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The falling pencil:

a Divertimento in four movements
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Abstract

The dynamics of a simple pencil with a tip laid on a rough table and set free to

fall under the action of gravity is scrutinized as a pedagogic case study. The

full inquiry is anticipated by a review of three other simplified movements

foreshadowing its main features. A few exact and general results about the

sliding angles and the critical static coefficient of friction are established
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1 Prelude

When he was a beginner in his physics studies the author of these lines was not very
adroit in solving exercises. That notwithstanding he managed to pass his exams and
he subsequently acquired the usual skills – and even some zest – in designing and
answering problems: this was of course also a result of his first acquaintance with
the teaching. In those years he posed to himself some seemingly simple questions
that he could not immediately answer and that he did not happen to find discussed
on his handbooks; but then he dropped them and went along his way without caring
too much, even if every now and again they popped up in his head. He remembers
in particular asking himself what exactly happens to a simple pencil with a tip laid
on a table and set free to fall under the action of gravity: would the tip on the
table stay put at its initial position, or will it begin to slide, and when? And what
is its subsequent movement? The author didn’t spend in fact too much effort on
that, and he eventually gave up, but for some unrelated reason this query resurfaced
recently in his thoughts and now – being today retired – he decided to devote some
time in finding an elementary, but satisfactory answer: a pursuit prompted by sheer
curiosity and to him comparable to a Divertimento that hopefully could also be of
some interest for students and scholars

∗cufaro@ba.infn.it
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In order to tackle this case study in a pedagogic style the discussion has been
articulated in four sections corresponding to different possible movements of growing
difficulty: in the first one (Section 2) the pencil tip is hinged in a point and the
system is free to rotate without friction around it sweeping an arbitrary fall angle
0 ≤ θ ≤ 2π (in this section there is no table to speak about). This simplified setting
will lend the possibility of studying the hinge reaction forces without making any
reference to the friction. This smoothness requirement is carried on also in the two
subsequent sections where the second and third movement are investigated: in the
Section 3 the pen tip is restrained to slide along a horizontal frictionless rail (here
again θ is allowed to go from 0 to 2π) so that a first idea of what happens in this
limiting case is acquired. Then in the Section 4 the horizontal table appears (so
that now 0 ≤ θ ≤ π/2): it is still frictionless, but featuring a step that forbids an
early sliding of the pencil on one side. This third movement allows to recognize
that beyond an angle θr = arccos 2/3 ≃ 0.268 π the pencil tip begins to slide on the
step-free side. In the Section 5 we finally turn our attention to the fourth movement
of the free pencil on a rough table where µs and µκ respectively are the static and
kinetic coefficients of friction. In this case it is found that there is a precise critical
value µs = 2−

13/2 · 3 · 5 3/2 ≃ 0.371 of the static coefficient beyond which no early
sliding is allowed (much as if the step of the third movement was in place). A further
fallout of this finding is that there are exact angles

θ = arccos
9

11
≃ 0.195 π θ = arccos

48
√
14− 35

231
≃ 0.285 π

such that an early sliding (for µs ≤ µs) can happen only at θ∗ ≤ θ, while a later

sliding on the opposite side (for µs ≥ µs) only starts at θ∗∗ ≥ θ. It is worthwhile

to remark that the values of θr, µs, θ and θ are universal for every idealized bar
used as a pencil and for every kind of rough table used to perform the experiment.
The values either of θ∗ or of θ∗∗ on the other hand apparently depend on µs. The
trajectories of the center of mass of the pencil for the third and fourth movement
are also investigated, those for the first and second movement being utterly trivial.
A few final remarks are ultimately added in the last Section 6

2 First movement: The hinge

Consider a homogeneous, rigid rod (the pencil) of mass m and length L with one
of its extremities in contact with a horizontal surface ((the table) and suppose that
µs and µκ respectively are the static and kinetic friction coefficients (see Figure 1).
Let θ be the angle between the pencil and the vertical to the surface, and x, y the
coordinates of the middle point (the center of mass, CM ) in a plan containing the
pencil and the vertical so that (when the pencil tip stays still in the axes origin)

x =
L

2
sin θ y =

L

2
cos θ 0 ≤ θ ≤ π/2 (1)
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Figure 1: The falling pencil.

We will denote in the following as N and F respectively the vertical and horizontal
components of the ground reaction force: apparently F is non-zero only if a friction
is there. The aim of the present paper is a discussion of the dynamics of the falling
pencil, and in particular of its behavior when it also possibly slips on the surface
before touching the ground

We will suppose for simplicity at first that the pencil is not allowed to move
along the surface: for instance we can imagine it hinged at the axes origin and
free to rotate without friction around it. We will also admit that it can go full
circle – as if the table were not there – so that now 0 ≤ θ ≤ 2π. This would
enable us to study the reaction forces N and F in detail in an initially simplified
setting that will be useful in the subsequent discussion. We have indeed in this case
just a physical pendulum (an extended rigid body) performing swings of arbitrary
amplitude. The topic is very well known and has been widely studied, for instance as
inverted pendulum w.r.t. the stabilization of its equilibrium (see for instance [1], [2]
and [3]): we will however skip these topics altogether by confining ourselves just to
a simplified discussion of the circular pendulum.

