Energy levels of finite-volume two-particle scattering states with Bloch's boundary conditions

Nazario Tantalo
INFN sez. "Tor Vergata"
Centro Ricerche e Studi "E. Fermi"

September 20, 2006

outline

- Bloch's boundary conditions \& external fields (twisted boundary conditions)
- the "gauge crystal"
- continuous physical momenta on a finite volume
- two-particle scattering states
- Lellouch-Lüscher formula
- two-particle scattering states with Bloch's b.c.
- isospin breaking
- two state non-relativistic model

external fields \& Bloch's boundary conditions

Bloch's boundary conditions (b.b.c.) are defined as

$$
\psi\left(x+\mathbf{e}_{i} L\right)=e^{i \theta_{i}} \psi(x), \quad 0 \leq \theta_{i}<2 \pi \quad \theta_{0}=0
$$

in a gauge theory this is equivalent to "change" the gauge field

to the interaction it has been added an external filed

$$
\nabla_{\mu}(\theta) \psi(x)=\frac{1}{a}\left[\lambda_{\mu} U_{\mu}(x) \psi(x+a \hat{\mu})-\psi(x)\right] \quad \lambda_{\mu}=e^{\frac{i a \theta_{\mu}}{L}}
$$

the gauge crystal (i)

In order to reduce finite volume effects in early days lattice simulations, Martinelli, Parisi, Petronzio, Rapuano (1983) first considered a "gauge crystal"

- very very small lattices $\left(5^{3} \times 10\right)$
- strong fluctuations in the meson masses
- freezing of the gauge configurations in some metastable states

$-\frac{\pi}{6} \frac{\pi}{6} \frac{\pi}{2} \frac{5 \pi}{6} \frac{7 \pi}{6} \frac{9 \pi}{6} \frac{11 \pi}{6}$.
$\hat{P}_{i}=\left\langle\sum_{x} \operatorname{Tr} \prod_{n=0}^{N_{i}-1} U\left(x+n \mathbf{e}_{i}, i\right)\right\rangle$

the gauge crystal (ii)

each gauge configuration is used 3×3 times by transforming the boundary gauge links

$$
U\left(N_{i}-1, i\right) \longmapsto\left\{U\left(N_{i}-1, i\right), e^{\frac{2 \pi i}{3}} U\left(N_{i}-1, i\right), e^{-\frac{2 \pi i}{3}} U\left(N_{i}-1, i\right)\right\}
$$

$$
\int_{0}^{3 L} d x \bar{\psi}(x) \hat{D}(x) \psi(x) \stackrel{D(x+L)=D(x)}{\longmapsto} \int_{0}^{L} d x[\bar{\psi}(x) \hat{D}(x) \psi(x)+\bar{\psi}(x) \hat{D}(x) \psi(x)+\bar{\psi}(x) \hat{D}(x) \psi(x)]
$$

Bloch's boundary conditions, a brief history

- in the large N limit:
- at finite temperature:
- in the Schrödinger Functional:
[Gross \& Kitazawa Nucl. Phys. B206 (1982)] [Kiskis, Narayanan \& Neuberger hep-lat/0203005] [Kiskis, Narayanan \& Neuberger hep-lat/0308033]
[Roberge \& Weiss Nucl. Phys. B275 (1986)] [many others]
[Jansen \& al. hep-lat/9512009]
[many others]
[Bucarelli \& al. hep-lat/9808005] [Guagnelli \& al. hep-lat/0303012]
- Aharonov-Bohm effect (χ-PT, suggesting lattice) [Bedaque nucl-th/0402051]

flavoured mesons with continuous momenta

In [hep-lat/0405002] we coupled the external field to the flavour

$$
\begin{aligned}
& \text { spatial momenta are quantized according to } \\
& \int d \mathbf{p} e^{i \mathbf{p} \cdot\left(\mathbf{x}+\mathbf{e}_{i} L\right)} \psi(t ; \mathbf{p})=\int d \mathbf{p} e^{i\left(\mathbf{p} \cdot \mathbf{x}+\theta_{j}\right)} \psi(t ; \mathbf{p}) \\
& e^{i p_{i} L}=e^{i \theta_{i}} \\
& p_{i}=\frac{\theta_{i}}{L}+\frac{2 \pi n}{L}, \quad n \in Z^{3}
\end{aligned}
$$

