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Abstract. We analyse a stochastic linearised extension of the Yukawa-Takabayasi-Feyn- 
man bilocal oscillator model and show that: (a) the external Poincare group P commutes 
with an internal extension of the Lorentz group, i.e. U(1) 0 S0(6,2); (b) the corresponding 
internal fundamental spinor representation of the associated D4 algebra yields eight quarks 
and eight leptons, which correspond to heuristic proposals of Nambu and Salam. 

All recent attempts to classify elementary quarks and leptons start from the heuristic 
introduction of assumed gauge groups and Yang-Mills interactions, completed with ad 
hoc Higgs multiplets. These theories, illustrated by Salam (1968) and Weinberg 
(1967), justifiably claim important success, but leave open the question of the origin of 
the new internal ‘charges’, as well as the cause of relations of the type Q = T + Y/2  
which connect quantum numbers associated with couplings of a different physical 
nature. 

The aim of the present paper is to revive and develop an alternative line of research 
started by Yukawa (1950a, b, 1953,1956). In this type of model, particles are extended 
time-like hypertubes in space-time which can be represented, in the first approxima- 
tion, by bilocal structures that yield internal quantised states corresponding to quarks 
and leptons. This model has been studied in quantum form by Feynman er a1 (1971) 
and essentially developed by Takabayasi (1965a, b, 1968, 1979). 

Until now, various attempts along this line have failed to produce satisfactory results 
(Katayama 1963, de Broglie et a1 1963). The new step taken here is to introduce (in the 
trail of recent developments in the stochastic interpretation of quantum mechanics 
(Vigier 1979, Cufaro Petroni and Vigier 1979)) the following idea: to add to the 
space-time coordinates x1 and x2 of the two points, bound together by a relativistic 
harmonic oscillator potential, supplementary stochastic motions Sxl and axz, which 
reflect the action of an isotropic constant thermostat. They, as well as their cor- 
responding momenta Spl and Sp2,  satisfy the relations ( S X ~ , ~ )  = ( S P ~ , ~ )  = 0, where (. . .) 
represents averages taken on four-dimensional volume elements in configuration 
space. 
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Before we do this, let us briefly revisit Feynman’s presentation of Yukawa’s model, 
in order to discuss its linearisation and the connection between external PoincarC and 
internal homogeneous Lorentz groups of motion. Feynman’s equation for the two- 
body bound state is (Feynman et a1 1971) 

(1) [2(Ox, + CLJ - (w2/16)(x1 - x d 2  + mi195 ( X I ,  X Z )  = 0. 

By introducing the centre-of-mass and relative variables (Kim etal 1978) Q = ;(xl + x2) 
and q = ( i f i ) (x l  - x2), it can be written in the form (for w = 1) 

[OQ + m i  + - q2)1#(Q, 4 )  = 0 (2) 
separable in the Q and q variables; writing 4(Q, q )  = $E(Q)$I(q) one obtains the 
equations 

( O ~ + ~ Z + E ) $ E ( Q ) = O  (3) 
and 

Equation (3) describes the external motion of the bilocal system: it is a Klein-Gordon 
equation, and its solution of the form I , ~ ~ ( Q )  = exp( - iPQ) (with P2 = M 2  = mi  + E )  

corresponds to the free motion of the system. The external wavefunction &(Q) 
transforms under the usual external PoincarC group P = T 0 S0(3,1), since under a 
translation x ~ , ~  + x1,2 + a we have Q + Q + a. The case of the internal wavefunction 
&(q) is different, as the relative coordinate q remains invariant under translation. 
Accordingly, it transforms under homogeneous Lorentz transformation. For the scalar 
case, considered in Feynman et a1 (1971) there is no problem. The problem arises when 
we linearise equations (3) and (4) into 

