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Abstract. With the physical hypothesis of the existence of a covariant subquantum vacuum, 
Dirac’s aether, we show that: ( i )  the idea that subquantum random jumps occur at the 
velocity of light is a consequence of the introduction of stochastic fluctuations into the g,, 
field of general relativity and (ii) the Klein-Gordon equation can be deduced, in a new 
simple way, from a stochastic process on the set of the four possible space-time directions 
of the velocity of light. 

1. Introduction 

The main new points in recent developments of the stochastic interpretation of quantum 
mechanics are the following. 

(a) The de Broglie waves are just collective motions on the top of a real physical 
covariant aether (Dirac 1951) which surrounds oscillator-like particles, like sound 
waves around planes flying at Mach 1. Following de Broglie these waves ‘pilot’ the 
particles along average drift lines of flow associated with the effects of a stochastic 
quantum potential. 

(b) The introduction of such a real physical aether implies a non-local quantum 
potential which presents the remarkable property that the corresponding action-at-a- 
distance is perfectly causal in the Einstein sense of the term (Cufaro Petroni and Vigier 
1979b). This point is important because a series of experiments (Freedman and Clauser 
1972, Holt and Pipkin 1974, Faraci et a1 1974, Kasday et a1 1975, Clauser 1976, Fry 
and Thompson 1976, Wilson et al 1976 and Bruno et a1 1977), culminating in the 
recent one of Aspect et a1 (1981,1982), suggests that the non-separability of correlated 
systems deduced from the quantum formalism is a real fact and that Bell’s inequality 
(Bell 1964) is badly violated. In this case the problem raised by the Einstein-Podolsky- 
Rosen paradox (1935) will have a solution in the sense that the quantum mechanical 
implication of space-like correlations between two linear polarisers which measure the 
rate of coincidence between the relative orientations of pairs of photons emitted in 
the S state will be experimentally verified. If the forthcoming crucial experiments 
proposed by Aspect (1975, 1976) and Rapisarda (Falciglia et a1 1979, Garuccio et a1 
1981, Garuccio and Rapisarda 1981) confirm these conclusions, the only possible 
causal way out of the resulting contradiction between relativity and the quantum theory 
of measurement seems to lie, as suggested in recent papers (Cufaro Petroni et a1 1981), 
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in the direction of the utilisation of the stochastic interpretation of quantum mechanics 
in order to introduce a suitable relativistic action-at-a-distance. 

(c) The wave elements and the particles jump at random from one drift line of 
flow to another at the velocity of light. This idea is essential in this model since Lehr 
and Park (1977), Guerra and Ruggiero (1978), Vigier (1979,1980) and Cufaro Petroni 
and Vigier (1979a, 1981, 1982, 1983) have deduced therefrom (i) the relativistic 
generalisation of Nelson’s equation (Nelson 1966), (ii) the exact form of the relativistic 
wave equations, (iii) the numerical value of the corresponding diffusion coefficient 
D = h/2m. 

The aim of the present paper is to develop this stochastic model, firstly introduced 
by Bohm (1952, 1953) and Bohm and Vigier (1954, 1958), one step further, i.e. 

(1) To show in 0 2 that the basic idea that subquantum random jumps occur at 
the velocity of light is a natural consequence of introducing stochastic fluctuations into 
the g P y  field of general relativity. 

( 2 )  To expose in the subsequent sections a new method for deducing the relativistic 
quantum equations for spinless particles from a Markov process which is explicitly 
built by a random walk on a space-time lattice with the only physical assumption that 
the stochastic jumps occur at the velocity of light. This approach, because of the 
evidence of its construction, will allow a new very clear insight into the chaotic processes 
subjacent to the quantum behaviour. More precisely: in 0 3 we construct a two- 
dimensional space-time lattice and define our random walks with a statistical weighting 
for each possible trajectory of a single spinless particle; in § 4 we finally deduce, from 
this Markov process, the Klein-Gordon equation. 

