
VOLUME 85, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000
Clustering Data by Inhomogeneous Chaotic Map Lattices
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A new approach to clustering, based on the physical properties of inhomogeneous coupled chaotic
maps, is presented. A chaotic map is assigned to each data point and short range couplings are introduced.
The stationary regime of the system corresponds to a macroscopic attractor independent of the initial
conditions. The mutual information between pairs of maps serves to partition the data set in clusters,
without prior assumptions about the structure of the underlying distribution of the data. Experiments on
simulated and real data sets show the effectiveness of the proposed algorithm.

PACS numbers: 05.45.Ra, 02.50.Rj, 05.45.Tp, 89.70.+c
The clustering problem consists of partitioning N given
points into K groups (clusters) so that two points belonging
to the same group are, in some sense, more similar than
two that belong to different ones [1]; it has applications
in several fields such as pattern recognition [2], learning
[3], and astrophysics [4]. Data points are specified either
in terms of their coordinates in a D-dimensional space or,
alternatively, by means of an N 3 N “distance matrix”
whose elements measure the dissimilarity of pairs of data
points. This problem is inherently ill-posed; i.e., any data
set can be clustered in drastically different ways, with no
clear criterion to prefer one clustering over another. The
most important sources of ambiguity are the choice of the
number of clusters and the fact that a satisfactory clustering
of data depends on the desired resolution.

When prior knowledge of the clusters’ structure is
available (e.g., each cluster can be represented by a
multivariate Gaussian distribution), parametric approaches
can be used so that prior information is incorporated
in a global criterion, thus converting clustering onto an
optimization problem. Examples of parametric clustering
algorithms are variance minimization [5] and maximum
likelihood [6]. In many cases of interest, however, there
is no a priori knowledge about the data structure. Then it
is more natural to adopt nonparametric approaches, which
make fewer assumptions about the model and therefore are
suitable to handle a wider variety of clustering problems.
Usually these methods employ a local criterion to build
clusters by utilizing local structure of the data (e.g., by
identifying high-density regions in the data space) [1].

A very interesting nonparametric approach for cluster-
ing, based on the physical properties of an inhomogeneous
Potts model, has been recently proposed [7] and has proven
to perform better than other nonparametric methods. The
central feature of this method, called superparamagnetic
clustering (SPC), is to change the similarity index of the
problem from the interpoint distance to the spin-spin cor-
relation function of the statistical model; the temperature
of the Potts model controls the resolution at which data
are clustered.
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In the present work we propose a new nonparametric
method based on the physical properties of inhomogeneous
coupled chaotic maps. We assign a map to each data point
and introduce couplings, between pairs of maps, whose
strength is a decreasing function of their distance. The mu-
tual information between pairs of maps, in the stationary
regime, is then used as the similarity index for clustering
the data set.

Systems of diffusively coupled chaotic maps, living on
regular lattices, have been extensively studied; for large
coupling strength they exhibit nontrivial collective behav-
ior, i.e., long-range order emerging out of local chaos [8].
Globally coupled chaotic maps, a mean-field extension
of coupled map lattices, have also been considered and
their rich variety of behaviors has been outlined [9]; it has
been shown that mutual synchronization of chaotic oscil-
lations is a robust property displayed by globally coupled
maps, and clusters of synchronized maps appear in the sta-
tionary regime. In a recent paper [10] randomly coupled
maps were studied and the formation of dynamical clusters
of almost synchronized maps was observed. Here we asso-
ciate a system of chaotic maps to a given data set so that the
architecture of the network bias the formation of clusters
of almost synchronized maps to correspond to high-density
regions in the data set. Let us introduce coupled chaotic
maps on finite size inhomogeneous lattices. Given a set of
N points �ri� in a D-dimensional space, we assign a real
variable xi [ �21, 1� to each point and define pair inter-
actions Jij � exp�2�ri 2 rj�2�2a2�, where a is the local
length scale. The time evolution of the system is given by

xi�t 1 1� �
1
Ci

X
jfii

Jijf���xj�t���� , (1)

where Ci �
P

jfii Jij , and we choose the logistic map
f�x� � 1 2 2x2. We note that the equivalent dynamics
to (1) in terms of variables yi�t� � f���xi�t���� is
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This form may be more familiar for researchers in neural
© 2000 The American Physical Society



VOLUME 85, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000
networks, f playing the role of a nonmonotonic transfer
function [11]. A detailed analysis of the behavior of this
class of models will be given elsewhere [12]; here we
describe only some properties which will be useful for
clustering purposes.

