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Abstract

Some results about phase separation in coupled map lattices satisfying a conservation law are presented. It is shown that
this constraint is the origin of interesting antiferromagnetic effective couplings and allows transitions to antiferromagnetic and
superantiferromagnetic phases. Similarities and differences between this models and statistical spin models are pointed out.
 2002 Published by Elsevier Science B.V.
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1. Introduction

Coupled map lattices (CMLs) are spatially ex-
tended dynamical systems that have been considerably
investigated recently on various grounds [1]. They
are approximations to continuous systems particularly
well suited for numerical and analytical calculations.
From another point of view they can be considered as
phenomenological models describing the dynamics of
a large number of macroscopic chaotic subsystems. In
both cases one is interested to study their behaviour
at length scales larger than the scale where chaos is
present.

E-mail address: leonardo.angelini@ba.infn.it (L. Angelini).

Particular attention has been dedicated to the study
of collective behaviour in CMLs in presence of con-
servation laws. This class of models are considered
relevant to describe several physical phenomena like
surface waves in a container or disturbances in fluids,
where mass, momentum and energy are conserved.
A motivation for their interest is that, as it can be easily
argued, the existence of conservative quantities should
play an important role in determining the long dis-
tance properties in such systems. Several authors [2–4]
studied coupled map models with conservation laws as
possible models for chaos in extended systems, exam-
ining phase transitions from ordered to chaotic states
that are driven by the map parameters or by the value
of the conserved quantity.

CMLs have been studied [5–8] also from another
point of view. In this case authors try to transfer con-
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cepts and results from equilibrium statistical mechan-
ics to systems, like CMLs, whose dynamics is micro-
scopically irreversible and does not satisfy detailed
balance. In particular, studying systems of chaotic
maps that exhibit a Ising-like symmetry, it can be
shown that they undergo, in particular conditions, a
phase-ordering dynamics. At large scale lengths the
evolution of these deterministic systems has coarsen-
ing properties similar to Ising models or their contin-
uous versions, the time-dependent Ginzburg–Landau
equations [9,10]; the local chaos plays the role of the
stochastic noise present in a heat bath or in the noise
term of the Langevin equation. One expects obviously
that, in the conserved order parameter case, this kind
of CMLs should show a behaviour similar to the so-
called model B. This model is described by the Cahn–
Hilliard [11] equation, leading to asymptotic state in
which the phases occupy two large domains separated
by a single boundary. Phase separation in CMLs with
conserved dynamics was observed [12] in the case of
a lattice of chaotic maps in contact with a thermal bath
evolving with Kawasaki dynamics. In this case the
temperature plays the role of an addictive noise, while
chaos produces chaotically fluctuating couplings. It
was definitely shown by Kockelkoren and Chaté [13]
that the coarsening process for this model is strictly
similar to that of the corresponding Ising model. In the
same article the authors proposed to study conserved
dynamics of CMLs using the approach introduced by
Oono and Puri [14]. In this approach the dynamics
corresponds to the discretization of the Cahn–Hilliard
equation, each map on a site of the lattice represent-
ing the effect of a coarse-grained free energy. It was
also shown that this model undergoes a phase transi-
tion between a short range and a long range ordered
phase.

The purpose of this Letter is to extend the analy-
sis of this model and to study the effect on the
phase separation process of the coordination num-
ber used to discretize Laplacian operators on the lat-
tice. In particular, it will be shown that the effect of
the second Laplacian derived from the Cahn–Hilliard
equation, assuring the order parameter conservation,
amounts to the introduction of an effective antifer-
romagnetic coupling. The competition between fer-
romagnetic and antiferromagnetic couplings in these
systems plays an important role in the phase separa-
tion process.

2. The model

Following [13,14] we consider a two-dimensional
square lattice of coupled identical mapsf acting
on real variablesxi . The discrete-time dynamics is
governed by the following equations:
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whereN is the chosen number of neighbors of sitei,
the sum is over these neighbors andg is the coupling
strength; periodic boundary conditions are assumed.
The conservation of the order parameter

(3)M =
∑
i

xi

is incorporated by Eq. (2), representing the second
Laplacian in the Cahn–Hilliard equation.

The map used in the numerical simulations is the
following:
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i.e., a modified version of the map used in [13],
that was defined on the interval[−1,1]. The map
(4) is defined for everyx ∈ R; the modification is
motivated by the fact (already stressed in [4] and
verified by the author) that, due to the redistribution
step of the Oono–Puri dynamics (2), variablesxi(t)
are not constrained to take value in[−1,1]. Details
on this map can be found in [15], where it was
used for similar motivations. Choosingµ = 1.9 and
α = 6, f has two symmetric chaotic attractors, one
with x > 0 and the other withx < 0; this allows the
unambiguous definition of Ising spin variablesσ ti =
sgn[xti ] associated to each dynamical system.