The Newton equations of motion, with a fixed point in the origin, can be simply
written in this case as

mẍ = F mÿ = N −mg I0θ̈ = mgx = mg
L

2
sin θ (2)

where I0 =
mL2

/3 is the moment of inertia of the pencil w.r.t. its fixed end. Neglect-
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ing for the time being the first two equations, we focus our attention on the third
that can be written as

θ̈ =
ω2
⊥
2

sin θ ω⊥ =

√

3g

L
(3)

There is not an explicit elementary solution of this non linear equation, but that
notwithstanding we can study it in some detail. It is easy to see indeed that

d

dt

(

θ̇2
)

= 2θ̇θ̈ = ω2
⊥ θ̇ sin θ = −ω2

⊥
d

dt
(cos θ)

and therefore
θ̇2 = −ω2

⊥ cos θ + c (4)

where c is an arbitrary integration constant depending on the initial conditions. Let
us make at first (a bit naively) what seems to be the simplest choice, namely

θ(0) = 0 θ̇(0) = 0 (5)

In this case apparently we have c = ω2
⊥ and hence

θ̇2 = ω2
⊥(1− cos θ) ≥ 0 0 ≤ θ ≤ 2π

or in another form

ω(θ) =
dθ

dt
= ω⊥

√
1− cos θ

This non-linear, first order equation – which also shows that ω⊥ is the angular
velocity at θ = π/2 – can be easily solved by separating the variables, namely

∫ θ

0

dφ√
1− cosφ

= ω⊥

∫ t

0

ds = ω⊥t

but it can be seen that the left hand integral diverges because the integrand function
has a non integrable singularity in the origin:

1√
1− cosφ

= O
(

φ−1
)

φ → 0

We have indeed from L’Hôpital rule that

lim
φ→0

φ√
1− cosφ

= 2 lim
φ→0

√
1− cos φ

sinφ
= 2 lim

φ→0

√

1− cosφ

1− cos2 φ
= 2 lim

φ→0

1√
1 + cosφ

=
√
2

As a matter of fact this behavior is rather understandable and can be traced back
to our awkward choice of the initial conditions: when indeed we assume (5) we are
putting the system in its position of unstable equilibrium, and therefore the pencil
would ideally stand up forever so that the time needed to reach a position θ 6= 0
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Figure 2: The time t (in seconds) needed to reach an angle θ according to (9) for
three different values of ǫ and ω⊥ = 10 sec−1 (corresponding to an L of roughly 30
cm). The pencil is allowed to go full circle from 0 to 2π.

would diverge. We need therefore to take a slightly different (and more realistic)
initial condition, for instance with a gentle push onward

θ(0) = 0 θ̇(0) = ω0 > 0 (6)

where ω0 can be chosen small and even infinitesimal to approach the ideal (but
singular) condition (5). With this new assumption the integration constant in (4)
becomes c = ω2

o + ω2
⊥ and the equation takes the form

θ̇2 = ω2
0 + ω2

⊥(1− cos θ) (7)

to wit

ω(θ) =
dθ

dt
= ω⊥

√
2ǫ+ 1− cos θ 2ǫ =

ω2
0

ω2
⊥

This equation can be solved again by separating the variables

∫ θ

0

dφ√
1 + 2ǫ− cos φ

= ω⊥

∫ t

0

ds = ω⊥t (8)

but now (see [4] 2.571.5) the left hand side integral converges for ǫ > 0 and we have

√

2

1 + ǫ
F

(

arcsin

√

(1 + ǫ)
1− cos θ

1 + 2ǫ− cos θ
,

√

1

1 + ǫ

)

= ω⊥t (9)

where (see [4] 8.111.2)

F (ϕ, b) =

∫ ϕ

0

dα
√

1− b2 sin2 α
b2 < 1
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Figure 3: The dimensionless reaction forces F/mg and N/mg of (14) and (15) (for
ǫ = 0) as functions of the position θ.

is the elliptic integral of the first kind. As a matter of fact the equation (9) gives the
function θ(t) in an implicit form that is not easy to invert, and this form moreover
is not much more manageable than the original integral formulation (8) because the
function F (ϕ, b) is nothing else than a name for another integral. Since however these
integrals are nowadays numerically performed by the usual mathematical software,
the results (8) and (9) can easily be used to plot the function t(θ), time needed to

reach an angle θ, as in the Figure 2 where, with an exchange of the coordinate axes,
we would also get a graphical representation of θ(t)

We can next take advantage of the first two equations (2) to find the reaction
forces N and F : since from (1) it is

ẍ =
L

2

(

θ̈ cos θ − θ̇2 sin θ
)

ÿ = −L

2

(

θ̈ sin θ + θ̇2 cos θ
)

(10)

from the first two equations in (2) we have

F =
mL

2

(

θ̈ cos θ − θ̇2 sin θ
)

N = mg − mL

2

(

θ̈ sin θ + θ̇2 cos θ
)

and, since we know that, with the initial conditions (6), the equations (3) and (7)
hold, after a little algebra we find how the reaction forces vary as functions of θ

F (θ) =
3mg

2

(

3

2
cos θ − 1− 2ǫ

)

sin θ (11)

N(θ) =
mg

4
+

3mg

2

(

3

2
cos θ − 1− 2ǫ

)

cos θ (12)

From (7) moreover it is also possible to show that the angular velocity ω = θ̇ varies
with the position θ according to the formula

ω(θ) = ω⊥
√
2ǫ+ 1− cos θ (13)
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Figure 4: The dimensionless angular velocity ω/ω⊥
of (13) as a function of θ for two

different values of ǫ.

