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Abstract

We perform a comparison of two jet clusterization algorithms. The first one is the standard Durham algorithm and the second
one is a global optimization scheme,Deterministic Annealing, often used in clusterization problems, and adapted to the problem
of jet identification in particle production by high energy collisions; in particular we study hadronic jets inWW production by
high energye+e− scattering. Our results are as follows. First, we find that the two procedures give basically the same output
as far as the particle clusterization is concerned. Second, we find that the increase of CPU time with the particle multiplicity
is much faster for the Durham jet clustering algorithm in comparison with Deterministic Annealing. Since this result follows
from the higher computational complexity of the Durham scheme, it should not depend on the particular process studied here
and might be significant for jet physics at LHC as well.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of clustering consists of optimal
grouping of observed signal samples (set of features).
In many circumstances one seeks the partition of the
given set of features which minimizes a prescribed
cost function. This function should embody the a pri-
ori knowledge on the geometrical aspects of the prob-
lem. By this way clustering is thus transformed in an
optimization task. The main applications of cluster-
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ing are in pattern recognition and signal compression.
Here we address a different problem, i.e., the task of
partitioning particles produced in high energye+e−
annihilation into a certain number of cone regions,
i.e., small solid angles. This is the well known prob-
lem of jet clustering in high energy physics. It arises
from the need to relate energy and momentum of the
cluster (jet) to the four-momentum of the underlying
and unobservable parton. There are at the moment a
few well established jet clustering algorithms, to be
reviewed in Section 2. While tuned to the particular
problem at hand they were not studied from the point
of view of the theory of clustering algorithms and are
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not generally considered as minimization problems of
prescribed cost functions. We feel this is a matter to
be further investigated and, therefore, in this Letter we
wish to raise a few questions: can the existing jet al-
gorithms result from some variational principle? Can
the general theory of clustering algorithms be used
to reduce the computational time of jet algorithms?
In this Letter we answer these questions by consider-
ing a specific algorithm, the Deterministic Annealing
(DA) [1,2], to be reviewed in Section 3; using an anal-
ogy with statistical physics, DA relates the problem of
clustering to that of finding the global minimum of a
thermodynamical potential. In order to compare this
method to the traditional ones we will study a specific
issue, i.e., the production of jets inWW production
in high energye+e− colliders. This application will
be discussed in Section 4. Our results are contained
in Section 5; they show that the jet clustering algo-
rithms and Deterministic Annealing give similar per-
formances, but the computational complexity of DA is
considerably lower; the use of methods based on vari-
ational principles, such as DA, would be therefore cer-
tainly of interest in the analysis of hadronic final states
at the future accelerators such as the Large Hadron
Collider at CERN, where the multiplicities might be
very high and the computational complexity extremely
demanding for ordinary jet clustering algorithms.

2. Jet clustering algorithms

The most common jet clustering algorithms used
in studies ofe+e− annihilation are the JADE [3],
Durham [4] and Cambridge [5] algorithms.1 The
prototype of these clustering methods and the oldest
one is the JADE algorithm. One considers all the
possible pairs(i, j) of particles in the final state,
with energiesEi , Ej , and angular separationθij and
computes the jet resolution variable

(1)yij = yJ
ij ≡ 2EiEj (1− cosθij )

E2
vis

,

whereEvis is the visible energy, i.e., the sum of ener-
gies for all particles observed in the final state. This

1 For a review of these and other jet algorithms see [6]. For a
review of the Monte Carlo generators and their connections with the
jet algorithms see [7].

test variable is then compared to a given threshold
parameterycut and the pair is recombined into a new
pseudo-particlek of four-momentum

(2)pk = pi + pj

(E scheme) provided thatyij � ycut. The algorithm is
then reiterated to the new set of (pseudo)particles and
it stops when, for all pairs,yij � ycut. The number of
pseudoparticles at the end of the algorithm counts the
number of jets, which is therefore fixed byycut. The
theoretical advantage of this recombination scheme
lies in the absence of collinear and infrared singulari-
ties, as the regions of phase space where these diver-
gences could be generated are automatically excluded.