To study the phase separation process, uncorrelated
initial conditions were generated as follows: one half
of the sites were chosen at random and the correspond-
ing values ofx were assigned according to the invari-
ant distribution of the chaotic attractor withx > 0,
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while to the other sites were similarly assigned values
with x < 0. With a good approximation the order para-
meterM vanishes. We associated an Ising spin config-
uration{si(t)} = {sgn[xi(t)]} to each configuration of
thex variable. Lattices from 256×256 up to 512×512
with periodic boundary conditions were used. The av-
erage domain sizeR(t) was measured by the rela-
tion C[R(t), t] = 1/2, whereC(r, t) = 〈si+r (t)si (t)〉
is the two-point correlation function of the spin vari-
ables.R(t) was averaged over many different sam-
ples of initial conditions. More complicate correlation
functions and related lengths, that will be introduced
in the following, have been measured. Another vari-
able is often considered in growth processes: the per-
sistencep(t) [16], defined as the fraction of sites that
have not changed their initials values. It has not been
evaluated because, to get a reliable calculation of per-
sistence, one should use very large lattices which is
not compatible with a fine scan of the coupling vari-
able.

One normally expects that, for large couplings, the
conservation of the total “magnetization” (2) leads to
equilibrium states where there are only two large do-
mains with aligned spins. However, this conservation
law is also compatible with more complicate phases.
In statistical spin models, they are generated by the
presence of repulsive couplings in the Hamiltonian.
In the sequel it will be shown that Eq. (2), in addi-
tion to the conservation law, generates these new cou-
plings.

3. Nearest neighbors simulations

As a first step we considered maps interacting with
their nearest neighbors, corresponding toN = 4 in
Eqs. (1), (2). For various values ofg the character-
istic lengthR was measured as a function of time:
R saturates for weak couplings at values small com-
pared to the lattice size. For larger couplings it shows
scaling behaviour and one gets complete phase sepa-
ration in the spin variables. The value ofg that dis-
criminates between these two regimes isg  0.03; its
precise evaluation is beyond the purposes of this pa-
per and will be presented elsewhere. Figs. 1 and 2
illustrate these changes. Fitting late times growth in
the phase separation region with the lawR(t) ∼ Atz

one gets the valuez= 0.34± 0.01, in agreement with
the result found by [13] in the case of 8 neighbors
and with the Model B class of universality expecta-
tion (Lifshitz–Slyozov law). For higher values of the
coupling one could expect a faster transition to the
coarsening regime; however, one finds a metastabil-
ity region betweeng = 0.07 andg = 0.125. Studying
R as a function of time one finds at small values of
R a plateau whose extension grows withg. Between
g = 0.120 andg = 0.125 the system gets trapped
into blocked configurations with interfaces between
equal phase domains completely pinned. Atg = 0.127
the behaviour ofR(t) suddenly changes, the plateau
being reduced to a flex point; eventually, forg � 0.128
in few time-steps the lattice reaches a completely or-

(a) (b)

Fig. 1. Snapshots of a 256× 256 sites CML with four neighbors forg = 0.01 (a) andg = 0.05 (b) after 106 time steps. The full range of maps’
values has been colored with a 16 gray levels scale from black to white.
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(a) (b)

Fig. 2. Time evolution of the domain sizeR(t) for g = 0.01 (a) andg = 0.05 (b). The solid lines is a best fit to the late time growth with power
law R(t)=Atz with z= 0.341.

(a) (b)

Fig. 3. The antiferromagnetic ordering atg = 0.128 for a CML with four neighbors: (a) a magnified portion (100× 100) of a 512× 512 lattice
after 2000 time steps, (b) the probability distribution function for the same lattice. The full range of maps’ values has been colored with a 16
gray levels scale from black to white.

dered antiferromagnetic state (see Fig. 3(a)). Antifer-
romagnetic (AF) ordering at largeg is a normal phe-
nomenon: forg > 1/N a map at timet +1 gets a con-
tribution with changed sign from its value at timet
and configurations with aligned spins become unsta-
ble. This happens also in the case of CMLs with non
conserved order parameter, i.e., in absence of the sec-
ond step of the dynamics. However, in the present case
the AF ordering is extremely precocious. The reason
for this behaviour is the second redistributive step (2)
of the conservative dynamics. Let us focus our atten-

tion on sitei and let us suppose, for example, that the
first step (1) increases, in average, the values of its
neighbor maps. It is evident that, in the second step
(2), this increment will result in a negative contribu-
tion to thexi variable. This fact produces an effective
antiferromagnetic coupling. As we said, atg = 0.128
the system quickly reaches antiferromagnetic order-
ing, and this phenomenon is preceded by a blocked
phase and by metastability, which can be considered as
pre-transitional effects. In fact, for lower values ofg,
one can see that the domains of aligned spins have a
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(a) (b)