It is interesting to remark at this point that, while the time formula (8) is singular
for ǫ → 0+, the equations (11), (12) and (13) continuously go into their ǫ = 0 forms

F (θ) =
3mg

2

(

3

2
cos θ − 1

)

sin θ (14)

N(θ) =
mg

4
+

3mg

2

(

3

2
cos θ − 1

)

cos θ (15)

ω(θ) = ω⊥
√
1− cos θ (16)

corresponding to the null initial conditions (5): these limiting formulas can now
be properly used to represent the simplest behavior of the reaction forces and of
the angular velocity at every possible position θ. In the Figure 3 we have plotted
the dimensionless functions F/mg and N/mg of (14) and (15) (with ǫ = 0), while
the velocity (13) of (16) in its dimensionless form ω/ω⊥

is plotted in the Figure 4
in the interval [0, 4π]: for ǫ > 0, ω(θ) turns out to be a smooth function even at
the angles θ = 0, 2π, 4π . . . Apparently when we also plug into these formulas the
function θ(t) implicitly defined in (9) we also get the time dependence of F,N and
ω, but, needless to say, this would be a cumbersome task that we will neglect here

It is worthwhile to remark finally that the two reaction components N, and F
also take negative values: for F this is apparent from the Figure 3 and we see
from (14) that – even with ǫ = 0 and remaining just in the interval [0, π/2] – we
have F < 0 provided that

2

3
> cos θ ≥ 0 arccos

(

2/3
)

< θ ≤ π

2
arccos

(

2/3
)

≃ 0.268 π

As for the normal component we find instead from (12) that N can be negative only
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Figure 5: The pencil tip sliding along a frictionless rail.

if ǫ > 0: more precisely we have N ≤ 0 when

1

3
+

2

3

(

ǫ+
√

ǫ(1 + ǫ)
)

≥ cos θ ≥ 1

3
+

2

3

(

ǫ−
√

ǫ(1 + ǫ)
)

namely for θ falling in an interval that shrinks to the single point arccos( 1/3) ≃
0.392 π for ǫ = 0+. These negative values will be of some consequence in the sequel
because they will suggest where an un-hinged pencil will begin a sliding movement
when the available constraints will be unable to provide a negative reaction

3 Second movement: The rail

Before going ahead to our pencil with one end laid on a horizontal rough table and
free to move along it, we will stop for a while to consider two more frictionless
cases. In order to allow again for a full swing of the system from 0 to 2π, moreover,
in the first of these examples we will suppose that the pencil tip on the x axis in
the Figure 5 is in fact constrained to slide along a rail without leaving it while the
center of mass goes from L/2 to −L/2 and back again. At variance with the case
of the previous section, however, now there is no horizontal force F because neither
friction nor hinges in the axes origin are present. As a consequence the pencil CM
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Figure 6: The time t (in seconds) needed to reach an angle θ according to (23) for
three different values of ǫ and ω⊥ = 10 sec−1. The pencil is allowed to go full circle
from 0 to 2π.

will simply move along the y axis with x = 0, if its movement starts with this initial
condition. On the other hand there is no longer a fixed point of the system so that
now its rotational dynamics is better accounted for by looking at its motion around
the CM. Therefore the Newton equations now are

mẍ = 0 mÿ = N −mg ICM θ̈ = N
L

2
sin θ (17)

where ICM = mL2

/12 is the moment of inertia of the pencil w.r.t. its CM, while the
geometrical relations among the coordinates become

x = 0 y =
L

2
cos θ (18)

To tackle our problem we can now retrace a path similar to that followed in the
Section 2: from (17) the rotational acceleration around the CM is

θ̈ =
6N

mL
sin θ (19)

while on the other hand again from (17) and from (10) we find

N = m (ÿ + g) = mg − mL

2

(

θ̈ sin θ + θ̇2 cos θ
)

(20)

so that altogether it is

θ̈ = sin θ
[

2ω2
⊥ − 3

(

θ̈ sin θ + θ̇2 cos θ
)]



N Cufaro Petroni: The falling pencil: a Divertimento in four movements 10

Figure 7: The dimensionless reaction force N/mg of (24) and (25) as a function of
the position θ for two values of ǫ.

It is easy to see now that

d

dt

(

θ̇2
)

= 2θ̇θ̈ = 2θ̇ sin θ
[

2ω2
⊥ − 3

(

θ̈ sin θ + θ̇2 cos θ
)]

= − d

dt

[

4ω2
⊥ cos θ + 3

(

θ̇ sin θ
)2
]

to wit
θ̇2
(

1 + 3 sin2 θ
)

+ 4ω2
⊥ cos θ = c (21)

and since with the slightly off-equilibrium initial conditions (6), and keeping the
same notations, it is

c = 4ω2
⊥ + ω2

o = 4ω2
⊥

(

1 +
ǫ

2

)

ǫ =
ω2
0

2ω2
⊥

we finally have

θ̇2 = ω2
⊥
2ǫ+ 4(1− cos θ)

1 + 3 sin2 θ
= ω2

⊥
2ǫ+ 4(1− cos θ)

4− 3 cos2 θ
(22)

This equation can be integrated again by separating the variables giving

∫ θ

0

√

4− 3 cos2 φ

2ǫ+ 4(1− cosφ)
dφ = ω⊥t = t

√

3g

L
(23)

and while this implicit solution has no elementary inverse function it is possible to
numerically evaluate the integral to calculate the time t needed to reach an angle
θ: the results plotted in the Figure 6 show a qualitative behavior similar to that of
the Figure 2. Here too, however, the time t diverges when ǫ → 0+
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Figure 8: The dimensionless angular velocities ω/ω⊥
of (26)and (27) as a function

of θ for two values of ǫ.