A drawback of the definition (1) is that also
particles at very different angles can be recombined
in one pseudoparticle. This is due to the fact that
2EiEj (1− cosθij ) ≈ M2

ij , whereM2
ij is the invariant

mass of the two particles. On the theoretical side
this implies the presence of large order corrections
that cannot be resumed; on the experimental side the
trouble is thatghost jets may appear, i.e., jets along
directions where no particles are present. To cure this
problem the Durham algorithm was introduced, which
is based on the following definition of the test variable:

(3)yij = yD
ij ≡ 2 min{E2

i ,E
2
j }(1− cosθij )

E2
vis

.

Clearly the resolution criterionyD
ij > ycut becomes, for

small angles,k2
Ti > E2

visycut, wherekTi is the trans-
verse momentum of theith particle to the direction
of thej th one. In this way the algorithm tries to min-
imize the transverse momentum and not the invariant
mass. On the other hand the recombination scheme is
still given by (2).

The Durham algorithm presents a problem at very
small values ofycut. As a matter of fact, when one
tries to resolve the final state to get a larger number
of jets, particles that are almost collinear can be
recombined, thus producing unwantedjunk jets. This
feature is solved by the Cambridge algorithm by
introducing a third step in the process of formation of
the clusters. Before considering the jet resolution and
the recombination steps, one introduces an ordering
variablevij = 2(1− cosθij ). Once the pair(k, �) with
the minimum value ofvij is found, the resolution
variableyk� (still given by (3)) is computed and, after
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a comparison withycut, the recombination scheme (2)
is applied.2

In this Letter we are not interested in the analysis
of small ycut as we consider the production of aW
pair in e+e− scattering, i.e., a fixed (four) number of
jets. In this context the Durham and the Cambridge
algorithms produce analogous results. Therefore in the
sequel we will mainly refer to the Durham algorithm.
For a more detailed comparison among jet algorithms
one can however see [8].

3. Deterministic Annealing

Deterministic Annealing algorithms [1] (for re-
views see [2]) take their name from the annealing pro-
cedure in physical chemistry. This process starts from
a metastable state of the metal, reached by a sudden
decrease of temperature; the annealing procedure con-
sists in a gradual cooling by which the mineral passes
from the metastable phase to the low temperature min-
imum of energy. During the annealing procedure the
system passes through states of thermal equilibrium
and, correspondingly, of minimal Helmholtz free en-
ergyF . In the limit of low temperatures one is there-
fore guaranteed that the system is in the global mini-
mum and not in a local minimum ofF .

A computational method trying to simulate anneal-
ing was invented about twenty years ago [9], based
on the Metropolis algorithm [10]. This method, called
Simulated Annealing (SA) not only simulates anneal-
ing in its quest for the global minimum of the free en-
ergy, but also in its stochastic evolution; because of
this last feature it can become rather time-consuming.
This snag is avoided in Deterministic Annealing, the
method we will use here. It is still an annealing method
because it points to the global minimum ofF and al-
lows gradual cooling of the system, but it is deter-
ministic since the procedure of optimization (see be-
low) is obtained deterministically and not by a random
process. In the sequel we shall describe DA in general
terms, while in the next section we shall discuss the
modifications we have implemented to adapt it to the

2 The Cambridge algorithm implements the so-calledsoft freez-
ing, i.e., if the particles are not recombined the softer particle is
removed and considered as a resolved jet.

particular problem of the determination of the four jets
in WW production ine+e− diffusion.

To start with, one defines two sets, the set of the
data pointsx ∈ X and the set of the representative
pointsy ∈ Y , also calledcode—vectors, i.e., the points
that eventually represent the clusters. One also defines
a distanced(x, y) between the data pointx and the
code-vectory. In jet physicsx ≡ pµ, i.e., the four
momentum of one of the particles in the final state,
while y is the four momentum of a cluster; as for the
distanced(xi, xj ) we will take it coincident withyij ,
i.e., one of the basicdistances in the jet physics.

