carlo and gas storages and swings adopting the Least-Squares 
Monte Carlo method introduced in Boogert and de Jong (2008). The total computational 
effort depends on the cost of the path simulation and on that of the stochastic optimization 
(this last step is not influenced by the particular simulation algorithm).

We have conducted extensive Monte Carlo based simulation experiments and com
pared the computational performance of our proposal to the traditional approach of 
Cont and Tankov (2004) and a recent methodology described by Qu, Dassios, and Zhao 
(2019). Our numerical experiments have shown that our solution outperforms any other 
alternative because it cuts the simulation time down by a factor larger than forty in the 
case of Asian options and to a factor of forty percent for the gas storages and swings. In 
contrast to the other Monte Carlo-based approaches, the numerical tests suggest that our 
simulation methodology is suitable for real-time pricing.

In a primarily economic and financial perspective, future studies could cover the 
extension to a multidimensional setting with correlated Poisson processes as those 
introduced for instance in Lindskog and McNeil (2003) or in Cufaro Petroni and 
Sabino (2017, 2020), or could investigate the application of other Lévy -driven Ornstein- 
Uhlebeck processes to the modelling of price dynamics, for instance, using tempered 
stable and CGMY processes of Ornstein-Uhlenbeck type and relying on the results of 
Petroni and Sabino (2020).

A last topic deserving further investigation is the enhancement of the computational 
speed of the Least-Squares Monte Carlo using backward simulations generalizing the 
results of Pellegrino and Sabino (2015) and Sabino (2020b) to Γ-OU and biΓ-OU 
processes.
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