a physical momentum transfer

two-particle scattering states

- for p.b.c. Lüscher has derived the quantization condition

Commun. Math. Phys. 104 (1986) 177
Commun. Math. Phys. 105 (1986) 153
Nucl. Phys. B354 (1991) 531
Nucl. Phys. B364 (1991) 237

$$
\begin{aligned}
& \tan \delta_{0}(k)=-\tan \phi(q) \\
& q=\frac{k L}{2 \pi}, \quad \tan \phi(q)=-\frac{q \pi^{3 / 2}}{\mathcal{Z}_{00}\left(1, q^{2}\right)} \\
& \mathcal{Z}_{00}\left(s, q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n} \in Z^{3}} \frac{1}{\left(\mathbf{n}^{2}-q^{2}\right)^{s}}, \quad \Re(s)>\frac{3}{2}
\end{aligned}
$$

- scattering phases can be calculated "like" hadron masses
- an integral representation of the $\mathcal{Z}_{00}\left(1, q^{2}\right)$ is obtained by ζ-function regularization

$$
\mathcal{Z}_{l m}\left(1, q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{|\mathbf{n}|<\Lambda} \frac{\mathcal{Y}_{l m}(\mathbf{n})}{\mathbf{n}^{2}-q^{2}}+(2 \pi)^{3} \int_{0}^{\infty} d t\left[e^{t q^{2}} \mathcal{K}_{l m}^{\Lambda}(t, \mathbf{0})-\frac{\delta_{10} \delta_{m 0}}{(4 \pi)^{2} t^{3 / 2}}\right]
$$

lellouch-lüscher formula

- let us introduce into our theory another boson: the "kaon"
- let us switch off the interaction hamiltonian $H_{W}=\int_{x_{0}=0} d^{3} x \mathcal{L}_{W}(x)$

- when the energy of the scattering state is equal to the kaon mass ($L \simeq 5.5 \mathrm{fm}$) one gets

$$
\|A(\bar{k})\|^{2}=8 \pi\left\{q \frac{\partial \phi(q)}{\partial q}+k \frac{\partial \delta_{0}(k)}{\partial k}\right\}_{k=\bar{k}}\left(\frac{m_{K}}{\bar{k}}\right)^{3}\left\|A_{L}(\bar{k})\right\|^{2}
$$

- there have been many attempts to cope with such a large volume

lüscher equivalence theorem (i)

Let us consider two spinless bosons of equal mass such that

- the dynamics can be described by a scalar $\lambda \phi^{4}$ theory
- reflection symmetry ($\phi \mapsto-\phi$) is unbroken
- one particle states are odd under this symmetry

it holds an effective Schrödinger equation

$$
-\frac{1}{2 \mu} \Delta \psi(\mathbf{r})+\frac{1}{2} \int d \mathbf{r}^{\prime} U_{E}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right)=E \psi(\mathbf{r})
$$

$\psi(\mathbf{r})$ is the Bethe-Salpeter wavefunction
where
the true energy is $\mathcal{E}=2 \sqrt{m^{2}+m E}$
$U_{E}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ is exponentially vanishing with $\mathbf{r}, \mathbf{r}^{\prime}$

lüscher equivalence theorem (ii)

the system is equivalent to a non-relativistic quantum mechanical one up to corrections exponentially vanishing with the volume

- the hamiltonian is

$$
\begin{array}{r}
\hat{H}=-\triangle+V(r) \\
V(r>R)=0 \\
V(\|\mathbf{r}+\mathbf{n} L\|)=V(r)
\end{array}
$$

- the potential is of finite range
- the potential is periodic

$$
\left(\triangle+k^{2}\right) \psi_{\theta}(\mathbf{r})=V(\mathbf{r}) \psi_{\theta}(\mathbf{r}), \quad \psi_{\theta}(\mathbf{r}+\mathbf{n} L)=e^{i \theta \cdot \mathbf{n}} \psi_{\theta}(\mathbf{r})
$$

note:

Schrödinger equation with a muffin thin potential:

