Decoherence in Supernova Neutrino Transformations suppressed by deleptonization

Based on arXiv:0706.2498 [astro-ph]

Published in: Physical Review D 76: 125018, 2007.

AHEP group, IFIC-Valencia.

Andreu Esteban-Pretel

In collaboration with S. Pastor, R. Tomàs, G. G. Raffelt and G. Sigl.

OUTLINE

Introduction.

Setup of the problem.

Coherent evolution vs. decoherence.

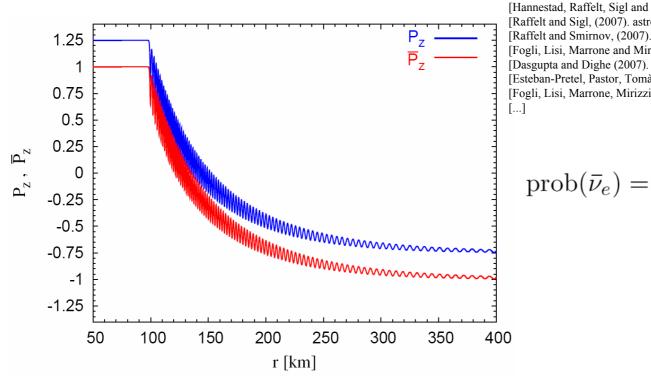
Role of the model parameters.

Conclusions.

Andreu Esteban-Pretel (AHEP group, IFIC)

NOW 2008, September 8th (2/10)

The crucial phenomenon $\nu_e \bar{\nu}_e \rightarrow \nu_x \bar{\nu}_x$ driven by atm Δm^2 and θ_{13} .



[Pastor and Raffelt, (2002). astro-ph/0207281] [Sawyer, (2004). hep-ph/0408265] [Fuller and Qian, (2006). astro-ph/0505240] [Duan, Fuller, Carlson and Qian, (2006). astro-ph/0606616] [Hannestad, Raffelt, Sigl and Wong, (2006). astro-ph/0608695] [Raffelt and Sigl, (2007). astro-ph/0701182] [Raffelt and Smirnov, (2007). arXiv:0705.1830] [Fogli, Lisi, Marrone and Mirizzi (2007). arXiv:0707.1998] [Dasgupta and Dighe (2007). arXiv:0712.3798] [Esteban-Pretel, Pastor, Tomàs, Raffelt and Sigl (2007). axXiv:0712.1137] [Fogli, Lisi, Marrone, Mirizzi and Tamborra (2008). arXiv:0808.0807]

$$\operatorname{prob}(\bar{\nu}_e) = \frac{1}{2}(1 + \bar{P}_z)$$

Andreu Esteban-Pretel (AHEP group, IFIC)

NOW 2008, September 8th (3/10)

- The crucial phenomenon $\nu_e \bar{\nu}_e \rightarrow \nu_x \bar{\nu}_x$ driven by atm Δm^2 and θ_{13} .
- Collective pair transformations require:
 - large neutrino density
 - a pair excess of a given flavor. SN models $F_{\nu_e} > F_{\bar{\nu}_e} > F_{\nu_x} = F_{\bar{\nu}_x}$

- The crucial phenomenon $\nu_e \bar{\nu}_e \rightarrow \nu_x \bar{\nu}_x$ driven by atm Δm^2 and θ_{13} .
- Collective pair transformations require:
 - large neutrino density
 - a pair excess of a given flavor. SN models $F_{\nu_e} > F_{\bar{\nu}_e} > F_{\nu_x} = F_{\bar{\nu}_x}$
- Current-current nature of the weak interaction \rightarrow (1 cos θ) dependence for interaction energy. One would expect kinematical decoherence.