( Y $ - M ) $ E , ~ ( Q )  = 0 (3a) 

to obtain external and internal spinors, J / E , a ( Q )  and rLI,,(q). Here and correspond 
to the operators iaQ and ia,, respectively. As is known, (Takabayasi 1979) it is not 
possible to linearise (4), unless we impose the supplementary condition q & ~ ~ , ~  (4) = 0. If 
this is done, then we can introduce commuting external and internal SO(3,l) trans- 
formations by utilising Chevalley’s (Chevalley 1946, Halbwachs and Souriau 1964) left 
and right translations so(3,1)L,R, of the homogeneous Lorentz group SO(3,l). This 
bilateral group BilSO (3,l)  is equal to S0(3 ,1) ,0  S0(3,1)R= (SO(3,l) 0 S0(3,1))/C, 
where C is the centre of the whole group. Such commuting left and right Lorentz 
translations (having the same Casimir operators) have already been used by de Broglie 
etal (1963) in their rotator particle model. Now, SO(3,l)L and S 0 ( 3 , 1 ) ~  (which can be 
represented by three-dimensional complex rotations) correspond to external and 
internal transformations respectively, i.e. to angular momentum projections on 
Einstein tetrads associated with the observer and the particle. Moreover, one sees that 
for R = 0 the model reduces to the rotator model of de Broglie et a1 (1963). 

Now we introduce our stochastic motion, as was done by GuCret et a1 (1979) 
(denoted I hereafter). The variable Q becomes Q + sQ, but nothing is changed in the 
average motion of Q, since the internal temperature does not modify the centre-of- 
mass motion. The relative variable q goes into q + 6q, but then equations (4) and (4a) 
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transform according to the (6+2)-dimensional group of motion, introduced in I to 
describe the motion of a relativistic oscillator embedded in a random stochastic 
thermostat. 

To include the stochastic behaviour in the motion described by equation (4), which 
evidently stems from the Hamiltonian 

HI= (1/2m)(p’+w2q2), (5a)  

we note that the stochastic contributions Sq and S p  behave like new independent 
variables, so that we can consider the total set of variables as describing two indepen- 
dent points (i.e. q and S q )  in a (6 + 2)-dimensional configuration space. Of course, if one 
assumes an isotropic constant thermostat, we have ( q ) = q  and ( p ) = p  along with 
( S q )  = ( S p )  = 0, where the ( ) represents averages taken on four-dimensional volume 
elements in configuration space. As is known, any motion in our new 16-dimensional 
phase space implies an assumption on the connection of the sets (4, p )  and (Sq, S p ) .  If 
we limit ourselves to the descriptions of small (regular plus random) motions at the 
bottom of an arbitrary potential well, (i.e. To harmonic oscillations) we can generalise 
HI (in equation (Sa)) into 

Hi = (1/2m)[(p + S P ) ( P  + S P )  + w2(q  + Sq)(q + &)I ( 5 b )  
which yields the corresponding Liouville equation. This yields an average motion 
described by the average Hamiltonian ( H i )  which can be calculated. Indeed since we 
have ( A B )  = ( A ) ( B )  for any pair of independent variables A, B (with A # B) in phase 
space we obtain (with (4) = q and ( p )  = p )  

H1=(Hf)= ( 1 / 2 m ) [ p 2 + S p 2 + W 2 ( q 2 + S q 2 ) ]  (6) 

which describes motions in our 2(6 + 2)-dimensional phase space and has been analysed 
from Cartan’s point of view by GuCret et a1 (1973), denoted I1 hereafter. 

The Hamiltonian (6) and its linearised form given in I1 are invariant under the 
symplectic group Sp(12,4) and admit as the general symmetry group U(6,2)  3 
SU(1, 1) 0 S0(6,2) ,  where S0(6 ,2)  now contains SO(3, l)R, as its subgroup which acts 
on the two distinct spinor representations, 8 and s (along with a third, vector represen- 
tation S’), interchangable under the discrete automorphisms of the corresponding D4 
Lie algebra analysed by Cartan (1938). 

We note here that the introduction of internal stochastic motions (represented by 
S q )  is mathematically equivalent to doubling the number of space-time coordinates, i.e. 
to move into an extended configuration space. In particular, the new internal time 
coordinate represents the relative time projection of the random part of the motion on 
the particle’s rest mass frame. This solves the age-old problem of interpreting the new 
internal times which necessarily appear in bilocal or extended particle models. 