The stationary regime of Eq. (1) corresponds to a macro-
scopic attractor which is independent of the initial condi-
tions. To study the correlation properties of the system,
we consider the mutual information Iij , between variables
xi and xj , whose definition is the following [13]. If the
state of element i is xi�t� . 0, then it will be assigned a
value 1, otherwise it will be assigned 0: this generates a
sequence of bits, in a certain time interval, which allows
the calculation of the Boltzmann entropy Hi for the ith
map. In a similar way, the joint entropy Hij is calculated
for each pair of maps, and finally the mutual information is
given by Iij � Hi 1 Hj 2 Hij . The mutual information
is a good measure of correlations [14] and it is practically
precision independent, due to the rough coarse graining
of the dynamics. If maps i and j evolve independently,
then Iij � 0; if the two maps are exactly synchronized,
then the mutual information achieves its maximum value,
in the present case ln2, due to our choice of f.

Let us now describe our simulations of large systems
(up to N � 100 000) randomly generated with uniform
density r in dimension D. The average mutual informa-
tion between two maps at distance r obeys the following
scaling form:

I�r , a, r, N� � ID

µ
r
a

∂
, (3)

where ID is a scaling function which depends on D but it
is independent of N and r, provided that a is much less
than the linear size of the system. In Fig. 1 we show the
scaling function for D � 2, 3, and 4; we see that full syn-
chronization is never achieved even for very close pairs of
maps, indeed for r close to zero ID is less than ln2. At
large distances ID tends to a nonvanishing value; i.e., the

FIG. 1. Scaling function for the mutual information for D � 2
(solid line), D � 3 (dashed line), and D � 4 (dotted line).
system is characterized by long range correlations. More-
over, the asymptotic value ID�`� increases with the di-
mension D; in the limit D ! `, the system becomes a
mean-field model and it can be expected that in this limit
the system fully synchronizes. Now we give the defini-
tion of k-nearest neighboring sites for our lattices: sites i
and j are nearest neighbors if and only if j is one of the
k nearest points of i and i is one of the k nearest points
of j. The typical distance between two nearest neighbors
obviously depends on the density r. Because of the scal-
ing law (3), it follows that, at fixed a, the typical amount
of mutual information between nearest neighboring maps
depends monotonically on the density r. Let us now turn
to consider a real data set, made of regions with different
densities: we find that the mutual information between two
neighboring maps, in this case, depends on the local den-
sity around the pair. In particular, it is small in low-density
regions. Our algorithm employs the contextual character of
the mutual information for clustering the data set.

Now we describe our method. The value of a is fixed as
the average distance of k-nearest neighbor pairs of points
in the whole system (our results are quite insensitive to the
particular value of k). We remark that everything done thus
far can be easily implemented in the case when instead of
providing the �r� for all data we have an N 3 N distance
matrix. For the sake of computational convenience, we
keep only interactions of a map with a limited number of
maps, those whose distance is less than 3a, and set all other
Jij to zero. Starting from a random initial configuration of
�x�, Eq. (1) is iterated until the system attains its stationary
regime; the mutual information is then evaluated for pairs
of maps. The clusters are identified in the two following
steps. (i) A link is set between all pairs of data points such
that Iij . u, where u is a threshold. (ii) Data clusters are
identified as the linked components of the graphs obtained
in step (i).

The value of u controls the resolution at which the data
set is clustered; by repeating the two steps above described
for an increasing sequence of u values, hierarchical clus-
tering of the data is obtained.

The following toy problem illustrates how the proposed
algorithm works. Figure 2 contains two dense regions of
400 and 1900 points on a dilute background of 200 points.
In Fig. 3 we show the frequency distribution of (3a) dis-
tances between neighboring points and (3b) mutual in-
formation between neighboring points. The peak around
I � 0, in Fig. 3b, corresponds to points in the background.
In Fig. 4 we show the size of the three biggest clusters,
found by our algorithm, versus u. For u , 0.035 the al-
gorithm identifies a single big cluster of about 2400 points,
the remaining 100 points are distributed among 58 clusters
of size smaller than 9. For 0.035 , u , 0.285 two big
clusters, corresponding to the two dense regions, are iden-
tified; these clusters consist of 1913 and 411 points, re-
spectively, while the remaining 176 points are distributed
in 98 clusters of size smaller than 9. As u increases above
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FIG. 2. Artificial data set consisting of two dense regions of
400 and 1900 points, in a dilute background of 200 points.