- The crucial phenomenon $\nu_e \bar{\nu}_e \rightarrow \nu_x \bar{\nu}_x$ driven by atm Δm^2 and θ_{13} .
- Collective pair transformations require:
 - large neutrino density
 - a pair excess of a given flavor. SN models $F_{\nu_e} > F_{\bar{\nu}_e} > F_{\nu_x} = F_{\bar{\nu}_x}$
- Current-current nature of the weak interaction \rightarrow (1 cos θ) dependence for interaction energy. One would expect kinematical decoherence.
- SN context evolution similar to the single-angle case.

[Duan, Fuller, Carlson and Qian, (2006). astro-ph/0606616]

- The crucial phenomenon $\nu_e \bar{\nu}_e \rightarrow \nu_x \bar{\nu}_x$ driven by atm Δm^2 and θ_{13} .
- Collective pair transformations require:
 - large neutrino density
 - a pair excess of a given flavor. SN models $F_{\nu_e} > F_{\bar{\nu}_e} > F_{\nu_x} = F_{\bar{\nu}_x}$
- Current-current nature of the weak interaction \rightarrow (1 cos θ) dependence for interaction energy. One would expect kinematical decoherence.
- SN context evolution similar to the single-angle case.
- Our main goal is to quantify the validity of this approximation and study the role of the different model parameters.

• We work in a two-flavor scenario, $v_e - v_x$, characterized by the atmospheric Δm^2 and θ_{13} .

- We work in a two-flavor scenario, $v_e v_x$, characterized by the atmospheric Δm^2 and θ_{13} .
- Equations of motion in spherical symmetry:

$$\partial_{r}\mathbf{P}_{u,r} = +\frac{\omega\mathbf{B}\times\mathbf{P}_{u,r}}{v_{u,r}} + \frac{\lambda_{r}\mathbf{L}\times\mathbf{P}_{u,r}}{v_{u,r}} + \mu\frac{R^{2}}{r^{2}}\left[\left(\int_{0}^{1}\mathrm{d}u'\frac{\mathbf{P}_{u',r}-\bar{\mathbf{P}}_{u',r}}{v_{u',r}}\right)\times\left(\frac{\mathbf{P}_{u,r}}{v_{u,r}}\right) - (\mathbf{P}_{r}-\bar{\mathbf{P}}_{r})\times\mathbf{P}_{u,r}\right]$$
$$\partial_{r}\bar{\mathbf{P}}_{u,r} = -\frac{\omega\mathbf{B}\times\bar{\mathbf{P}}_{u,r}}{v_{u,r}} + \frac{\lambda_{r}\mathbf{L}\times\bar{\mathbf{P}}_{u,r}}{v_{u,r}} + \mu\frac{R^{2}}{r^{2}}\left[\left(\int_{0}^{1}\mathrm{d}u'\frac{\mathbf{P}_{u',r}-\bar{\mathbf{P}}_{u',r}}{v_{u',r}}\right)\times\left(\frac{\bar{\mathbf{P}}_{u,r}}{v_{u,r}}\right) - (\mathbf{P}_{r}-\bar{\mathbf{P}}_{r})\times\bar{\mathbf{P}}_{u,r}\right]$$

where:

$$\omega = \left\langle \frac{\Delta m^2}{2E} \right\rangle \quad \mathbf{B} = (\sin 2\theta, 0, \pm \cos 2\theta)$$
$$\lambda_r = \sqrt{2}G_{\mathrm{F}} n_{e^-}(r) \qquad \mu = \sqrt{2}G_{\mathrm{F}} \left(F_{\bar{\nu}_e}^R - F_{\bar{\nu}_x}^R\right)$$

Andreu Esteban-Pretel (AHEP group, IFIC)

NOW 2008, September 8th (4/10)