Fig. 4. Pre-transitional checkerboard structure atg = 0.127: (a) a magnified portion (100× 100) of a 256× 256 lattice after 106 time steps, (b)
the probability distribution function for the same lattice. The full range of maps’ values has been colored with a 16 gray levels scale from black
to white.

checkerboard structure in which values of maps be-
longing to various peaks of the asymptotic probabil-
ity distribution functions (PDFs) alternate (see Fig. 4).
The transition to the AF ordering occurs because, for
g � 0.128, the asymptotic PDF reduces to two nar-
row peaks of opposite sign (see Fig. 3(b)). The AF or-
dering appears suddenly, the antiferromagnetic corre-
lation function displaying a jump after few tens of time
steps. This ordering process survives for higher values
of g; subsequently the dynamics slows down until, by
increasingg, the system evolves towards blocked con-
figurations. As many characteristics of this behaviour
are similar to the case ofN = 8, we defer a more de-
tailed analysis and discussion. Indeed, a new interest-
ing phenomenology comes out from the study of this
same system when “Laplacians” are discretized using
a higher number of neighbors, and it confirms the role
of the second step of the dynamics as generator of an
effective AF coupling.

4. Nearest and next to nearest neighbors
simulations

For small g the behaviour of the CML in the
case of eight neighbors is not substantially different
from the case of four neighbors, apart from the
fact that the scale ofg is smaller. Forg < 0.007

no phase separation is attained and the system gets
blocked when equal spin domains reach the dimension
of few lattice spacings. Forg between 0.007 and
0.110 the growth of opposite phases domains does
not stop and one measures a growth exponent of
1/3 at late times. However, for intermediate times
scales, in the interior of equal spin domains one
can note the formation of a new sub arrangement of
the maps, which corresponds to stripe-ordering. The
stripes in each domain correspond to peaks in PDFs
belonging to the same attractor of the map (4). Fig. 5
shows forg = 0.065 a snapshot of the lattice and the
sites PDF after 100 000 time steps. Forg � 0.110
the competition between ferromagnetic and lamellar
ordering processes is resolved in favor of the former,
but this situation reverses for higher values ofg. In
this case the dynamics is essentially composed by
two stages: starting from a random configuration (with
zero average) of the map variables there is initially
the formation of little striped domains oriented in the
two directions of the lattice, then the motion of the
domains walls produces a coarsening process.

To study the growth of these striped domains
we have considered, following [17,18], a new order
parameter and two related correlation functions. These
articles study the growth processes of striped domains
in the superantiferromagnetic (SAF) phase of the Ising
model with nearest and next to nearest neighbors
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(a) (b)

Fig. 5. The underlying striped structure for a CML with eight neighborsg = 0.065: (a) a magnified portion (100× 100) of a 256× 256 lattice
after 105 time steps, (b) the probability distribution function for the same lattice. The full range of maps’ values has been colored with a 16
gray levels scale from black to white.

interactions. We recall that the SAF phase, in which
the ground state is four-fold degenerate and consists
in alternate up and down spins rows or columns,
is related to the existence of an antiferromagnetic
coupling between next to nearest neighbors. In fact,
if we call J1 and J2 the couplings between nearest
neighbors and between next to nearest neighbors
respectively, the SAF phase corresponds to|J1| <
2|J2| andJ2> 0. The existence of striped domains is,
therefore, another corroboration for the existence of an
effective antiferromagnetic coupling in the model here
presented. Let us divide the lattice in 2× 2 cells and
consider a two-component local order parameter

(5)� �α =
(
ψ �α

1

ψ �α
2

)

defined in each cell�α in the following way:
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whereσ �α
i are the clockwise ordered spins of the cell

�α. This order parameter allows a univocal labelling
of the four SAF phase ground states.� allows the
introduction of two correlation functions [18]:
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where�x and �y are unit vectors in thex andy direc-
tions and〈· · ·〉 indicates the average over lattice cells
and different initial conditions.Γ� andΓt measure, re-
spectively, the correlation properties in the direction
where the spins are aligned and in the direction where
the spins are alternate.