To study next the reaction force N we plug (19) and (22) into (20) obtaining the
equation

N = mg − mL

2

(

6N

mL
sin2 θ +

3g

L

2ǫ+ 4(1− cos θ)

1 + 3 sin2 θ
cos θ

)

that is easily solved providing

N = mg
4 + 3 cos2 θ − 3(ǫ+ 2) cos θ

(4− 3 cos2 θ)2
(24)

For ǫ = 0 this simply becomes

N = mg
4 + 3 cos2 θ − 6 cos θ

(4− 3 cos2 θ)2
(25)

The dimensionless function N/mg is plotted in the Figure 7 for two different initial
conditions ǫ, and it is interesting to remark that now – at variance with the case
discussed in the Section 2 – its values are always positive, and that to have also
negative values the initial angular velocity ω0 should in fact exceed a fairly large
threshold. More precisely it would be possible to see that the Mexican-hat shaped
red curve of the Figure 7 bends its tails under the x-axis only for ǫ > 1/3, namely
for ω0 >

√

2g/L sec−1: for example, for L = 0.2 m, this approximately means
ω0 > 10 sec−1. Finally from (22) we have the angular velocity

ω(θ) = θ̇ = ω⊥

√

2ǫ+ 4(1− cos θ)

1 + 3 sin2 θ
(26)
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Figure 9: The dimensionless reaction forces F/mg and N/mg (14) and (15) of the
hinged pencil of the Section 2 as functions of the position 0 ≤ θ ≤ π/2 for ǫ = 0.
From (14) we see that the force F reverses its sign when θ ≥ θr = arccos 2/3.

that is for ǫ = 0

ω(θ) = 2ω⊥

√

1− cos θ

1 + 3 sin2 θ
(27)

In its dimensionless form ω/ω⊥
this angular velocity is reproduced in the Figure 8

for two values of ǫ, and the functions turn out to be smooth again even at θ =
0, 2π, 4π, . . . for every non-zero ǫ > 0

4 Third movement: The step

In our third frictionless case we begin first by looking back to the reaction forces
discussed in the Section 2. When it begins to fall, indeed, the hinged pencil rotates as
in the Figure 1 with a fixed point and hence the reaction forces vary with θ as in the
Figure 3. To be more precise we have reproduced in the Figure 9 the forces F (θ)/mg

and N(θ)/mg in the interval 0 ≤ θ ≤ π/2 in the limiting case of ǫ = 0 presented in (14)
and (15). From this picture and the corresponding equations we see in particular
that, while N never goes negative, the horizontal component F of the reactions in
the Figure 1 reverses its sign beyond an angle θr = arccos 2/3 ≃ 0.268 π suggesting
that some force is needed to keep the pencil tip from moving to the right when
θ > θr. Suppose then now that – without being hinged at the origin – our pencil is
just laid on a frictionless table and allowed to fall as in the Figure 1, but also that its
contact tip is forbidden to slide leftwards (as instead it was allowed in the Section 3)
by the presence of some obstacle, for instance a step as in the Figure 10. From the
previous remarks it follows then that when θ exceeds θr the pencil tip starts sliding
rightwards because – being now unhinged – no negative horizontal reaction force
can arise to prevent that. The pencil reaches the angle θr at a time tr that can be
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Figure 10: When θ > θr = arccos 2/3 on a frictionless surface with a step the pencil
also starts drifting rightwards.

explicitly calculated from the integral (8) for a small initial destabilizing condition
ǫ > 0, while at that point its angular velocity from (16) is

ωr = ω(θr) =
ω⊥√
3
=

√

g

L

We will now investigate the movement of our system for θr < θ < π/2 from the time
tr until the instant T of the impact on the table.

If, according to the Figure 10, z is the position of the contact point on the table
the relationships among the variables are now

x = z +
L

2
sin θ y =

L

2
cos θ 0 ≤ θ ≤ π/2 (28)

while the Newton equations of motion are

mẍ = 0 mÿ = N −mg ICM θ̈ = N
L

2
sin θ (29)

where again ICM = mL2

/12. As a consequence the second equation (10) together
with the equations (19) and (20) still hold, and hence also (21) can be deduced.
Imposing then the conditions at t = tr we find that the integration constant now is

c = ω2
r(1 + 3 sin2 θr) + 3ω2

⊥ cos θr =
32

9
ω2
⊥
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Figure 11: Dimensionless reaction force N/mg and angular velocity θ̇/ω⊥
(continuous

lines when θ ≥ θr) on a frictionless surface with a step, compared with the same
quantities in the case of the hinged pencil (dashed lines) that also accounts for the
movement when θ < θr.