- We work in a two-flavor scenario, $v_e v_x$, characterized by the atmospheric Δm^2 and θ_{13} .
- Equations of motion in spherical symmetry:

$$\partial_{r}\mathbf{P}_{u,r} = +\frac{\omega\mathbf{B}\times\mathbf{P}_{u,r}}{v_{u,r}} + \frac{\lambda_{r}\mathbf{L}\times\mathbf{P}_{u,r}}{v_{u,r}} + \mu\frac{R^{2}}{r^{2}}\left[\left(\int_{0}^{1}\mathrm{d}u'\frac{\mathbf{P}_{u',r}-\bar{\mathbf{P}}_{u',r}}{v_{u',r}}\right)\times\left(\frac{\mathbf{P}_{u,r}}{v_{u,r}}\right) - (\mathbf{P}_{r}-\bar{\mathbf{P}}_{r})\times\mathbf{P}_{u,r}\right]$$
$$\partial_{r}\bar{\mathbf{P}}_{u,r} = -\frac{\omega\mathbf{B}\times\bar{\mathbf{P}}_{u,r}}{v_{u,r}} + \frac{\lambda_{r}\mathbf{L}\times\bar{\mathbf{P}}_{u,r}}{v_{u,r}} + \mu\frac{R^{2}}{r^{2}}\left[\left(\int_{0}^{1}\mathrm{d}u'\frac{\mathbf{P}_{u',r}-\bar{\mathbf{P}}_{u',r}}{v_{u',r}}\right)\times\left(\frac{\bar{\mathbf{P}}_{u,r}}{v_{u,r}}\right) - (\mathbf{P}_{r}-\bar{\mathbf{P}}_{r})\times\bar{\mathbf{P}}_{u,r}\right]$$

where:

$$\omega = \left\langle \frac{\Delta m^2}{2E} \right\rangle \quad \mathbf{B} = (\sin 2\theta, 0, \pm \cos 2\theta)$$
$$\lambda_r = \sqrt{2}G_{\mathrm{F}} n_{e^-}(r) \qquad \mu = \sqrt{2}G_{\mathrm{F}} \left(F_{\bar{\nu}_e}^R - F_{\bar{\nu}_x}^R\right)$$

Normalization at the v-sphere:

$$P = |\mathbf{P}| = 1 + \epsilon \text{ and } \bar{P} = |\bar{\mathbf{P}}| = 1$$
$$\epsilon = \frac{F(\nu_e) - F(\nu_x)}{F(\bar{\nu}_e) - F(\bar{\nu}_x)} - 1 = \frac{F(\nu_e) - F(\bar{\nu}_e)}{F(\bar{\nu}_e) - F(\bar{\nu}_x)}; \quad F(\nu_x) = F(\bar{\nu}_x).$$

Andreu Esteban-Pretel (AHEP group, IFIC)

- We work in a two-flavor scenario, $v_e v_x$, characterized by the atmospheric Δm^2 and θ_{13} .
- Equations of motion in spherical symmetry:

$$\partial_{r}\mathbf{P}_{u,r} = +\frac{\omega\mathbf{B}\times\mathbf{P}_{u,r}}{v_{u,r}} + \frac{\lambda_{r}\mathbf{L}\times\mathbf{P}_{u,r}}{v_{u,r}} + \mu\frac{R^{2}}{r^{2}}\left[\left(\int_{0}^{1}\mathrm{d}u'\frac{\mathbf{P}_{u',r}-\bar{\mathbf{P}}_{u',r}}{v_{u',r}}\right)\times\left(\frac{\mathbf{P}_{u,r}}{v_{u,r}}\right) - (\mathbf{P}_{r}-\bar{\mathbf{P}}_{r})\times\mathbf{P}_{u,r}\right]$$
$$\partial_{r}\bar{\mathbf{P}}_{u,r} = -\frac{\omega\mathbf{B}\times\bar{\mathbf{P}}_{u,r}}{v_{u,r}} + \frac{\lambda_{r}\mathbf{L}\times\bar{\mathbf{P}}_{u,r}}{v_{u,r}} + \mu\frac{R^{2}}{r^{2}}\left[\left(\int_{0}^{1}\mathrm{d}u'\frac{\mathbf{P}_{u',r}-\bar{\mathbf{P}}_{u',r}}{v_{u',r}}\right)\times\left(\frac{\bar{\mathbf{P}}_{u,r}}{v_{u,r}}\right) - (\mathbf{P}_{r}-\bar{\mathbf{P}}_{r})\times\bar{\mathbf{P}}_{u,r}\right]$$