Korringa-Kohn-Rostoker theory

the green function method

let us consider the infinite volume green function

$$
\left(\Delta+k^{2}\right) g\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right)=\delta\left(\mathbf{r}-\mathbf{r}_{0}\right)
$$

the formal solution is given by

$$
\begin{aligned}
\psi_{\theta}(\mathbf{r}) & =\int_{-\infty}^{\infty} d \mathbf{r}_{0} g\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right) V\left(\mathbf{r}_{0}\right) \psi_{\theta}\left(\mathbf{r}_{0}\right) & g_{\theta}\left(\mathbf{r} ; k^{2}\right) & =\sum_{\mathbf{n} \in Z^{3}} e^{i \theta \cdot \mathbf{n}} g\left(\mathbf{r}-\mathbf{n} L ; k^{2}\right) \\
& =\int_{0}^{L} d \mathbf{r}_{0} g_{\theta}\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right) V\left(\mathbf{r}_{0}\right) \psi_{\theta}\left(\mathbf{r}_{0}\right) & & =-\frac{1}{L^{3}} \sum_{\mathbf{n} \in Z^{3}} \frac{e^{i \mathbf{k}_{n} \cdot \mathbf{r}}}{k_{n}^{2}-k^{2}} \\
& =\int_{0}^{R} d \mathbf{r}_{0} g_{\theta}\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right) V\left(\mathbf{r}_{0}\right) \psi_{\theta}\left(\mathbf{r}_{0}\right) & \mathbf{k}_{n} & =\frac{2 \pi \mathbf{n}}{L}+\frac{\theta}{L}
\end{aligned}
$$

in the end we get

$$
\psi_{\theta}(\mathbf{r})=\int_{0}^{R} d \mathbf{r}_{0} g_{\theta}\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right)\left(\triangle_{\mathbf{r}_{0}}+k^{2}\right) \psi_{\theta}\left(\mathbf{r}_{0}\right)
$$

quantization condition (i)

from

$$
\psi_{\theta}(\mathbf{r})=\int_{0}^{R} d \mathbf{r}_{0} g_{\theta}\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right)\left(\triangle_{\mathbf{r}_{0}}+k^{2}\right) \psi_{\theta}\left(\mathbf{r}_{0}\right)
$$

by using the simple identity

$$
g \triangle \psi=\psi \triangle g+\nabla \cdot(g \nabla \psi-\psi \nabla g)
$$

one gets the energy quantization condition

$$
\int_{\partial S_{R}} d S_{0}\left[g_{\theta}\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right) \frac{\partial \psi_{\theta}\left(\mathbf{r}_{0}\right)}{\partial r_{0}}-\psi_{\theta}\left(\mathbf{r}_{0}\right) \frac{\partial g_{\theta}\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right)}{\partial r_{0}}\right]_{r_{0}=R}=0
$$

This condition can be rewritten by expanding in spherical harmonics the wavefunction

$$
\psi_{\theta}(\mathbf{r})=\sum_{l m} \alpha_{l m}(\theta, k) R_{l}(r ; k) Y_{l m}\left(\hat{r}_{0}\right) \quad R_{l}(r, k)=\cos \delta_{l}(k) j_{l}(k r)-\sin \delta_{l}(k) n_{l}(k r) \quad r \geq R
$$

and the greenian

$$
\begin{aligned}
g_{\theta}\left(\mathbf{r}-\mathbf{r}_{0} ; k^{2}\right) & =k \sum_{l m} j_{l}(k r) Y_{l m}(\hat{r}) n_{l}\left(k r_{0}\right) Y_{l m}^{*}\left(\hat{r}_{0}\right) \\
& +\sum_{l m I^{\prime} m^{\prime}} j_{l}(k r) Y_{l m}(\hat{r}) \mathcal{M}_{l m, l^{\prime} m^{\prime}}\left(\theta, k^{2}\right) j_{l^{\prime}}\left(k r_{0}\right) Y_{l^{\prime} m^{\prime}}\left(\hat{r}_{0}\right)
\end{aligned}
$$

quantization condition (ii)

after substitution one gets an homogeneous linear system

$$
q \cos \delta_{l}(k) \alpha_{l m}+\sum_{I^{\prime} m^{\prime}} \mathcal{M}_{l m, l^{\prime} m^{\prime}} \sin \delta_{l^{\prime}}(k) \alpha_{I^{\prime} m^{\prime}}=0
$$

that has non trivial solutions if and only if

$$
\operatorname{det}\left[\mathcal{M}_{I m, l^{\prime} m^{\prime}}(\theta, k)+k \delta_{\| \prime} \delta_{m m^{\prime}} \cot \delta_{l}(k)\right]=0
$$