and therefore we get

θ̇2 =
4ω2

⊥
9

8− 9 cos θ

4− 3 cos2 θ
(30)

with its new corresponding time equation

∫ θ

θr

√

4− 3 cos2 φ

8− 9 cosφ
dφ =

2ω⊥
3

(t− tr) (31)

that can be numerically evaluated to calculate the time t needed to reach an angle
θ ∈ [θr,

π/2]: for instance the time T when the pencil hits the floor will be

T = tr +
3

2ω⊥

∫ π/2

θr

√

4− 3 cos2 φ

8− 9 cosφ
dφ ≃ tr +

0.971

ω⊥
ω⊥ =

√

3g

L
(32)

where tr comes from (8) choosing a small initial condition ǫ > 0. As for the reaction
force N on the other hand, from (19), (20) and (30) we have that

N = mg − mL

2

(

6N

mL
sin2 θ +

4g

3L

8− 9 cos θ

4− 3 cos2 θ
cos θ

)

that eventually gives

N = mg
3 cos2 θ − 16

3
cos θ + 4

(4− 3 cos2 θ)2
(33)

The plot of N/mg in the Figure 11 shows in particular that N always stays positive
even in the interval [θr,

π/2] signaling that the pencil tip never leaves the table
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Figure 12: Dimensionless position 2z(θ)/L of the pencil tip laid on a frictionless table
with a step, as a function of θ: as long as θ ≤ θr it is 2z(θ)/L = 0, but when θ ≥ θr
the function z(θ) = ζ(cos θ) should be calculated from (36).

surface. In the same Figure 11 also the dimensionless angular velocity θ̇/ω⊥
is

displayed in the same interval.
To investigate next the behavior of x, y and z of (28) we begin by remarking that

the first equation in (29), mẍ = 0, clearly entails that ẋ = c for t ≥ tr, while to find
the integration constant c it is enough to remark that

ẋ(t) = c = ẋ(tr) =
L

2
ωr cos θr =

ω⊥L

3
√
3

tr ≤ t ≤ T (34)

As a consequence we will have

x(t) =
L

2
cos θr +

ω⊥L

3
√
3
(t− tr) =

L

3
+

ω⊥L

3
√
3
(t− tr) tr ≤ t ≤ T

The chronological equations of y and z, instead, can not be deduced so simply: the
second equations (29) for y, for instance, would be nothing new w.r.t. the angular
equation, in the sense that if we know θ(t) we also can find y(t) by taking advantage
of the second equation (28). But we have seen that the angular equation (30) can
not be integrated in an elementary way, and hence even y(t) has not a manageable
form. Shunning however this chronological issue, we can at least gain some insight
into the shape of the trajectory of the CM of coordinates x and y.

It is apparent indeed that until the sliding begins (namely when 0 ≤ t ≤ tr and
0 ≤ θ ≤ θr) the CM follows a circular path of radius L/2 around the origin; as
soon as t > tr and θ > θr, however, the CM parts way from the aforementioned
circumference following a different flight that can be scrutinized by looking again
into the equations (28): by eliminating indeed cos θ between the equations

(x− z)2 =
L2

4
sin2 θ =

L2

4
(1− cos2 θ) y2 =

L2

4
cos2 θ
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Figure 13: Dimensionless CM xy-trajectory: it coincides with the circular path of
the hinged pencil for θ ≤ θr, but as soon as θ ≥ θr it follows a different flight with
the parametric equations (35).

we have

y =

√

L2

4
− (x− z)2

pointing to the fact that now the CM treads along a circle, but with a moving center
in z. The t-parametric equations of this trajectory then are

x(t) = z(t) +
L

2

√

1− cos2 θ(t) y(t) =
L

2
cos θ(t)

and if we define a function ζ(s) such that

z(t) = ζ
(

s(t)
)

s(t) = cos θ(t)

by adopting s as a new parameter the parametric equations become

x(s) = ζ(s) +
L

2

√
1− s2 y(s) =

L

2
s s = cos θ ∈ [0, 1] (35)

We are therefore prompted to study ζ(s): from (28), (30) and (34) we know that

ż = ẋ− L

2
θ̇ cos θ =

ω⊥L

3
√
3

(

1−
√

3 cos2 θ
8− 9 cos θ

4− 3 cos2 θ

)

and since ż = ζ ′(s) ṡ = −ζ ′(s) θ̇ sin θ, using (30) again we find

ζ ′(s) = − L

2
√
3

(
√

4− 3s2

(1− s2)(8− 9s)
−
√

3s2

1− s2

)

0 ≤ s ≤ 2/3
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Figure 14: The pencil tip on the table starts to drift leftward past an angle θ∗ <
θ = arccos 9/11 ≃ 0.195 π if the static friction coefficient is not large enough (µs <
µs ≃ 0.37) to forbid it.

namely

ζ(s) =
L

2
√
3

∫ 2/3

s

(
√

4− 3u2

(1− u2)(8− 9u)
−
√

3u2

1− u2

)

du 0 ≤ s ≤ 2/3 (36)

