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Phase ordering in chaotic map lattices with additive noise

Leonardo Angelini∗, Mario Pellicoro, Sebastiano Stramaglia
Dipartimento Interateneo di Fisica, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari, Italy

Received 26 March 2001; received in revised form 18 May 2001; accepted 21 May 2001
Communicated by A.P. Fordy

Abstract

We present some result about phase separation in coupled map lattices with additive noise. We show that additive noise acts
as an ordering agent in this class of systems. In particular, in the weak coupling region, a suitable quantity of noise leads to
complete phase separation. Extrapolating our results at small coupling, we deduce that this phenomenon could take place also
in the limit of zero coupling. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The role of noise as an ordering agent has been
broadly studied in recent years in the context of both
temporal and spatiotemporal dynamics. In the tem-
poral case, that was first considered, external fluctu-
ations were found to produce and control transitions
(known asnoise-induced transitions) from monostable
to bistable stationary distributions in a large variety
of physical, chemical and biological systems [1]; the
phenomenon ofnoise-induced order in chaotic sys-
tems has also been analyzed (see, for example, [2]).
As far as spatiotemporal systems are concerned, the
combined effects of the spatial coupling and noise
may produce an ergodicity breaking of a bistable state,
leading to phase transitions between spatially homoge-
neous and heterogeneous phases. Results obtained in
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this field include critical-point shifts in standard mod-
els of phase transitions [3], purenoise-induced phase
transitions [4], stabilization of propagating fronts
[5], and noise-driven structures in pattern-formation
processes [6]. In all these cases, the qualitative (and
somewhat counterintuitive) effect of noise is to enlarge
the domain of existence of the ordered phase in the pa-
rameter space.

It is the purpose of this Letter to analyse the role
of additive noise in the phase separation of multi-
phase coupled map lattices (CMLs) [7,8]. Coupled
map lattices are networks of chaotic elements intro-
duced to investigate complex dynamical phenomena
in spatially extended systems. They consists of chaotic
maps locally coupled diffusively with some coupling
strengthg. In these systems one observes multista-
bility that is the remainder, for small couplings, of
the completely uncoupled case [9]. For large enough
couplings one observes non-trivial collective behavior
(NTCB) [10]: collective quantities, such as spatial av-
erages, display the onset of long-range order in spite

0375-9601/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(01)00362-0



294 L. Angelini et al. / Physics Letters A 285 (2001) 293–300

of local chaotic fluctuations. Moreover, the temporal
evolution of these quantities is “non-trivial”, i.e., not
asymptotically stationary.

Recently [11], phase separation mechanisms have
been investigated in a coupled map lattice model
where the one-body probability distribution functions
of local (continuous) variables has two disjoint sup-
ports. By introducing Ising spin variables, the phase
ordering process following uncorrelated initial condi-
tions was numerically studied and complete phase sep-
aration was observed for large coupling values. The
characteristic length of domainsR(t) (evaluated as the
width at midheigth of the two-point correlation func-
tion) showed a slow crossover from a short time be-
haviour to an asymptotic regime ofnormal curvature-
driven domain growth. The short time behaviour was
characterized by an effective growth exponentz (de-
fined by the scaling lawR(t) ∼ tz) continuously vary-
ing with the couplingg; at larger times the normal
growthR(t) ∼ At1/2 (peculiar to the class of univer-
sality of the time dependent Ginzburg–Landau equa-
tion [12]) was observed, the prefactorA being depen-
dent on the coupling. This study of the phase order-
ing properties allowed to determine the limit valuegc

beyond which multistability disappears and NTCB is
observed. Indeed, the following relations were used,
the first related to the early stage of the dynamics, the
second dealing with the asymptotic scaling regime:

(1)z ∼ (g − gc)
w1,

(2)A ∼ (g − gc)
w2.

Fitting early times data by (1) or asymptotic data
by (2) lead to similar estimates forgc (0.169 and
0.171, respectively, for the case studied in [11]). The
persistence exponentθ (defined byp(t) ∼ t−θ , where
the persistence probabilityp(t) is the proportion of
spins that has not changed sign up to timet) was found
to be universal in the asymptotic regime and equal to
0.204.

A similar crossover phenomenon was observed in a
lattice model of chaotic maps where the corresponding
Ising spin model conserves the order parameter [13].
This model is equivalent to a conserved Ising model
with couplings that fluctuate over the same time scale
as spin moves, in contact with a thermal bath at tem-
peratureT . The short time scaling exponentsθ andz

were found to vary with temperature; in particular, the

effective growth exponentz was observed to increase
with temperature. In the long time regimez assumes
the value 1/3, corresponding to the universality class
of a Langevin equation known as modelB [14], that
describes the standard conserved Ising model (when
bulk diffusion dominate over surface diffusion [15]).
The duration of the transient decreases with temper-
ature, becoming negligible forT � 1/3Tc, whereTc

is the temperature beyond which no phase ordering
occurs. As a matter of fact one can conclude that, in
this class of models, a proper amount of thermal noise
speeds up the phase ordering process.