Similarly to C(r, t), it is possible to get from the
measurement ofΓ�(r, t) andΓt(r, t) two characteris-
tic lengthsR�(t) andRt(t) and to point out the compe-
tition between the ordering processes. Fig. 6(a) shows
R,R� andRt as a function of time atg = 0.105. There
is an initial increase of all these three lengths, then, af-
ter few dozens of time steps, the ferromagnetic order-
ing prevails,R� andRt go to zero and the growth ofR
goes on, reaching the scaling regime power law with
exponent 1/3. For higher values ofg the situation re-
verses. Fig. 6(b) shows what happens atg = 0.111;R�
andRt get quickly the Lifshitz–Slyozov law regime.
These two evolutions are also represented in Fig. 7 and
Fig. 8 through two snapshots of the lattice att = 100
and t = 50 000 for these two values ofg. Another
interesting feature is the presence of an anisotropic
growth of domains in the SAF phase similar to that
measured by [18]:R� is always greater thanRt , as
long as we are far enough from the formation of a sin-
gle domain covering the whole lattice. This happens,
as reported in [18], when the coupling between nearest
neighbors is ferromagnetic, while the reverse is true
when this coupling changes sign.
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(a) (b)

Fig. 6. (a) The three measured lengthsR (circles),Rl (squares),Rt (triangles) as a function of time atg = 0.105; the solid lines is a best fit
to the late time growth with power lawR(t) = Atz with z = 0.334. (b) The same quantities atg = 0.111; a power law fit gives in this case
z= 0.337 forRl andz= 0.326 forRt .

(a) (b)

Fig. 7. Snapshots of a 256× 256 sites CML with eight neighbors forg = 0.105 (a) after 100 and (b) after 50 000 time steps. The full range of
maps’ values has been colored with a 16 gray levels scale from black to white.

This situation, in which one has complete striped
ordering, persists increasingg until g  0.13. For
higher values the incapacity of the system to get
complete phase separation couples to a behaviour of
the maps’ asymptotic PDFs that have characteristics
similar to the caseN = 4. In fact, while atg  0.13,
e.g., PDFs display two narrow peaks at opposite values
of thex variable (Fig. 9(a)), increasingg they display
first the broadening of these peaks, then the birth of
two new peaks at symmetricx positions (Fig. 9(b)).

A further increase ofg gives rise to an increasing
number of peaks (Fig. 9(c)).

At this point, order parameters like those borrowed
from the Ising model, the ferromagnetic, antiferro-
magnetic and lamellar ones, become inadequate to
describe the dynamics of these systems. Even when
the lengths related to these order parameters have a
monotonous behaviour, one finds growth exponents
different from the expected value of 1/3. This expo-
nent is related to the mechanism decreasing the cur-
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(a) (b)

Fig. 8. Snapshots of a 256× 256 sites CML with eight neighbors forg = 0.111 (a) after 100 and (b) after 50 000 time steps. The full range of
maps’ values has been colored with a 16 gray levels scale from black to white.

(a) (b) (c)

Fig. 9. Probability distribution functions for CMLs with eight neighbors after 105 time steps forg = 0.13 (a),g = 0.20 (b),g = 0.30 (c).

vature between domains in which the order parame-
ter has an homogeneous value and to the conservation
law. It is worthy to mention that the systems we are
studying satisfy, in this regime, the conservation law
of a quantity that is no longer the true order parameter
for the coarsening process.

5. Conclusions

In this Letter some results on the time evolution of
lattices of coupled maps (to which an Ising spin can
be associated) in presence of a conservation law have
been presented. Studying both the cases of nearest and
next to nearest neighbors, intervals of the coupling
have been located in which the coarsening process is

similar to the classical growth phenomena described
by model B, confirming that also deterministic sys-
tems like CMLs are able to show similar processes of
phase separation. It has been pointed out an interest-
ing feature, i.e., the effective antiferromagnetic cou-
pling rising from the conservation law constraint. Nor-
mally the study of these systems has been limited to
low values of the couplingg and antiferromagnetic ef-
fects have not been considered. The present analysis
shows that they give rise to an interesting phenom-
enology, including a scaling region and a phase dia-
gram which resembles in some case the Ising model.
For example, forN = 8, starting from a ferromagnetic
phase, one can go, increasing the coupling value, to a
superantiferromagnetic phase through a paramagnetic
one. However, particularly for strong couplings, we
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have shown the greater complexity of these models.
This complexity cannot be described by concepts and
quantities transferred from the study of spin statistical
models.

Furthermore, this study confirms the importance of
theoretical investigations of the asymptotic probability
distribution functions [19,20] with respect to the
ordering process. With regard to this, one cannot
exclude that, after a time longer than the one used
in these simulations, eight neighbors CMLs evolve
definitely towards SAF configurations and their PDFs
towards two peaks structure also in the case of strong
coupling.

Finally, in this analysis the parameter in (2), cor-
responding to the mobility coefficient in the Cahn–
Hilliard model, has the fixed value 1/N , so that, with
the subsequent sum, makes an average of the neigh-
bors’ value increments. Exploring the role of this pa-
rameter could be the subject of future investigations on
these systems.
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