This integral, that can be performed at least numerically, lends now the possibility
of plotting both z(θ) = ζ(cos θ) (Figure 12), and the trajectory parametric equa-
tions (35) (Figure 13) where it is understood that ζ(s) = 0 when 2/3 ≤ s ≤ 1.
Remark that from (36) we can also assess the value xT of x when the pencil finally
hits the floor: if T , as provided by (32), is the impact time, we of course have
θ(T ) = π/2, namely s(T ) = 0 and therefore the CM x-coordinate when the pencil
lands on the table is

xT = zT +
L

2
=

L

2
(1 + ξT ) zT = z(T ) = ζ (s(T )) = ζ(0) =

L

2
ξT

where

ξT =
1√
3

∫ 2/3

0

(
√

4− 3u2

(1− u2)(8− 9u)
−
√

3u2

1− u2

)

du ≃ 0.12

can be numerically evaluated: if for instance L = 20 cm, this roughly means that
zT ≃ 1.2 cm
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Figure 15: The absolute value of the friction forces |F |/mg may exceed its maximum
µsN/mg at several possible angles according to the value of µs. If µs < µs a slipping
takes place toward the left beyond an angle θ∗; when instead µs > µs the pencil tip
starts sliding toward the right at a later time past the angle θ∗∗.

5 Fourth movement: The rough surface

We finally go back to our initial problem of a pencil with one end laid on a horizontal
rough table and free to slide along it while falling, Because of the presence of friction,
when the pencil starts its movement the extremity in contact with the surface does
not move, but it can possibly slide (on both sides as we shall see) at a later time
t∗ when it passes beyond a position θ∗: to understand how this happens we must
therefore first of all look again at the reaction forces discussed in the Section 2
and 4. When it begins to fall, indeed, the pencil rotates as in the Figure 1 with a
fixed point and hence the reaction forces – in the limiting case of ǫ = 0 presented
in (14) and (15) – vary with θ as in the Figure 9 with 0 ≤ θ ≤ π/2. We already
remarked in the Section 4 that F (the horizontal component of the reactions in the
Figure 1) is supposed to reverse its sign beyond an angle θr = arccos 2/3 ≃ 0, 268 π
(suggesting that some force is needed to keep the pencil tip from moving to the right

when θ > θr), but only if it does not start to slide to the left at an earlier time t∗ at
an angle θ∗ as in the Figure 14. This second occurrence must indeed be taken into
account because now – in absence of the step of the Section 4 – the static friction
force must always satisfy the condition |F | ≤ µsN , and it may happen that this
requirement is not met beyond some angle θ∗ < θr.

In order to understand if and when this happens, a (dimensionless) comparison
between |F | and µsN has been displayed in the Figure 15 wherefrom we see that
whenever µs is smaller than a critical value µs the pencil starts slipping to the left
at an angle θ∗. From the equation (8) it is also possible to find the time t∗ of this
occurrence for every non zero initial condition ǫ > 0. When instead µs > µs, the
slipping happens toward the right at a later time t∗∗ when the absolute value of the
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Figure 16: The solutions of the equation (38) correspond to the values of s = cos θ
such that R(s) = µ2

s. The critical friction coefficient µs – beyond which no left-
slipping takes place – coincides with the maximum of R(s). The particular values
and the notation are carried over from those of the Figure 15.

(now reversed) friction force exceeds the critical value at a larger angle θ∗∗.
To find the numerical values of these quantities we must first of all look (with

a given µs) for the values of the angle θ such that |F | = µsN namely, from (14)
and (15), such that

∣

∣

∣

∣

3

2

(

3

2
cos θ − 1

)

sin θ

∣

∣

∣

∣

= µs

(

1

4
+

3

2

(

3

2
cos θ − 1

)

cos θ

)

(37)

when 0 ≤ θ ≤ π/2. Squaring both sides and defining for simplicity s = cos θ ∈ [0, 1],
after a little algebra the previous equation becomes

(1− s2)(9s− 6)2 = µ2
s(3s− 1)4 (38)

and to search for its solutions in [0, 1] we recast it in the form

R(s) =
(1− s2)(9s− 6)2

(3s− 1)4
= µ2

s (39)

that is represented in the Figure 16 with the same values of µs adopted in the
Figure 15. It is apparent therefrom that s∗ = cos θ∗ and s∗∗ = cos θ∗∗ are the values
for slipping toward the left and toward the right respectively, while sr = cos θr =

2/3
corresponds to the sign inversion of F in the case of the hinged pencil discussed in
the Section 2. The critical value µs of the friction coefficient, beyond which no
left-slipping is possible, can moreover be deduced as the maximum value of R(s) by
requiring that R ′(s) = 0: a little algebra would show indeed that the maximum of
R(s) is attained at s = 9/11, namely at θ = arccos 9/11 ≃ 0.195 π corresponding to
the following critical value of the static coefficient of friction

µ2
s = R

(

9/11
)

= 2−133253 ≃ 0.1373 µs =
15

64

√

5

2
≃ 0.3706 (40)
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The values of the slipping angles θ∗, θ∗∗ can finally be deduced by numerically solving
the equation (38): it is easy to show for instance that with the values of µs used in
the Figures 15 and 16 we would have

µs = 0.20 < µs ≃ 0.37 cos θ∗ ≃ 0.964 θ∗ ≃ 0.086 π

µs = 0.60 > µs ≃ 0.37 cos θ∗∗ ≃ 0.609 θ∗∗ ≃ 0.292 π

It is also possible to see by direct calculation that at the critical friction coefficient
µs of (40) the equation (39) in [0, 1] also has its smallest solution in

s =
48
√
14− 35

231

corresponding to the the largest solution of (37)