DA fixes the code-vectors by minimizing the Helm-
holtz free energy

(4)F ∗ = −T
∑
x

ln

(∑
y

e−d(x,y)/T

)

with respect to the code vector. Basic ingredient of the
calculation is the use ofF ∗ as free energy; it is based
on the use of the conditional probabilities

(5)p(y|x) = e−d(x,y)/T

Zx

with

(6)Zx =
∑
y

e−d(x,y)/T .

It is well known that the Gibbs distribution (5) is the
minimum point of the free energy, defined in general
as

(7)F = D − TH.

Here the role of the energy is played by

(8)D =
∑
x,y

p(x, y) d(x, y),

wherep(x, y) is the joint probability ofx andy and
the entropy is theShannon entropy, i.e.,

(9)H = −
∑
x,y

p(x, y) lnp(x, y).

By minimizing F in (7) one getsF ∗ provided the
Gibbs distribution is used; therefore the use of the
probability (5), together with the algorithmic search
for a minimum ofF ∗ in the variablesy, is tantamount
to the quest of the global minimum of the Helmholtz
free energy.
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The optimal code-vectorsy are obtained by solving
the equations

(10)
∑
x

p(y|x)∇y d(x, y)= 0,

which is found by the above mentioned procedure of
minimization ofF ∗.

During the cooling process (T → 0) one encoun-
ters phase transitions that are signalled by an increase
of the number of clusters. This shows the similarity be-
tween DA and the jet clustering algorithms, where the
number of clusters can also increase by a reduction of
the parameterycut. This aspect is not particularly rele-
vant here, since the number of jets is held fixed. Nev-
ertheless we discuss it for two reasons. First, it allows
to stress an important aspect of DA that we will mod-
ify in Section 5 for the application in jet physics, i.e.,
the definition of the optimal code-vectors; second, it
could be useful in other applications where the num-
ber of jets is not fixed a priori.

To increase the number of clusters one starts with
a high value ofT ; it can be shown that in the limit of
very high temperatures the minimum condition (10)
has one degenerate solution (all they equal). This cor-
responds to one cluster and, in the statistical mechan-
ics analogy, to a completely disordered phase, typical
of a high temperature state. After computation of this
unique valuey1 by (10), one performs a deterministic
updating according to the formula

(11)y1 =
∑
x

xp(x)p(y1|x).

If a pre-chosen convergence test is satisfied, one
decreases the temperature. One can show that there are
phase transitions when a valuey0 is found such that

(12)det

[
1− 2

T
Cx|y0

]
= 0,

whereCx|y is the covariance matrix computed with
the (posterior) conditional probabilityp(x|y). If a
solution of (12) is obtained for a certain critical
temperature

(13)T = T 1→2,

then the previous set of code-vectors corresponds no
longer to a minimum of the free energy. Therefore one
adds a new cluster (therefore, there are now two code-
vectors,y1, y2) and the procedure of optimization is

repeated. In general, instead of (11) one has

(14)yj =
∑

x xp(x)p(yj |x)
p(yj )

.

The algorithm continues until a pre-fixed temperature
(or number of clusters) is reached. It is worth noticing
that this procedure does not assign uniquely each data
point to a cluster, because some points can remain
unassigned [1]. Therefore, in the final step, one cools
down the system (T → 0) until all the particles are
assigned.

4. Deterministic Annealing and W masses in e+e−
diffusion

A W pair created ine+e− annihilation produces
in the subsequent evolution four jets; the study of
this multi-jet final state is one of the methods for the
determination of theW mass since the four jets can be
divided into two pairs, each having as invariant mass
m2

W . The world average for this parameter is [11]

(15)mW = (80.422± 0.047) GeV/c2,

while the measurement at LEP, obtained combining
both the hadronic and semileptonic channels, is [12]

(16)mW = (80.450± 0.039) GeV/c2.