where:

$$\omega = \left\langle \frac{\Delta m^2}{2E} \right\rangle \quad \mathbf{B} = (\sin 2\theta, 0, \pm \cos 2\theta)$$

$$\lambda_r = \sqrt{2}G_F n_{e^-}(r) \qquad \mu = \sqrt{2}G_F \left(F_{\bar{\nu}_e}^R - F_{\bar{\nu}_x}^R\right) \qquad \boxed{Parameter Standard value}$$

$$\epsilon = \sqrt{2}G_F n_{e^-}(r) \qquad \mu = \sqrt{2}G_F \left(F_{\bar{\nu}_e}^R - F_{\bar{\nu}_x}^R\right) \qquad \boxed{e \qquad 0.25}$$

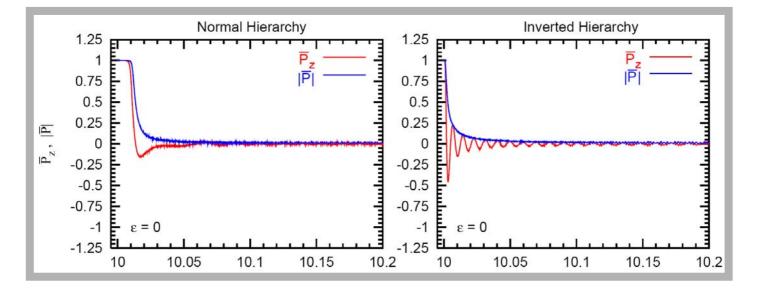
$$\mu \qquad 7 \times 10^5 \text{ km}^{-1}$$

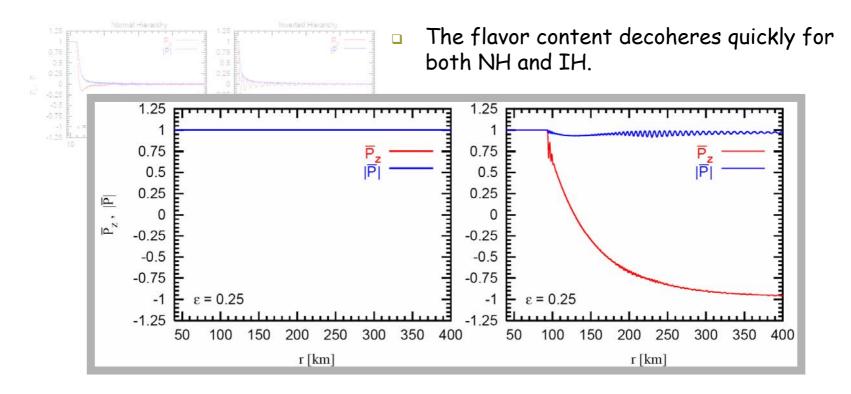
$$\omega \qquad 0.3 \text{ km}^{-1}$$

$$\epsilon = \frac{F(\nu_e) - F(\nu_x)}{F(\bar{\nu}_e) - F(\bar{\nu}_x)} - 1 = \frac{F(\nu_e) - F(\bar{\nu}_e)}{F(\bar{\nu}_e) - F(\bar{\nu}_x)}; \quad F(\nu_x) = F(\bar{\nu}_x).$$

Andreu Esteban-Pretel (AHEP group, IFIC)