θ = arccos
48
√
14− 35

231
≃ 0.285 π

By summarizing: the limiting angles are

0 < θ < θr < θ < π/2







θ = arccos 9/11 ≃ 0.195 π
θr = arccos 2/3 ≃ 0.268 π

θ = arccos 48
√
14−35
231

≃ 0.285 π

and when µs < µs the pencil tip slips leftwards past an angle θ∗ ≤ θ, while if µs > µs

a rightward sliding starts only later beyond an angle θ∗∗ ≥ θ: the particular values of
θ∗ and θ∗∗ depend on µs and can be calculated numerically from the equation (38).
It also goes without saying that θ∗ grows from 0 to θ when µs grows from 0 to µs,

while subsequently θ∗∗ starts growing from θ > θ when µs exceeds µs: no slipping

angle (either θ∗ or θ∗∗) can be found instead in the interval [θ, θ ], namely between

arccos 9/11 ≃ 0.195 π and arccos 48
√
14−35
231

≃ 0.285 π
Beyond these slipping angles, either θ∗ or θ∗∗, the pencil dynamics is rather

different and we will study in some detail only the case µs < µs with a leftward
slipping beyond θ∗ represented in the Figure 14: the case µs > µs with a rightward
slipping beyond θ∗∗ is not really different ad its discussion – combining elements of
the following treatment and of the case of Section 4 – is left to the interested reader.
When µs < µs we already know that the leftward sliding of the pen tip begins past
an angle θ∗ = arccos s∗ where s∗ is the largest solution of the equation (38) in [0, 1].
We also know that this happens at a time t∗ that can be calculated from (8) with
θ = θ∗ and in fact depends on the initial conditions: we recall from the discussion
of the Section 2 that in fact t∗ diverges when we choose the zero initial condition
ǫ → 0+, but also that this is not an insurmountable hindrance if we leave aside the
complete chronological equations and focus instead on the trajectory shape.

In order to analyze the movement in the intervals t∗ ≤ t ≤ T and θ∗ ≤ θ ≤
π/2 we recall first that the coordinates of the system of Figure 14 still satisfy the
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relations (28) where however we now have z = 0 for 0 ≤ θ ≤ θ∗, and z ≤ 0 for
θ∗ ≤ θ ≤ π/2. If moreover µκ is the kinetic coefficient of friction between the pencil
and the rough surface, the Newton equations of motion now are

mẍ = µκN mÿ = N −mg ICM θ̈ = N
L

2
sin θ (41)

with ICM = mL2

/12: these equations coincide with the (29) of Section 4 but for
the first one that now accounts for the kinetic friction force. Therefore the second
equation (10) and the equations (19) and (20) still hold and hence we can deduce
the equation (21) again as we did in the Sections 3 and 4: here however, to find the
integration constant c, we must impose new conditions at t = t∗. We have indeed
first from (16) that

θ(t∗) = θ∗ θ̇(t∗) = ω∗ = ω(t∗) = ω⊥
√
1− cos θ∗ ω⊥ =

√

3g

L

and then that

x(t∗) =
L

2
sin θ∗ ẋ(t∗) =

L

2
ω⊥ cos θ∗

√
1− cos θ∗

y(t∗) =
L

2
cos θ∗ ẏ(t∗) = −L

2
ω⊥ sin θ∗

√
1− cos θ∗

z(t∗) = 0 ż(t∗) = 0

We are therefore able to calculate c and after a little algebra we find

θ̇2 =
4ω2

⊥
9

9− 27
4
cos2 θ∗(1− cos θ∗)− 9 cos θ

4− 3 cos2 θ
(42)

that replaces (30) with its corresponding time equation which is now

∫ θ

θ∗

√

4− 3 cos2 φ

9− 27
4
cos2 θ∗(1− cos θ∗)− 9 cosφ

dφ =
2ω⊥
3

(t− t∗) (43)

This integral can be numerically evaluated to calculate the time t needed to reach
an angle θ ∈ [θ∗, π/2]: for instance, if we take cos θ∗ = 0.95 > 9/11 = cos θ (that
corresponds to µs ≃ 0.233 < 0.371 = µs), the time T when the pencil hits the floor
now becomes

T = t∗ +
3

2ω⊥

∫ π/2

θ∗

√

4− 3 cos2 φ

9− 27
4
cos2 θ∗(1− cos θ∗)− 9 cosφ

dφ ≃ t∗ +
2.029

ω⊥
(44)

where t∗ comes from (8) choosing a small initial condition ǫ > 0. As for the reaction
force N on the other hand, from (41) (namely (19) and (20) as in the Sections 3
and 4) and from (42) we have now
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Figure 17: Dimensionless reaction force N/mg and angular velocity θ̇/ω⊥
(continuous

lines) on a rough surface with µs < µs, compared with the same quantities in the
case of the hinged pencil (dashed lines): the values coincide when θ < θ∗. Here we
took cos θ∗ = 0.95 corresponding to µs ≃ 0.233

