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If one analyzes the stochastic behaviour of classical “‘rigid” tops imbedded in Dirac’s aether (relativistic thermostat) one
obtains (for random jumps at the velocity of light) a probability distribution corresponding to the Feynman—Gell-Mann

equation for relativistic spin 1/2 particles,

The aim of the present letter is to complete a pro-
gram of stochastic derivations of the basic quantum-
mechanical equations with a derivation of the Dirac
equation in its Feynman -Gell-Mann form [1]. This
is necessary in the stochastic interpretation of quantum
mechanics (SIQM) [2--7] tor a mathematical and a
physical reason.

The mathematical reason is that according to the
Cartan—Pauli demonstration [8—10] there are only
three possible basic two-dimensional spin subgroups

(which preserve two-dimensional planes). Kinematically

they correspond to purely Lorentz (J =0), purely spa-
tial (J = 1) and light-cone tangent (J = 1/2) subrotations
in SO(3,1). Mathematically [11] they correspond to
the D(0), D(1), and D(1/2) representations ol the ro-
tation group imbedded in the general representation
D(1/2,1/2) of the Lorentz group. The usual quantiza-
tion of their three classical counterparts indeed yields
the usual wave equations [10].

The physical reason is that, if one accepts Einstein’s
idea of a subquantal covariant chaotic vacuum (mate-
rialized for example in Dirac’s aether model [12.13]),
one should be able to deduce (as has already been
done in various equivalent ways [4.5,14]) not only
J=0and /=1 equations but also the J = 1/2 equation.

Indeed the proponents of SIQM have attempted, start-
ing in general from a covariant classical (non quantized)
electromagnetic vacuum (SED). to derive the Schridinger
and Pauli equations [15]. These important attempts
have certainly widened our understanding of the nro-
blem, but SED (because it contains no photons) not
only contradicts experimental facts [161, but now
meets with theoretical troubles in the stability of
hvdrogen orbits [17.18].

Our starting point is different: we start with Dirac’s
acther model recently enlarged to spin [13] by one
of us (J.P.V.). a model which implies [5] stochastic
motions at the velocity of light. As one now knows
this model justities the validity of Nelson’s stochastic
equations given in a relativistic form by Guerra and
Ruggiero {GR) [19] and Vigier |4]. The application
of these markovian processes represented by Nelson's
equation in their GR form to

(a) spin 0, i.c. extended particles labelled by a posi-
tion x (7)and an invariant density p2(x ). and

(b) spin 1.1i.e. Weyssenhof particles labelled by a
position x (1) and a4 complex four-vector a#(x) (with
pl= ajak).
can now be extended to classical “rigid” tops labelled
by a position x“(r) and a density p2 of Einstein—Mayer
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orthogonal tetrads of axis aff) represented [20] by a
normalized four-component spinor . To follow Dirac’s
aether model we shall of course introduce in our mo-
del a density representing a mixture of tops with op-
posite chiralities (i.e. represented by left and right
handed tetrads) which represent a top (particle) and
anti-top (antiparticle) mixture [5]. This means that
our tops in their stochastic jumps, can move in the
forward (particle) or backward (antiparticle) time
direction, as introduced in our Markov justification
of the Klein—Gordon statistics [5].

We come now to our derivation and we introduce
the GR formalism [19]:

D=93/3r+b,d”, b,=Dx,(7),

1)
8D =—(2m)~10+8b,0", 8b,=06Dx,(1),

%i=c =1, and we suppose that the drift and the sto-
chastic velocities b, and 6b, can be derived from

bH=(A4* + a#@)/m ,
(2
b#=—(2m)~L ok Inp2=—m~1(akp)p~1,

where 4 (x) is the vector potential of an external
field, and ®(x, 7) and p(x) are real diagonal 4 X4
matrices. We also require that p is non singular and
that p2 is a trace invariant matrix which plays the role
of a density matrix (but not a definite positive one
because of the presence of particles and antiparticles).