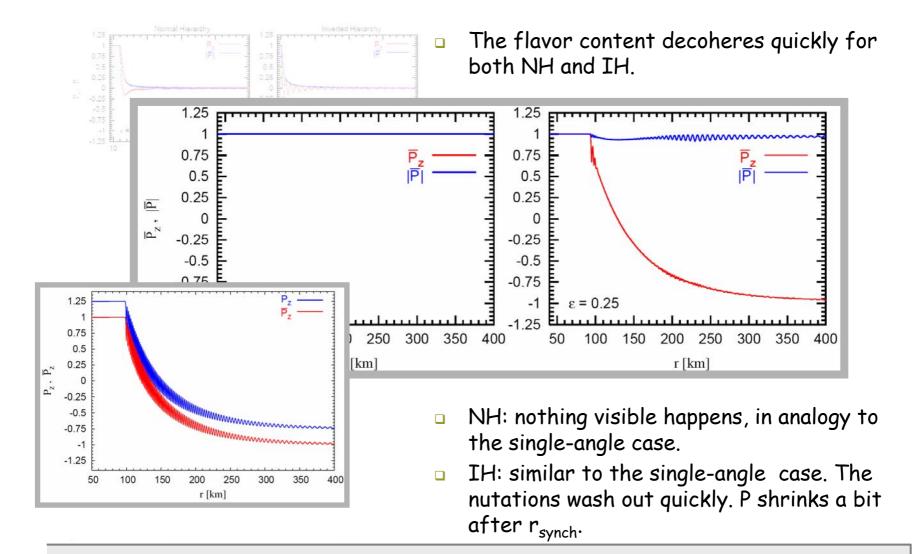
• The flavor content decoheres quickly for both NH and IH.





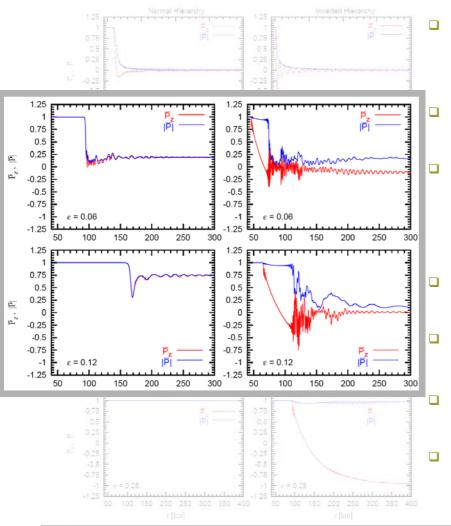
- NH: nothing visible happens, in analogy to the single-angle case.
- IH: similar to the single-angle case. The nutations wash out quickly. P shrinks a bit after r_{synch}.

Andreu Esteban-Pretel (AHEP group, IFIC)



Andreu Esteban-Pretel (AHEP group, IFIC)

NOW 2008, September 8th (5/10)



The flavor content decoheres quickly for both NH and IH.

NH: large and abrupt decoherence far beyond $\mathbf{r}_{\rm synch}.$

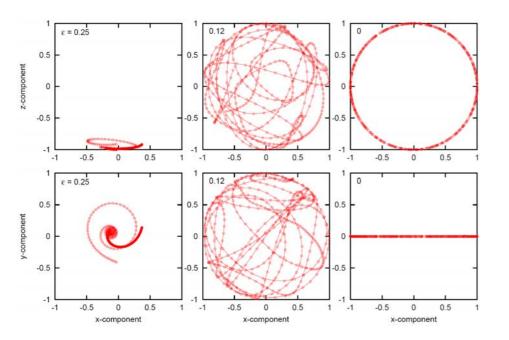
IH: at first analogous to ε = 0.25, at some larger radius P shrinks significantly. Partial decoherence.

NH: the length P also shrinks, but closely tracks P_z.

IH: qualitatively equivalent to $\varepsilon = 0.06$.

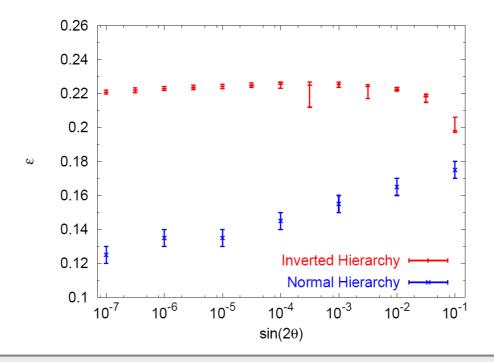
- NH: nothing visible happens, in analogy to the single-angle case.
- IH: similar to the single-angle case. The nutations wash out quickly. P shrinks a bit after r_{synch}.