If one then further transforms HI to a Feynmann-Gell’Mann type of equation, i.e. to 
Hi = (1/2m)P2, which can be linearised into Hi= (1/2m)(rp), with the help of the 
16-dimensional matrices r calculated in I, we can assume that the wavefunctions +E and 
+I are simultaneously spinors, or vectors, and classify all the various fermionic particles 
into the two spinor families +f (8) and +Y(s), the corresponding antiparticles belonging 
to opposite values of U( l )  in G = U(l)  0 S0(6,2) ,  which leaves invariant H i  and Hi. 
The Weyl-Cartan algebra of S0(6 ,2)  explicitly calculated by GuCret et a1 in I1 and 
Vigier (1976) (denoted 111) yields (along with the Casimir invariant operators) four 
diagonal commuting operators H, ( i  = 1 ,2 ,3 ,4 )  and 24 ‘raising’ and ‘lowering’ opera- 
tors E, and E-, with [E,, E-,] =&,HI, where a ,  denotes a root and H I  =M12, 
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H2 =M34, H3 =M56 and H4 Moreover, x1 + . . . +x6 - x 7  - x g  =constant in 
&,2. We thus obtain for J = 1/2’ (external spinors) eight states of the same ‘colour’ 
denoted yellow (i.e. y), corresponding to the finite non-unitary representation (8) (see 
table 1) with four quarks and four leptons belonging respectively to the representations 
(4) and (4) of the subgroup S0(6)=SU(4)  with opposite H4 values, each state is 
characterised by the eigenvalue Ho of U ( l )  and one spinor component of the ket E, = 
jH1, H2,  H3, H4) determined by Cartan (1938). These H-values are given in the first 
five columns of table 1; the last columns give, as in 111, the usual quantum numbers: 

( 2 2 / 3 ) -  (H4/2) = H1 + H4, along with S = HI + H2 and C(charm) = (3H4/2) -2 which 
we have determined (following Yukawa’s (1956) and Okubo’s (1978) suggestions, that 
corresponds to Yang-Mills gauge fields) from a choice of compact subgroups of GI 
preserved in typical superpositions (combinations) of our basic oscillating states. 

N Cufaro Petroni, 2 MariC, Dj ZivanoviC and J P Vigier 

2 2 2 2  

T3 = (HI -Hz)/2, Y = ($)(HI + H2 - 2H3), 2 = -(;)(HI + H2 + H3), Q = T3 + (Y/2) - 

Table 1. 

HO HI HZ H 3  H 4  T 3  Y Z S, C Q Particle SU(3) SU(2) 

tIZ3 -1 -; -f -f  +; 0 0 +a  -1 0 0 cy singlet 
doublet 
H -  L -t3 -1 +f +; -; +; 0 +$ - a  +1 +1 +1 s’ 3--2 

-1 + f  -4 +$ +; +; -4 - 4  1 0 +1 +1 uy triplet doublet 
H3=+; 

-t2 -1 -f +; +f + f  -3 -; - a  0 +1 0 dY 

t4 -1 +I 2 +I 2 +’ 2 - f  0 0 - 2 + 1  0 o u ,  singlet 
doublet 

(124 -1 -; -; + f  -; 0 -: +: -1 -1 -1 7- H 3 = + ;  

0 -1 -1 e- triplet doublet t234 -1 -; +; -f  -; -; +; + a  

This choice of internal Hi combinations to label the quantum numbers results in a 
unique way from our dynamical model for two reasons. The first is that the cor- 
responding Yang-Mills fields must be associated with particular compact subgroups 
embedded in our general non-compact dynamical group. The second is that these 
subgroups must yield the SU(2) CSU(3) CSU(4) embedding which gives the correct 
generalisation of the Gell’Mann-Okubo formulae. Moreover, following Cartan, the 
choice of the Hi to label the spinor components cannot be avoided. Indeed the S0(6 ,2 )  
28 generators contains 16 simultaneously diagonalisable commuting operators, out of 
which 12 are Casimir operators whose eigenvalues label the representations and four 
(i.e. the Hi’s) differentiate the spinor (vector) components. 

Of course, the corresponding antiparticles will have J = 1/2- and the opposite 
Hi-values, since they correspond to internal mirror motions in our scheme (Flato et a1 
1965). Table 1 yields a unique combination of Salam’s (1974, 1976) Fe-type fermions 
with four yellow quarks qy and four leptons 1’. Curiously, these quarks are just the 
‘Yukawon’ first proposed by Yukawa and discussed in the literature by de Broglie et a1 
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(1963). They can be mapped on Salam's (1974) and Pati and Salam's (1973'1974a, b, 
1975) integer quark classification. 