The classical covariant stochastic equation and the
continuity equation for our “rigid” top in an external
field are now

m(DD — 8D 8D)x¥(1) = b, FH+(4m)~1 d*g , F¥*,

3
¥ (b,0%)=0, E4;

where g#v = 3i[y#, v¥] are the generators of the spinor
transformations determined by the Lorentz transfor-
mations. We will use in the following the vy-matrix no-
tation of Bjorken and Drell [21]. Of course egs. (3)
and (4) are 4 X4 matrix equations. From eqs. (1) and
(2) we have for eq. (3);

H[2m)~1(@Ap)p—1 — dd/or — (A4,+0,0)(47+0v®)/2m

+(,4m)—1o-u}\FV)\] :0 s (5)

which shows that the term in the brackets is constant.
If we pose this constant equal to zero, by rearranging
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the energy scale, eq. (5) takes the following form:

(@O - 2mddfdr — ¥, D— A, 47
—24,8"®+30,,Fi)p=0. (6)

Similarly for eq. (4) we have from egs. (1) and (2):

(20,20v+0®+93,4V+24,8")p=0. @)

If we now make a linear combination of egs. (6) and
(7) with coefficients 1 and i, we have after multiplica-
tion by exp (iP):

[(O+2i0v®3,+i0® — 3,0 0vP - 4, 4"
+1i0,.47 +2iA70, — 24 0" P)p
+;—0WF“Vp—2m(a<IJ/87’)p] exp(i®)=0, (8)
which finally takes the following synthetic form:
[(i9,—A4,)({o* — 4¥) — 2im d/oT
—%UWF“V]exp(ifb)p=O. (9)

If we now multiply this matrix equation with an arbi-
trary constant (x independent) spinor w and if we
pose ¢(x, 7) = exp (i®)pw we have

[(i3,— A,) (3" — A¥) — 2im d/dr

—50,,F¥]¢(x,7) =0, (10)
which, with the positions
P(x,7)=S(x) —3mr, Yx)=exp(iS)pw, (11)

gives exactly the Feynman—Gell-Mann equation

[(13,— 4,) (8" — 4%) = § 0#7F 1 Y(x) = m?Y(x).
(12)

The connection between the p2 matrix and the 4-

component Dirac spinors ¢ is clarified if we consider
the four spinors Y7 = exp (iS) pw" where w (r =1, 2,
3. 4) are constant spinors such that (for w” = wyg)

ww' =€, , €=+, r=1,2,
(13)
Leww =1,  =-1,r=34.
r
For example we could take
1 0 0 o\
10 1 _10 _ 10
W1Tloj> W2T ol WaT | W4T 0).14
0, 0 0 1 (14)
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It is now easy to show that
p2=Ee,.x[/"{/)", trp2=26r¢}’1,b". (i3)
F A

are coherent with our requirement ot a trace invariant
p2 matrix.

We conclude with two remarks. The first remark is
that our (to spin) extended aether model of Dirac
[13] imposes different Markov processes on different
classical objects which are thus described by different
wave equations, i.e. the usual Klein—Gordon, Proca
and Dirac equations. In that sense SIQM goes beyond
the Copenhagen interpretation of quantum mechanics
(CIQM) which introduces them a priori without theo-
retical justification.

The second remark is that the use of a real material
subquantal aether implies predictions not contained in
CIQM. If particles indeed behave as oscillators moving
in phase with a surrounding wave of oscillations (some-
what like a plane flying at Mach-1 in its surrounding
sound wave), the corresponding objective reality of
de Broglie’s waves opens the way to new types of ex-
periments (proposed by Garuccio and Vigier [22] and
Fitchard [23]) in which SIQM and CIQM predict
theoretically different testable results. The decision on
the Bohr—FEinstein controversy thus now rests on the
shoulders of experimental physicists.
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