- Final location on the unit sphere of 500 antineutrino polarization vectors
- Small asymmetry (ε = 0.12)

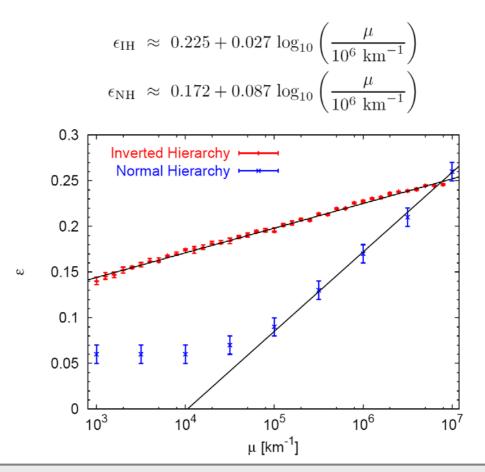


Mixing angle:

- IH: multi-angle decoherence is virtually independent of sin 2θ, except for very large θ.
- NH: strong dependence of the critical ε on $\log_{10}(\sin 2\theta)$



Effective interaction strength:

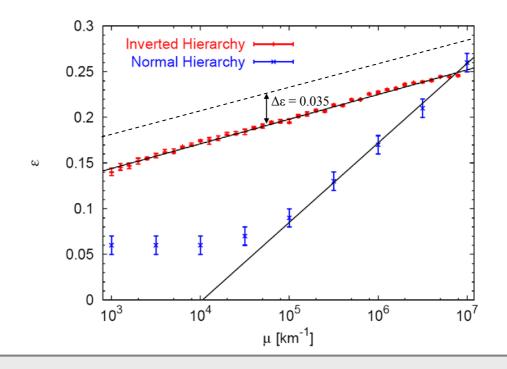


Andreu Esteban-Pretel (AHEP group, IFIC)

NOW 2008, September 8th (8/10)

Vacuum oscillation frequency:

• IH: If we increase w from 0.3 km⁻¹ (our standard value) to 1 km⁻¹, the ε - μ -contour parallel-shifted by about 0.035.

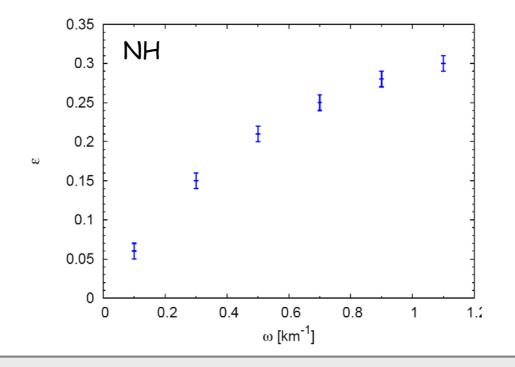


Andreu Esteban-Pretel (AHEP group, IFIC)

NOW 2008, September 8th (9/10)

Vacuum oscillation frequency:

- IH: If we increase ω from 0.3 km⁻¹ (our standard value) to 1 km⁻¹, the ε - μ -contour parallel-shifted by about 0.035.
- NH: more sensitive to w.



Andreu Esteban-Pretel (AHEP group, IFIC)

NOW 2008, September 8th (9/10)

CONCLUSIONS

- We have explored numerically the range of parameters where different forms of evolution dominate in a realistic SN scenario.
- For realistic supernova deleptonization fluxes, kinematical decoherence among different angular modes likely irrelevant.
- Multi-angle effects seem to be subdominant.
- Good news:
 - We do not have to worry about multi-angle decoherence.
 - We can use the single-angle approximation which requires a lot less of computational time.