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If one analyzes the stochastic behaviour of classical Weyssenhoff particles imbedded in a relativistic thermostat one ob-
tains (for random jumps at the velocity of light) a probability distribution corresponding to Proca’s equations for nonzero-

mass spin-one particles.

Recent research [1,2] on possible stochastic inter-
pretations of the Klein—Gordon equation has shown
that for a non-point-like, spinless, scalar, extended
particle imbedded in a random thermostat

(a) Nelson’s stochastic equations naturally result

from the assumption that its random stochastic
jumps occur at the velocity of light so that asa
consequence

(b) the Klein—Gordon equation correctly describes

its stochastic distribution.
These new results can, of course, be considered as an
encouraging step along the long line of attempts to in-
terpret quantum mechanics in terms of various models
of realistic random subquantum behaviour [2].

One difficulty remains however, i.e., the imbedding
of spin into this type of models. Clearly this implies
the introduction of new properties into stochastic mo-
dels. The aim of the present letter is to present the
consequences of such a modification i.e., to show that
if one assumes that our stochastic thermostat is built
from the classical extended spinning particles introdu-
ced by Weyssenhoff and Raabe [4] (and later fully
analysed by Halbwachs [5]), one immediately recovers
the particular form of the Proca equation utilised by

de Broglie and Vigier [6] to interpret electromagnetic
phenomena. -

To do this we start from the above mentioned [1]
demonstration. We consider in a first step our particle
as submitted to stochastic fluctuations described by
Nelson’s equation for free particles, i.e.,

(DD —8D6D)x* =0, 1

where x* (7) is the position of the particle in Minkowski
space—time and (in the notation of Guerra—Ruggiero
[11) D and § D represent, respectively, the total deri-
vative with respect to the proper time 7 and the stoch-
astic derivative, namely

D=3/ar+bkd,, 8D =8b43, — (n/2m)D,

where b* = Dx* is the drift velocity and §b* = § Dx*
the stochastic velocity. Moreover, it is in general pos-
sible to show that the stochastic velocity is given by

8bk = — (h/m) ¥ log (p1/2),

where p is a density which satisfies the continuity equ-
ation
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dp/dr = —0,(pb") . (2)

At this stage we make the physical assumption [1]
that the drift current is irrotational so that we can
write: b* = (1/m)o¥ ®, where @ is a scalar function
containing x*# and 7 as independent variables.

In a second step we introduce as stochastic elements
the classical spinning particles of Weyssenhoff and
Raabe [4]. As one knows [5] we can represent each
individual particle of that type by a space-like vector
R, (representing the distance between the spinning
particle’s center of mass and the center of matter den-
sity) and thus substitute for the scalar field density p
of the spin-zero particles the new density p = a,4",
where a¥ = p1/2 RV is the real amplitude of a more ge-
neral complex vector field whose phase factor disap-

pears in making the scalar product for p. Now a straight-

forward calculation [1] shows that, if we choose

ap/ot =0 (because we are only interested, for the time
being, in the time-independent wave equations)
Nelson’s equation and the continuity equation become,
respectively:

a“(T"“’ﬁTMﬁ+a”|:la,,4 VPP 2 a0

-2 —_—"}=0,0
202 p K2 K2 ar) )

a*(20%a, * 9,0 +42,09)=0, 4)
where

T8 = g*9vaP — P
is a tensor equal to zero in the case of a scalar field.

We can now easily derive Proca’s equations. Indeed,
if we recall that a* = p1/2R* with RER =1, it is easy
to show that
Tov 7;,“,{3/2,02 =R'OR,, .

So that, if we further complete our model by the hypo-
thesis that the constant vector RV satisfies an equation
like
ORY =cyR?, )
where ¢, is a constant, we can reduce eq. (3) to
akla, ~ ov®a, P 2m 3P _

p K2

i

_h2 ot
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where £ is a constant that we can make equal to zero
by rearranging the energy scale. Eq. (3) then becomes

0"Pa, b 2 aq))
i _f__r bbbt =
a [:Da# ( 2 +h2 o a#] 0. (6)

As said in the beginning, in order to have eq. (5) it is
sufficient to adopt the classical Weyssenhoff model.

As shown by Halbwachs [5], in each particle’s rest
frame eq. (5) becomes R? = coR?, which yields exact-
ly Weyssenhoff’s equation for the free spinning particle.
Moreover, in our model RY (the constant vector which
joins the center of matter to the center of gravity of
the Weyssenhoff particle) is also perpendicular to the
velocity b* = 9#®/m, so that we have [S] 4,8 = 0.
Now if we consider egs. (4) and (6) as representing,
respectively, the imaginary and real part of a total
cquation, it can easily be shown that (with B,=a
X exp(id/h) we get

o

BX((h2/2m) O + ihd/or) B* =0,

an equation which reduces to the following set of equ-
ations:

— (R2[2m)0IB, = ihdB, /o7 , (7)

by successive Lorentz transformations which allow
only one B* to be different from zero.

Finally, if we follow the tentative suggestion of
Feynman [7] in the way proposed by Guerra and Rug-
giero [1] and assume for B,, the proper-time depen-
dence

B, (x.,1)=exp Gi(mc2 /M) 1) A, (x),

we find the classical set of Proca equations:
(O - m2c2[n?) 4, =0.

Beyond the importance that this first stochastic deri-
vation of a wave equation for spinning particles can
have in general, the authors want to stress in conclusion
that this proposed model for spin-one bosons paves
the way to possible interpretations for Aspect’s forth-
coming experiments [7], experiments first devised to
verify Bell’s inequalities, but which now raise the pro-
blem of the existence of space-like interactions between
quantum mechanical independent measurements {9].
Indeed, preliminary experiments seem to favor the
quantum mechanical predictions and hence new fea-
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tures for transmission of information in a space-like
direction. An analysis of this phenomenon was given
by the authors in previous papers [2,9] only for spin-
less particles. It is clear that an adequate interpreta-
tion must concern the analysis of correlated spin-one
bosons, namely photons, which are the particles utili-
zed in these experiments.
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