Making the assumption that all the scattering phases vanish except the S-wave, one gets:

$$
\begin{aligned}
& \tan \delta_{0}(k)=-\tan \phi(\theta, q) \\
& q=\frac{k L}{2 \pi}, \quad \tan \phi(\theta, q)=-\frac{q \pi^{3 / 2}}{\mathcal{Z}_{00}\left(1 ; \theta ; q^{2}\right)} \\
& \mathcal{Z}_{00}\left(s ; \theta ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n} \in Z^{3}} \frac{1}{\left[\left(\mathbf{n}+\frac{\theta}{2 \pi}\right)^{2}-q^{2}\right]^{s}} \\
& \Re(s)>\frac{3}{2}
\end{aligned}
$$

what about the real world. . . (i)

- in hep-lat/0409154 we claimed that the results discussed so far where useful for $K \longrightarrow \pi \pi$ decays
- in hep-lat/0411033 Sachrajda \& Villadoro pointed out that we where wrong

we are breaking isospin (not I_{3})

$$
\begin{aligned}
S & =\int d^{4} x \bar{u}(x)\left[D-i \frac{\theta_{u}}{L}+m\right] u(x) \\
& +\int d^{4} x \bar{d}(x)\left[D-i \frac{\theta_{d}}{L}+m\right] d(x)
\end{aligned}
$$

for one particle states

$$
\begin{aligned}
& \frac{\triangle m_{\pi \pm}^{2}}{m_{\pi \pm}^{2}} \mapsto \frac{3 m_{\pi}^{2} e^{-m_{\pi} L}}{\left(2 \pi f_{\pi}^{2} m_{\pi} L\right)^{3 / 2}} \\
& \frac{\Delta m_{\pi^{0}}^{2}}{m_{\pi^{0}}^{2}} \mapsto \frac{3 m_{\pi}^{2} e^{-m_{\pi} L}}{\left(2 \pi f_{\pi}^{2} m_{\pi} L\right)^{3 / 2}}\left(\frac{2}{3} \sum_{i=0}^{3} \cos \theta_{i}-1\right)
\end{aligned}
$$

- partially twisting (see [Flynn \& al. hep-lat/0506016] for a numerical study)

$$
\begin{aligned}
\frac{\Delta f_{K^{ \pm}}}{f_{K^{ \pm}}} & -\frac{m_{\pi}^{2} e^{-m_{\pi} L}}{f_{\pi}^{2}\left(2 \pi m_{\pi} L\right)^{3 / 2}}\left(\frac{9}{4}\right) \\
& -\frac{m_{\pi}^{2} e^{-m_{\pi} L}}{f_{\pi}^{2}\left(2 \pi m_{\pi} L\right)^{3 / 2}}\left(\frac{1}{2} \sum_{i=1}^{3} \cos \left(\theta_{i}\right)+\frac{3}{4}\right) \\
& -\frac{m_{\pi}^{2} e^{-m_{\pi} L}}{f_{\pi}^{2}\left(2 \pi m_{\pi} L\right)^{3 / 2}}\left(\sum_{i=1}^{3} \cos \left(\theta_{i}\right)-\frac{3}{4}\right)
\end{aligned}
$$

- in the case of two particle states we have mixing
- in the neutral two-pion sector we get a mixing $\left.\| \pi \pi\rangle_{I=2} \longleftrightarrow \| \pi \pi\right\rangle_{I=0}$
- Sachrajda \& Villadoro argument goes as follows:

$$
\begin{aligned}
\left\langle 0\left\|\pi^{0}(t) \pi^{0}(t) \sigma(0)\right\| 0\right\rangle & =A_{00} e^{-t E_{0}}+B_{00} e^{-t E_{1}}+\ldots \\
\left\langle 0\left\|\pi^{+}(t) \pi^{-}(t) \sigma(0)\right\| 0\right\rangle & =A_{+-} e^{-t E_{0}}+B_{+-} e^{-t E_{1}}+\ldots
\end{aligned}
$$