In this Letter we investigate the effect of additive
noise on the phase ordering properties of a lattice of
coupled chaotic maps, where the corresponding Ising
order parameter is not conserved. It will be shown that
external noise can induce complete phase ordering for
coupling values not leading to phase separation in the
absence of the noise term. Furthermore this dynamical
transition is reentrant: phase separation appears at a
critical value of the noise intensity but disappears
again at one higher value of the noise strength.

The Letter is organized as follows. In the next
section the coupled map lattice model here considered
is introduced. In Section 3 we present our numerical
results. Section 4 summarizes our conclusions.

2. The model

Let us consider a two-dimensional square lattice
of coupled identical mapsf acting on real variables
xi , whose evolution is governed by the difference
equation

xi(t + 1) = (1− 4g)f
[
xi(t)

]

(3)+ g
∑
j∈Ni

f
[
xj (t)

] + ξi(t),

where Ni is the set of the nearest neighbors of
site i, ξi is a random number uniformly distributed in
[−σ/2, σ/2], g is the coupling strength and periodic
boundary conditions are assumed. We have chosen the
following map:

(4)f (x) =




−µ
3 exp

[
α
(
x + 1

3

)]
if x ∈ [−∞,−1

3

]
,

µx if x ∈ (−1
3, 1

3

)
,

µ
3 exp

(
α
[1

3 − x
])

if x ∈ [1
3,+∞]

,
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Fig. 1. The mapf (x) defined in (4).

that is defined for everyx in the real axis (see Fig. 1).
The map here considered is a modified version of the
map used in [11]; the modification is motivated by the
fact that, due to the noise termξi , variablesxi(t) are
not constrained to take value in[−1,1]. Choosingµ =
1.9 andα = 6,f has two symmetric chaotic attractors,
one with x > 0 and the other withx < 0. In Fig. 2
we show the invariant distribution of the attractor with
positive x ’s: it is composed of smooth pieces. The
Lyapunov exponent of the map was evaluated 0.558.

To study the phase ordering process, uncorrelated
initial conditions were generated as follows: one half
of the sites were chosen at random and the correspond-
ing values ofx were assigned according to the invari-
ant distribution of the chaotic attractor withx > 0,
while the other sites were similarly assigned values
with x < 0. We associated an Ising spin configuration
si (t) = sgn[xi(t)] to each configuration of thex vari-
able. Large lattices (up to 1000× 1000) with periodic

Fig. 2. Invariant probability distribution for the positive attractor
of f (x).

boundary conditions were used; the persistencep(t)

was measured as the proportion of sites that has not
changeds the initial value. The average domain size
R(t) was measured by the relationC[R(t), t] = 1/2,
whereC(r, t) = 〈si+r (t)si (t)〉 is the two-point correla-
tion function of the spin variables. Bothp(t) andR(t)

were averaged over many (up to thirty) different sam-
ples of initial conditions.

3. Results

As a first step we considered the noise-free case,
putting σ = 0 in our model. For various values ofg

we measured the characteristic lengthR and the per-
sistencep as functions of time; both these quantities
saturate for small couplings and show scaling behav-
iour for largeg values. Since the local map we used is
slightly different from the one used in [11], we rede-



296 L. Angelini et al. / Physics Letters A 285 (2001) 293–300

Fig. 3. The prefactorA calculated byR(t) ∼ A
√

t in the asymptotic
time regime atσ = 0 in linear (a) and log–log (b) plot. Solid lines
are best fits leading to the determination ofgc through Eq. (2).

termined the value ofgc by fitting both early times (by
Eq. (1)) and asymptotic (by Eq. (2)) data (see Fig. 3).
Our estimates aregc = 0.1652 andw1 = 0.2260 in
the first case, andgc = 0.1650 andw2 = 0.3918 in
the second one. While obviously, due to the differ-
ence between Eqs. (1) and (2), the growth exponent
depends on the time scale, the estimate of the critical
coupling is essentially the same, thus confirming the
results of [11]. We also studied atσ = 0 the behav-
iour of persistence probabilityp(t). At early times we
found that the exponentθ depends ong according to
the following law:

(5)θ ∼ (g − gc)
w3,

with gc = 0.1654. In the asymptotic regimeθ is inde-
pendent ong and equal to 0.209 (to be compared with
the valueθ = 0.204 reported in [11]).

A similar behaviour is observed for not vanishing
and small noise strengthσ . For example, in Figs. 4(a)
and (b) we show, respectively, the fit ofz andθ ver-
susg in the early times regime, while keepingσ fixed
and equal to 0.1. As one can see, data are well fitted
by the scaling forms (1) and (5), and the estimated val-
ues aregc = 0.1628,w = 0.2197 for thez exponent,
andgc = 0.1632,w = 0.2024 for theθ exponent [16].
The ratioθ/z was estimated at 0.3838. Normal coars-
ening was recovered at late times; also in this case
the prefactorA depended ong according to (2), giv-
ing the estimatesgc = 0.1629 andw2 = 0.3904. We
remark that our estimates of the critical couplinggc,
when non-vanishing and small noise is present, are
all smaller than the noise-free critical value. This fact
clearly shows that a proper amount of noise favours
the phase separation process of the system.