Table 2 with j = 1/2+ yields the (blue) s octet of particles (the antiparticles being 
obtained as for 8) which corresponds to F,-type fermions. The corresponding SU(3) 
quark triplet corresponds to Sakata's well known model. 

The last fundamental octet of (coloured) gluon vector particles (table 3) splits into a 
SU(4) sextet (i.e. two SU(3) triplets) and two SU(4) singlets which ensure (11) quark- 
lepton transition from 8 to s and vice versa. It has J = 1'. This also maps on Salam's 
(1974) Pati and Salam's (1975, 1976) and Pati et al's (1976) proposals. 

We now mention some consequences of our model. 
A. The model evidently contains the essential part of the strong-interaction results 

predicted by Nambu (Han and Nambu 1965), Pati and Salam in their integer-charged 

Table 2. 

Ho H 1  H2 H3 H4 T3 Y 2 S, C Q Particle SU(3) SU(2) 

60 -1 +f +f +f +f 0 0 -! +1 +$ +1 Cb singlet 
doublet 

t12 -1 -f -f +f if 0 - f  +$ -1 +$ 0 Sb H 3 = + f  

[23 -1 -5  +3 - 5  + f  -f +f +$ 0 +f 0 db triplet doublet 
H -  1 

3 - - 2  

6 3 4  -1 +f -1 - 4  +f if +f +$ 0 +f +1 U b  

Table 3. 

Ho Hi Hz H3 H4 T3 Y 2 S, C Q SU(3) SU(4) 

x 4  o o o o +I o o o o +% +I singlet singlet 

X I  0 +1 0 0 0 +$ +f - 4  +1 +f +1 

x 2  o o +I o o - 4  +4 --f +I +f o triplet 

x 3  0 0 0 +1 0 0 - 3  -f 0 +$ 0 

x3'  0 0 0 -1 0 0 +f +f 0 -f 0 
sextet 

x 2 '  0 0 -1 0 0 +i -4 +f -1 -f 0 triplet 

X I '  0 -1 0 0 0 - 1  -4 +; -1 -f -1 

x4' o o o o -1 o o o o - 4  -1 singlet singlet 



506 N Cufaro Petroni, Z MariC, Dj ZivanoviC and J P Vigier 

quark model. Indeed, if we assume that strong interactions preserve C (i.e. SU(3)) and 
Ho (fermion) numbers, we see that boson multiplets are built with coloured q4 
combinations of the SU(3) triplets contained in s and 8: the corresponding Fe and F, 
hadronic multiplets resulting from their multiplication by SU(3) singlets, i.e. Fe(F,) = 

q(qq). The ‘SU(3) gauge group contains the usual J = 1- SU(3) qq multiplets of 
uncoloured gluons belonging to 8 0 8 and 8 0 8, plus Pati’s and Salam’s triplets of Xe 
and X ,  91 particles. Like Salam’s ‘prodigal’ model, the model predicts (111) strong qq 
and (strongly reduced) 11 interactions, including q + + 1 +T strong decays of free quarks. 
To these strong interactions, one must add, as a consequence of Cartan’s triality 
principle (i.e. 8 0 s = 8‘, 8 0 8’ = 8 and 8 0 8’= 8), strong interactions resulting from 
the two SU(3) triplets and singlets contained in 8‘. In principle, evidently they strongly 
mix Fe-type and F,-type fermions, but one sees that, if the corresponding masses are 
high enough, there is (Pati and Salam 1974a, b) no observable mixing of the Fe and F, 
worlds, except through weak and electromagnetic interactions. One thus guarantees 
that normal hadrons (including KO and Eo) may be considered predominantly as made 
up of e-quark type only and forbid transitions of the type KO-, e-+@+,  e++e- ,  p t +  p - .  
Finally, since all particles have non-zero bare mass, strong Lagrangians are invariant 
under U(1), which ensures parity conservation, i.e. GI (strong) = U(1) 0 SU(3). As is 
well known, this implies the existence of a very light pseudoscalar boson, i.e. Wein- 
berg’s (1978) and Peccei and Quinn’s (1977a, b) ‘axion’, which might have already been 
observed in anomalous redshifts recently discussed in the literature (Arp 1971, 1973, 
Pecker 1976). Moreover, the introduction of a random part in all gauge groups GI 
implies (Vigier 1962) that the corresponding Yang-Mills fields must have an effective 
non-zero mass, so that the model (as will be later discussed) implies the existence of the 
corresponding Higgs multiplets. 