- by measuring (in principle) the "red" coefficients one can build the interpolation operators that have no overlap with the energy eigenstates $\left(\| E_{0}\right\rangle$ and $\left.\left.\| E_{1}\right\rangle\right)$
- but then there is no way to use this informations...

two states model (i)

- since I_{3} is unbroken so we can stay within the neutral two-pion subspace

$$
\binom{\left.\| \pi^{+} \pi^{-}\right\rangle}{\left.\| \pi^{0} \pi^{0}\right\rangle}=\underbrace{\left(\begin{array}{cc}
\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\
-\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}}
\end{array}\right)}_{\hat{R}}\binom{\| I=2\rangle}{\| I=0\rangle}
$$

- in the center-of-mass reference frame one can in principle have a two-pion neutral state that is a superposition of the two possible pion combinations

$$
\psi(\mathbf{r})=\binom{\psi_{+-}(\mathbf{r})}{\psi_{00}(\mathbf{r})}=\hat{R}\binom{\psi_{l=2}(\mathbf{r})}{\psi_{l=0}(\mathbf{r})}=\hat{R} \psi_{l}(\mathbf{r})
$$

- the boundary conditions for the doublet field can be written as

$$
\begin{aligned}
& \psi\left(\mathbf{x}+e_{i} L\right)=\underbrace{\left(\begin{array}{ll}
e^{i \theta_{i}} & 0 \\
0 & 1
\end{array}\right)}_{\hat{B}\left(\theta_{i}\right)} \psi(\mathbf{x}) \\
& \psi_{l}\left(\mathbf{x}+e_{i} L\right)=\hat{R}^{-1} \hat{B}\left(\theta_{i}\right) \hat{R} \psi(\mathbf{x})=\hat{B}_{l}\left(\theta_{i}\right) \psi(\mathbf{x})
\end{aligned}
$$

two states model (ii)

- the Schrödinger equation for this system is

$$
\left.\left[\begin{array}{lr}
\triangle+k^{2} & 0 \\
0 & \triangle+k^{2}
\end{array}\right)-\left(\begin{array}{lr}
V_{+-,+-}(r) & V_{+-, 00}(r) \\
V_{00,+-}(r) & V_{00,00}(r)
\end{array}\right)\right] \psi(\mathbf{r}, t)=0
$$

or, in compact notation

$$
[\underbrace{\left(\triangle+k^{2}\right)}_{\hat{K}}-\hat{V}] \psi=0
$$

- the Schrödinger equation can be written also in the isospin basis, i.e.

$$
\left[\hat{K}-\hat{V}_{l}\right] \psi_{l}=0 \quad \hat{V}_{l}=\hat{R}^{-1} \hat{V} \hat{R}=\left(\begin{array}{lr}
V_{l=2}(r) & 0 \\
0 & V_{l=0}(r)
\end{array}\right)
$$

- the greenian is given by

$$
\hat{g}_{B_{l}}(\mathbf{x}-\mathbf{y})=\sum_{\mathbf{n}} \hat{B}_{l}(\theta \mathbf{n}) \hat{g}(\mathbf{x}-\mathbf{y}-\mathbf{n} L)=\left(\begin{array}{cc}
\frac{g_{\theta}+2 g_{0}}{3} & \sqrt{2} \frac{g_{\theta}-g_{0}}{3} \\
\sqrt{2} \frac{g_{\theta}-g_{0}}{3} & \frac{2 g_{\theta}+g_{0}}{3}
\end{array}\right)
$$

two states model (iii)

- the quantization condition can be derived as before and is given by

$$
\frac{\partial \hat{g}_{B_{l}}(\mathbf{x}-\mathbf{y})}{\partial y} \psi_{l}(\mathbf{y})-\hat{g}_{B_{l}}(\mathbf{x}-\mathbf{y}) \frac{\partial \psi_{l}(\mathbf{y})}{\partial y}=0
$$

- the S-wave wavefunction can be written as

$$
\psi(\mathbf{y})=j_{0}(k y)\binom{c_{2}}{c_{0}}-n_{0}(k y)\binom{c_{2} \tan \delta_{2}(k)}{c_{0} \tan \delta_{0}(k)}
$$