N = mg
3 cos2 θ −

[

6− 9
2
(1− cos θ∗) cos2 θ∗

]

cos θ + 4

(4− 3 cos2 θ)2
θ∗ ≤ θ ≤ π/2 (45)

while for 0 ≤ θ ≤ θ∗ it takes the same values of the hinged case of Section 2. The
plot of N/mg in the Figure 17 shows in particular that N is discontinuous at θ∗

signaling the transition from the static to the kinetic friction. In the same Figure 17
also the dimensionless angular velocity θ̇/ω⊥

is displayed in the same intervals.
We come finally to give some detail about the CM trajectory and the position

z of the tip, but at variance with the discussion of the Section 4, ẋ(t) no longer
is a constant as in (34) since we must now take into account the kinetic friction
force in the first equation (41). A quest for a simple chronological equation x(t),
however, would still be doomed because of the rather involuted form (45) of N .
We can nevertheless gain some insight into the trajectories by looking again to our
quantities rather as functions of the angle θ, as we already did in the previous
sections. While apparently for 0 ≤ θ ≤ θ∗ it is z = 0 and the CM follows a circular
path of radius L/2 around the origin, as soon as θ > θ∗ it will follow a path of
parametric equations (35) with ζ(s) = 0 for s = cos θ ∈ [s∗, 1] (s∗ = cos θ∗): in order
to complete the trajectory we are therefore left just with the task of calculating ζ(s)
for s ∈ [0, s∗]. In order to do that we first remark that from (28) we have

ż = ẋ− L

2
θ̇ cos θ

On the other hand, within the notations of the Section 4 with s = cos θ, it is

ż = ζ ′ṡ = −ζ ′θ̇ sin θ = −ζ ′θ̇(s)
√
1− s2
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Figure 18: Dimensionless position 2z(θ)/L of the pencil tip laid on a rough table for
two different kinetic friction coefficients µk, as a function of θ: as long as θ ≤ θ∗ it
is 2z(θ)/L = 0, but when θ ≥ θ∗ the function z(θ) = ζ(cos θ) should be calculated
from (48): its value is now in the negative. Here again we have chosen cos θ∗ = 0.95.

so that, defining a function v(s) such that ẋ(t) = v
(

s(t)
)

, we get

ζ ′(s) = − v(s)

θ̇(s)
√
1− s2

+
L

2

s√
1− s2

ζ(s∗) = 0 (46)

We see moreover from the definitions that

ẍ = v′ṡ = −v′(s)θ̇(s)
√
1− s2

and hence the first dynamical equation (41) becomes

v′(s) = −µκ

m

N(s)

θ̇(s)
√
1− s2

v(s∗) = v∗ =
Lω⊥
2

s∗
√
1− s∗

to wit

v(s) = v∗ +
µκ

m

∫ s∗

s

N(r)

θ̇(r)
√
1− r2

dr (47)

By assembling (46) and (47) we finally have

ζ(s) =

∫ s∗

s

[

1

θ̇(q)
√

1− q2

(

v∗ +
µκ

m

∫ s∗

q

N(r)

θ̇(r)
√
1− r2

dr

)

− L

2

q
√

1− q2

]

dq (48)

where, with β∗ = s∗
√
1− s∗, it is understood from (42) and (45) that

θ̇(s) = ω⊥

√

4− 3β∗ 2 − 4s

4− 3s2
N(s) = mg

6s2 − 3(4− 3β∗ 2)s+ 8

2(4− 3s2)
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Figure 19: Dimensionless CM xy-trajectory: it coincides with the circular path
of the hinged pencil for θ ≤ θ∗, but as soon as θ ≥ θ∗ it follows different flight
according to the kinetic coefficient of friction: the parametric equations are (35)
together with (48) to calculate ζ(s).

The integral (48) can be calculated numerically and lends again the possibility of
plotting both z(θ) = ζ(cos θ) (Figure 18), and the trajectory parametric equa-
tions (35) together with (48) (Figure 19) where it is understood that ζ(s) = 0
when s∗ ≤ s ≤ 1. In both the plots we have chosen θ∗ = arccos 0.95 (corresponding
to the static coefficient of friction µs ≃ 0.233), and two possible values for the kinetic
coefficient of friction: the limiting value µ0

κ = 0.0 and µκ = 0.10 . Remark that now,
at variance with what we have found in the similar discussion of the Section 4, z(s)
takes negative values for 0 ≤ s ≤ s∗ accounting for the fact that the pencil tip slides
leftward. From (48) we can also calculate the point xT where the pencil CM hits
the floor at the time T : since it is θ(T ) = π/2, namely s(T ) = 0 we will have

xT = zT +
L

2
= ζ(0) +

L

2
=

L

2
(1− ξT ) ξT = −2ζ(0)

L
≥ 0

where, with θ∗ = arccos 0.95, it is

{

ξ0T ≃ 0.257, for µ0
κ = 0.0

ξT ≃ 0.158, for µκ = 0.10
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6 Epilogue

In this paper we have given an elementary treatment of a mechanical case study:
the dynamics of a pencil with a tip laid on a rough table and set free to fall un-
der the action of gravity. Despite its seeming modesty and lack of pretention we
have shown that a discussion of this simple problem still conceals many details of
(maybe) unexpected – but never unsurmountable – intricacy that may turn out to
be pedagogically edifying. Along our exploration we also had the occasion to point
out a few small results of a broader scope, as for instance some critical values of
the sliding angles and of the static coefficients of friction. We hope that this Diver-
timento could eventually prove to be both profitable and entertaining for all those
willing to stop for a while to listen at it
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