B. The model contains as a frame for weak interactions the maximal compact 
subgroup U(1) 0 U(1) 0SUL(4),  of which we identify the subgroup U(1) 0 SUL(2) 
which preserves the ‘weak’ leptonic charge H3 with the weak-interaction gauge group 
of Weinberg and Salam, which appears, in terms of our internal motions, as the only and 
most probable candidate for a correct unification of weak and electromagnetic inter- 
actions. Indeed, with this assumption, one sees immediately that tables 1 and 2 now 
apparently agree with known facts of all types of strong-weak-electromagnetic inter- 
actions. Indeed, starting with we can assume that it connects the usual SU(4) basic 
4-representation of quarks U’, dY, sy, cy with the conjugate representation 4 of e-leptons 
in order to cancel the triangle anomalies. Since, independently of the Q = f ( H , )  
definition, we must have a lepton EM charge sequence of the type (-1, 0, 0, -l), the 
associated quark quartet must have the charges (0, 1, 1, 0), so that the model Indeed 
implies the Nambu (1965) and Salam (1974, 1976) integer-charge assumption. 
Moreover, since isobasic spin and strangeness are now defined in the same way (111) for 
quarks and leptons, p-  and v, cannot be introduced in the same SU(4) quartet since 
they would generate strangeness, changing neutral currents and lepton number non- 
conservation. As a conseqi’.-.nce, since experiment shows that T can only be a sequential 
lepton (i.e. excited electron), we associate e-leptons with yellow quarks and pleptons 
with blue quarks. The electric charge now exactly corresponds to Q =HI +H4 = 
( : ) ( h 3 + ~ ~ h 8 - ~ / 5 h 1 5 ) + H 4 ,  where A,  denote the usual (Amati et a1 1964) SU(4) 
generating matrices. Moreover, since the H3-conserving Weinberg-Salam (WS) group 
is exactly embedded in S u r  (4), as assumed recently by Yang (1977,1978), we have only 
L-multiplets and quarks and leptons must have the same (1 -iy5)/2 current parity. 
Weak cp-violation thus follows in this scheme from Okubo’s suggestion (1968a, b) that 
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weak Yang-Mills fields imply maximum parity violation, i.e. that we have Hw= 
ig( jw+ 1,) W, + HC, with cp-parity - 1, the W, having strong interactions among 
themselves. It is also interesting to note that, in our model, any breaking of the Higg’s 
scalars gauge symmetry leads to the Weinberg-Salam gauge theory, i.e. (1) SU(4)+ 
0(5)+SU(2), the breaking of SU(2) with U(1) giving the WS theory; (2) SU(4)+ 
O(4) = SU(2) 0 SU(2) + WS with U(1) breaking; (3) SU(4) + U(1) 0 SU(2) + SU(2) + 
ws. 

Of course, all these decompositions imply, starting from the ws situation, the 
excitation of successive internal degrees of freedom so that the ws model is absolute for 
low-energy leptons, the Cabbibo angle appearing only among heavier particles, i.e. 
mixing of dY and cy (or cb and ub), so that we recover Yang’s result (1977,1978) for the 
Cabbibo angle. 

C. The model is falsifiable in the stnse that our internal motions in space-time 
imply the existence of only eight quarks q and eight leptons 1 and yield the prediction 
R = ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ / c r ~ ~ + , ~  = EL?? = 6 ,  which can be compared with the observed value 
5 , 5  at Js= 5 GeV and represents a maximum possible value in this scheme. The model 
also predicts (as will be discussed elsewhere) that compound qqq and qqq systems could 
have a different lifetime, so that the faster decay of a fermionic compound antiparticle 
could explain why we live in a particle world, as suggested by recent astrophysical 
evidence (Demaret et a1 1978). 
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