Given the exploratory character of this Letter we
are less interested in the prediction of the actual
experimental data than in the comparison of the DA
and jet algorithms; therefore, we choose to work with
Monte Carlo generated data. The data set consists of
about 1500 events produced at the LEP energies by
the KORALW generator [13], which includes all the
four-fermion diagrams contributing toW+W−-like
final states. It produces the primary reference sample,
with a W mass ofmW = 80.35 GeV (Fig. 1). The
KORALW generator is interfaced with JETSET [14]
for fragmentation.

There is one modification to be implemented in
the DA algorithm for its use in the present study. As
we have mentioned above, by Eq. (14) one would
extract the code-vectors. Eq. (14) would produce in
the present case a vector representative of the jet
corresponding to the average 4-momentum in the
jet J ; however, in all the jet clustering algorithms
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Fig. 1. TheW -mass distribution of the actual data;mW in GeV/c2.

discussed in Section 2 the momentum of the single
particle is compared to thetotal momentum of the
jet J and not to the average momentum of the
particles in the clusterJ . In order to reproduce this
feature we modify the DA algorithm by imposing only
minimization in the probability distributionp(yj |x)
and not also in the variablesy. In practice we use
Eqs. (4)–(9), but not (10) and (14); in particular we
use, instead of (14),

(17)yj =
∑
x

xp(yj |x),

wherep(yj |x) is still given by (5).
The practical implementation of the algorithm at

fixed temperature consists of alternate updating of
Eqs. (17) and (5), until convergence is reached. The
temperature is then lowered and iteration process is
restarted from the solution found at the previous tem-
perature. Let us finally observe explicitly that when the
temperature decreases below the critical valueT 3→4

the number of jets remains fixed (K = 4). Since we go
to very small temperatures,T � 10−3, this means that
the term−TH in (7) is negligible; therefore, the final
clusterization corresponds in practice to a minimum of

the cost function

(18)D =
4∑

k=1

∑
x∈Jk

d(x, yk),

wherex ∈ Jk means that the particlex belong to the
jet Jk of code-vectoryk. D assumes the form (18)
because the probabilitiesp(x, yj ) assume only the
values 1 or 0, depending on the assignment of the
particle of 4-momentumx to the clusterJk or to
another jet.

5. Results and discussions

Given the data set, be it simulated or real, one has
to adopt a reconstruction criterion; we will use the fol-
lowing one.3 Among the three possible pairings of the
four jets Jα : {(J1, J2), (J3, J4)}, {(J1, J3), (J2, J4)},
{(J1, J4), (J2, J3)}, with invariant masses(m2k,

m2k+1) (k = 1,2,3 for the three pairings), one chooses
the one with the minimum value of

(19)|m2k − m2k+1|.
This method tends to underestimate theW mass, a de-
fect that could be corrected by different methods [15];
this analysis is, however, of no interest at the mo-
ment. Our results are presented in Fig. 2. We plot
the distribution of theW -mass for the reconstructed
data set obtained using the Durham algorithm (on the
left) and the Deterministic Annealing algorithm (on
the right). One can see that the two algorithms pro-
vide similar results, giving as average value of theW

mass:mW = 79.08 GeV/c2 for the Durham method
andmW = 79.33 GeV/c2 for DA.

The study of the differences between the two algo-
rithms can be made using a quantitative definition of
the similarity between the two clustering procedures.
We introduce thesimilarity parameter S by the for-
mula:

(20)S =

n∑
i=1

n∑
j=i+1

min{Ei,Ej }δα1
ij α

2
ij

n∑
i=1

n∑
j=i+1

min{Ei,Ej }
,

3 Other methods are discussed in [15].
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Fig. 2. TheW -mass (in GeV/c2) distributions as reconstructed by
the Durham jet algorithm (left) and Deterministic Annealing (right).

whereδα1
ij α

2
ij

is the Kronecker delta and

(21)α1
ij = 1

if the particles i, j belong to the same cluster as
defined by the Durham algorithm, while