The comparison between the values ofgc calculated
by Eq. (1) and the ones calculated by Eq. (2) has been
made for various values ofσ . As already noticed in
the cases ofσ = 0 andσ = 0.1, the two estimates co-
incided within a reasonable degree of approximation.
Therefore in the following we limit ourselves to re-
port results evaluated in the early stages of the domain
coarsening process.

Let us now consider the regiong < gc(σ = 0) =
0.1652. Here in the noise-free case the system evolves
towards blocked configurations and no phase separa-
tion takes place. We checked, however, that this as-
ymptotic regime was attained after very long evolu-
tion times: the system spent a lot of time in metastable
states, so that the evolution curve forR and p dis-
played typical stairs structure. This structure (the times
marking the steps of the curve) was very robust, in the
sense that:

– it resisted to a change of the initial conditions
(chosen following the particular prescription of
Section 2),

– it did not depend on lattice dimension,
– a little noise (lowσ ) did not destroy it.

Nevertheless, when the amount of noise was in-
creased, the life time of these metastable states be-
came shorter and shorter, till they definitely disap-
peared forσ greater than a critical valueσc(g). For
σ > σc(g) we got again power laws forR(t) andp(t),
showing that the system separates for large times. This
behaviour is shown in Fig. 5.
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Fig. 4. The estimated scaling exponents at fixed noiseσ = 0.1: (a) the dependence of the growth exponentz from g in linear and log–log plot,
(b) the dependence of the persistence exponentθ from g in linear and log–log scale. Solid lines are best fits leading to the determination ofgc

andw through the use of (1).

We estimated the critical valueσc by fitting our data
with the ansatzz ∼ (σ − σc)

w . In Fig. 6 we show our
data corresponding tog = 0.16: we evaluatedσc =
0.1094 andw = 0.3152. The choice of this ansatz
provided accurate fitting of data for a large interval

of g letting us to give a precise measurement ofσc .
We were able to measure in such a wayσc for g

greater than 0.025; at smaller values ofg the dynamics
became very slow and we were not able to numerically
extract the exponentz.
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Fig. 5. The effect of additive noise on the time evolution of the
domain sizeR(t) atg = 0.05. The three curve are relative toσ = 0,
σ = 0.06,σ = 0.24.

As σ was increased, we found a transition at another
critical value of the noise strength showing that the
system does not separate beyond this criticalσ . As an
example in Fig. 7 we show the exponentz versusσ
for g fixed and equal to 0.17. The transition seems to
be discontinuous.

We repeated this analysis for several values ofg.
Interpolating the above described data for the critical
noise strength, we built the phase diagram for the
model shown in Fig. 8. The system separates in the
shaded area, that is it tends asymptotically to complete
phase ordering. Points in the white area correspond
to an asymptotic regime of the system where clusters
of the two phases are dynamical but their mean size
remains constant; only forσ = 0 one has blocked
configurations with clusters fixed in time. Our data
concerng greater than 0.025, however we extrapolated

Fig. 6. The estimated growth exponentz versusσ at fixed coupling
g = 0.16 in linear and log–log scale. Also shown is the best fit with
the functionz ∼ (σ − σc)

w .

the two critical curves towardsg = 0. We observe,
interestingly, that the extrapolation of the two curves
seem to meet atg = 0; further investigation is needed
to clarify the behavior of the noisy system close to
g = 0.

4. Conclusions

In this Letter we have shown that additive noise
acts as an ordering agent in this class of systems, i.e.,
for a suitable amount of noise the system may order
even for values of the coupling strength for which no
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Fig. 7. The estimated growth exponentz versusσ at fixed coupling
g = 0.17.z goes abruptly to zero atσ = 1.2 showing that the system
does not separate beyond this threshold.

separation is observed in the absence of the noise term.
We have also reported some evidence that this might
hold in the deep multistability region, i.e.,g close to
zero. A simple explanation for this behavior is the
following. Small values of the spatial coupling lead, in
the noise-free case, to spatially blocked configurations
where interfaces between clusters of each phase are
strictly pinned. A proper amount of noise makes the
system cross these barriers thus leading to complete
phase separation. We have numerically constructed a
phase diagram describing this behavior. As already
mentioned, a similar effect was observed in chaotic
map lattices evolving with conserved dynamics, where
we found that the growth process is favoured by
temperature [13]; in the present case the additive noise
plays the role of the thermal noise.

Fig. 8. The phase diagram in the planeσ–g. The shaded area repre-
sents the parameter region in which the system separates asymptot-
ically.
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