0.285, the biggest clusters break into smaller and smaller
clusters. As can be observed from Fig. 4, the stability of
the largest clusters (existence of a plateau) is a clear indi-
cation of the optimal partition among the whole hierarchy
yielded by our algorithm. The results above described cor-
respond to k � 20, however, values in the range 5 50 give
similar results.

Now we turn to consider a real data set extracted from
LANDSAT thematic mapper (TM) images. We analyze
data taken from a satellite image of an area in southern
Italy consisting of 1489 pixels each of which is represented
by six spectral bands. The ground truth was determined by
means of visual interpretation of areal photos followed by
site visits. The area study includes seven landcover classes:
(A) Coniferous reafforestation, 69 points; (B) bare
soil, 85 points; (C) urban areas, 91 points; (D) vineyards,
300 points; (E) cropland, 316 points; (F) pasture, 265
points; (G) olives groves, 363 points. In Fig. 5 the first
two principal components of the data set are shown:
this problem is characterized by clusters of different size

FIG. 3. Frequency distribution of (a) distances between neigh-
boring points in Fig. 2 and (b) mutual information of neighbor-
ing points.
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FIG. 4. Size of the three biggest clusters obtained by our
algorithm, on the data set in Fig. 2, as a function of the
threshold u.

and density. In spite of these difficulties, our algorithm
succeeds in resolving the data structure, as it is shown in
Fig. 6. For u , 0.02 our algorithm identifies a single big
cluster; at u � 0.02 this cluster splits in two clusters, one
corresponding to class A and the other corresponding to
data points of the other six classes. By successive transi-
tions, all the seven classes separate. Both the six clusters
partition and the seven clusters one appear stable: prior
knowledge is needed, in this case, to select the correct
partition of the data set. In the range 0.27 , u , 0.35
seven clusters, consisting of 69, 72, 88, 295, 325, 298, 291
points, respectively, are stable; the remaining 51 points
are distributed among 18 small clusters of size smaller

FIG. 5 (color). First two principal components of the LAND-
SAT data set (see the text). Comparing the variances along the
six principal axes, it turns out that also the third and fourth prin-
cipal components are relevant to this data set.
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FIG. 6. Hierarchical structure of the LANDSAT data set as
it has been found by our algorithm; the u values at which the
clusters split can be read on the axis at the bottom. These results
have been obtained using k � 20, however, values in the range
10 50 give similar results.

than 7. Hence, 96.6% of data is classified; the purity
of the classification (percentage of correctly classified
points) is 96.2%. As u is further increased, these clusters
break into smaller and smaller parts [the cluster which
breaks first is the one corresponding to class (D)]. It is
worth mentioning that an unsupervised exploration of the
underlying structure in a data set (such as the one provided
by the proposed method) makes easier the design of a
supervised classifier for the same problem (see [15]).

It is clear that the proposed algorithm has similarities
with the SPC method; indeed both methods associate a
physical system to data-set points and employ a physi-
cal correlation (spin-spin correlation [7] or mutual infor-
mation) as the similarity index. We apply SPC to the
LANDSAT data set and obtain the same hierarchical struc-
ture of data as the one from our method; the best perfor-
mance corresponds to seven clusters of 70, 48, 78, 255,
317, 284, and 283 points, respectively: 89.6% of data
are classified with 96.6% purity [16]. Hence, as far as
the data set at hand is concerned, our algorithm classifies
more points than SPC with almost the same purity. Our
algorithm has the following computational advantage over
SPC: the hierarchical structure of data is obtained by a
simple thresholding at each value of u, while SPC requires
a Monte Carlo at each value of the temperature. This re-
duces the computational time by orders of magnitude. On
the other hand, SPC provides a supplementary indicator,
the susceptibility [7], which may be helpful to detect the
optimal partition of the data set.

Some remarks are in order. We have also clusterized
data using the average distance between maps jxi 2 xjj,
in the stationary regime, as the dissimilarity index: the
results were less stable than those obtained by use of the
mutual information. Our choice of the logistic map f�x� �
1 2 ax2, with a � 2, is due to the circumstance that the
corresponding invariant measure is symmetric around 0,
so that the mutual information can, in principle, achieve
its maximum value ln2; other maps with symmetric in-
variant measure work as well, while choosing maps with
nonsymmetric measure would reduce the allowed range of
values for the mutual information. Finally, we wish to
reemphasize the aspects we consider as the main advan-
tages of our algorithm: its simplicity, the physical system
to be simulated being described by simple deterministic
equation (1), and its general applicability, no a priori
knowledge of the clusters’ structure is to be assumed. Ap-
plications of our algorithm to other real problems will be
presented in a forthcoming paper [12].
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