(22)α1
ij = 0

otherwise;α2
ij is defined in a similar way, but with

the cluster identified by DA. It is clear thatS = 1 is
equivalent to say that two particles are in the same
cluster according to the Durham method if and only
if they are in the same cluster also with DA; with
S = 0 this never happens. The factor min{Ei,Ej }
gives lower weight to pairs with at least one low-
energy particle. The histogram of the similarityS is
shown in Fig. 3: we find that a fraction of 87.8% of
the events haveS > 0.90, i.e., to a large extent they
are clustered identically by the two algorithms. It may
be useful to observe that the percentage of events with
S > 0.80 is 99.0%. Therefore we can conclude that not
only the two algorithms give similar results as far as
the averageW mass is concerned, as we have already
observed, but also that the composition of the jets
provided by the two clustering procedures is identical
in a very large fraction of the cases.

Fig. 3. The distribution of the similarityS.

The consequence of this analysis is twofold; on one
side we are insured that in a large majority of cases
the Durham algorithm provides a minimum of the cost
function (18); therefore, we can say that, to a large
extent, the Durham algorithm is not only a local, but
also a global clusterization procedure.

On the other side, the results obtained so far show
that the use of the DA algorithm might be seen as a
practical alternative to the standard jet clusterization
methods in the analyses involving huge computational
tasks. This advantage may not be particularly impor-
tant in the production ofWW pairs at the LEP ener-
gies, but could be significant at higher energies.

The reason why we expect a significant improve-
ment at high multiplicities when using the DA al-
gorithm lies in the computational complexity of DA
which is of the orderNα (N = number of parti-
cles) with α � 1, in comparison withα � 2 for the
Durham algorithm. As a matter of fact in the DA algo-
rithm basically one performsone loop over the parti-
cles, see, e.g., Eq. (4) that contains a single loop over
x = 1, . . . ,N . On the other hand, in the case of the
Durham algorithm there aretwo loops as shown by
the discussion in Section 2 (computation ofyij for
i, j = 1, . . . ,N ). In both cases one expects values for
α slightly larger than, respectively,α = 1,2; as a mat-
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Fig. 4. CPU time (in seconds), vs. particle multiplicity for the
Deterministic Annealing algorithm (lower curve) and the Durham
algorithm (upper curve).

ter of fact in the DA case there are convergence criteria
at fixed temperature to be satisfied; in the Durham case
one performs other logical operations, in particular the
reordering process, which also grows withN . We have
performed the analysis of the computational complex-
ity of the two algorithms for Monte Carlo generated
e+e− events of increasing multiplicity. The results are
reported in Fig. 4 where we compare the CPU time (in
seconds) for the DA algorithm (lower curve) and for
the Durham algorithm (upper curve) versus the multi-
plicity N . A fit of the two curves of Fig. 4 gives, for
largeN ,

Deterministic Annealing: t ∝ N1.83,

(23)Durham algorithm: t ∝ N2.97.

These results are obtained by a processor Pentium IV
1700.

6. Conclusions

We have compared the results found by the standard
Durham algorithm with those obtained by a clustering
algorithm based on the Deterministic Annealing pro-
cedure. The latter is a minimization algorithm, often

used in clusterization problems, and has been adapted
to the process studied here, i.e., jet identification in
particle production by high energy collisions. In par-
ticular we have addressed the study of the hadronic
jets inWW production by high energye+e− scatter-
ing, but our results are rather general and should not
depend on the specific reaction considered. They are
as follows. First, we find that the two procedures give
basically the same output as far as the clusterization
is concerned. This means that one can interpret the
Durham algorithm not only as a local computational
scheme, but also as a global algorithm, i.e., a scheme
attempting a minimization of a prescribed cost func-
tion. Second, we find that the CPU time of both al-
gorithms increases with the particle multiplicity, but
the growth is much faster for the Durham jet cluster-
ing algorithm, which is a consequence of the higher
computational complexity of the Durham scheme in
comparison with Deterministic Annealing. This result
might be significant for jet physics at future accelera-
tors such as the Large Hadron Collider at CERN.
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