- the greenian can be written as

$$
\hat{g}_{B_{l}}(\mathbf{x}-\mathbf{y})=\frac{k j_{0}(k x)}{4 \pi}\left[n_{0}(k y)-\frac{j_{0}(k y)}{2 \pi^{3 / 2} k L}\left(\begin{array}{cc}
\frac{\mathcal{Z}_{00}(\theta)+2 z_{00}(0)}{3} & \frac{\sqrt{2}\left[\mathcal{Z}_{00}(\theta)-\mathcal{Z}_{00}(0)\right]}{3} \\
\frac{\sqrt{2}\left[\mathcal{Z}_{00}(\theta)-\mathcal{Z}_{00}(0)\right]}{3} & \frac{2 \mathcal{Z}_{00}(\theta)+\mathcal{Z}_{00}(0)}{3}
\end{array}\right)\right]
$$

two states model (iv)

- we get again a linear system

$$
\left(\begin{array}{lr}
q \operatorname{ctg} \delta_{2}-\frac{z_{00}(\theta)+2 z_{00}(0)}{3 \pi^{3 / 2}} & \frac{\sqrt{2}\left[z_{00}(\theta)-z_{00}(0)\right]}{3 \pi^{3 / 2}} \\
\frac{\sqrt{2}\left[z_{00}(\theta)-z_{00}(0)\right]}{3 \pi^{3 / 2}} & q \operatorname{ctg} \delta_{0}-\frac{2 z_{00}(\theta)+\mathcal{z}_{00}(0)}{3 \pi^{3 / 2}}
\end{array}\right)\left(\begin{array}{l}
c_{2} \tan \delta_{2} \\
\\
c_{0} \tan \delta_{0}
\end{array}\right)=0
$$

- that can have a solution different from the trivial one only if

$$
\left[q \operatorname{ctg} \delta_{2}-\frac{\mathcal{Z}_{00}(\theta)+2 \mathcal{Z}_{00}(0)}{3 \pi^{3 / 2}}\right]\left[q \operatorname{ctg} \delta_{0}-\frac{2 \mathcal{Z}_{00}(\theta)+\mathcal{Z}_{00}(0)}{3 \pi^{3 / 2}}\right]=2\left[\frac{\mathcal{Z}_{00}(\theta)-\mathcal{Z}_{00}(0)}{3 \pi^{3 / 2}}\right]^{2}
$$

- similar formulas have been obtained in
[He, Feng \& Liu hep-lat/0504019] [Detmold \& Savage hep-lat/0403005]

two states model (v)

- a somehow deeper insight in the previous formula can be gained by diagonalizing the symmetric matrix

$$
\begin{aligned}
& \left(\begin{array}{cc}
A & M \\
M & B
\end{array}\right)=\left(\begin{array}{lr}
q \operatorname{ctg} \delta_{2}-\frac{z_{00}(\theta)+2 z_{00}(0)}{3 \pi^{3 / 2}} & \frac{\sqrt{2}\left[z_{00}(\theta)-z_{00}(0)\right]}{3 \pi^{3 / 2}} \\
\frac{\sqrt{2}\left[z_{00}(\theta)-z_{00}(0)\right]}{3 \pi^{3 / 2}} & q \operatorname{ctg} \delta_{0}-\frac{2 z_{00}(\theta)+z_{00}(0)}{3 \pi^{3 / 2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{lr}
A+M \tan \phi & 0 \\
0 & B-M \tan \phi
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

the two eigenvalues are given by
where

$$
\tan \phi=\frac{-(A-B)+\sqrt{(A-B)^{2}+4 M^{2}}}{2 M}
$$

$$
\begin{aligned}
& \frac{(A+B)+\sqrt{(A-B)^{2}+4 M^{2}}}{2} \\
& \frac{(A+B)-\sqrt{(A-B)^{2}+4 M^{2}}}{2}
\end{aligned}
$$

two state model (vi)

- the determinant quantization condition for $\theta=\pi$

- the two eigenvalues for $\theta=\pi$

two state model. . . conclusions

By assuming negligible finite volume corrections one can

- choose two values of θ such that the energy of the scattering state is fixed (... different volumes!)
- solve together the two corresponding quantization conditions
- extract the $I=2$ and $I=0$ scattering phases.
- the mixing can be calculated $(\tan \phi)$...further generalization of LL formula?