2. Einstein’s subquantum random aether model 

The idea of using random fluctuations of the gWy field (considered by Einstein himself 
(1924) to be a possible representation of a real all pervading material field) as the 
origin of the real quantum forces which justify the stochastic interpretation of quantum 
mechanics is not new in the literature. Indeed Einstein’s ideas on the question were 
reactivated by Janossy (1972) who considered the cosmological term AgPv in 

as a representation of the energy momentum tensor distribution of the background 
gravitational aether. Moreover, the introduction of a random g,“ component (which 
goes back to  March 1934,1937, Markov 1958, Yukawa 1966 and Blokhintsev 1974) 
has been recently revived by Frederick (1976), Namsrai (1980) and Cerofolini (1980) 
by the following conditions. 

(a) At each world point the tangent space-time is not defined by the Minkowsky 
S,, but by F2S,, + Si,” where - denotes stochastic tensor components and F a real 
Weyl gauge function. 

(b) All measurements of dynamical variables correspond to contravariant com- 
ponents of tensors. 

(c) The probability P ( r ,  t )  of finding a particle can be written P ( r ,  t )  = A ( r ,  t)& 
where g is the determinant of the metric. 

(d) The Si,+” are small and practically add linearly; for example the metric due to 
different physical situations 1 and 2 is g p y ( 3 )  = i [ g , , ( l )  + g F , ( 2 ) ] .  
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Assumptions (a), (b),  (c), (d) imply the following consequences. 
(1) If one denotes the metric at the point 1 by gfiv(l) we cannot determine it 

precisely but only ask for P ( i p V )  which is the probability of a particular However, 
we can define its average value illy = (&”) over a four-dimensional volume element, 
so that with (6&,,)=(d“g,,)=0. The fluctuating a i p u  field can thus be 
compared to a chaotic superposition of random wavelets on a curved regular sea. This 
is physically reasonable since gravitational waves originating from all independent 
(practically uncorrelated) sources in the universe are expected to build a random 
background gravitational noise i.e.. the ‘gravitational vycuum’. Moreover, at each point 
one can write gpy =ipu + 6g,, = d’6,, + where d represents the average val2e of 
the local dilatation d which contains an average plus a random part: the metric d26,, 
being locally conformal to the initial undisturbed metric. 

(2) The use of contravariant quantities in measurement theory is necessary if we 
represent test particles as massive singularities of the gpy field which thus necessarily 
follow geodetics. Indeed the random ipv imply fluctuating geodetics (i.e. random 
gravitational forces) since we have on each such particle the Euler-Lagrange equations 

where {‘} are now fluctuating Christoffel symbols and 9 denotes the proper time 
derivative. Relation (2.2) evidently generates a random set of motions around the 
usual mean geodetics defined from iFV. These motions, which can be neglected for 
macroscopic bodies, imply an irreducible stochastic character upon all motions of 
microscopic test particles: an evident possible basis for the stochastic interpretation of 
quantum mechanics. Since we must introduce measurable dx” in (2.2) we must be 
able to define the distance to our singular test particles. Calling this distance ?(=e) 
the covariant equivalent of the radial coordinate r is and = g , v [ y = g l l ~ l  = 
r (  1 - 2Gm/ r ) - l  which yields for the contravariant distance Ji dr  =,Pin contradistinction 
with the covariant distance 4, = J L  dr(  1 - 2Gm/r)-’  = CO so that only the contravariant 
distance is observable. 

occur at the velocity of 
light. This is the essential property of our model. It can be demonstrated as follows. 
Following Frederick’s (1976) line of argument we start with a particle at rest (for an 
inertial observer) at a space point 8”. After a time dt the Euler-Lagrange equations 
(2.2) yield a probability D , ( x )  of being in a region bounded by x and x+dx.  After 
a second time interval dt  the new distribution is Dl+2(x) .  From probability theory 
(Cramer 1955) this is the convolution D1+2(x) =jYx Dl(y)D2(x-  y )  dy. Assuming 
vacuum isotropy (so that the Euler-Lagrange equations give the same distribution 
independently of the starting point) we have for our Brownian-like motion D,(x) = 
D2(x).  Since gpy(x) ={gFy(xI), gpy(x2) .  . .> and thus D,(x )  ={Dl(x) ,  D z ( x ) .  . .} are 
identically distributed random variables, the motion of any test particle is equal to the 
repeated convolution D1+2+ (x) . . . which yields a normal distribution by the central 
limit theorem. The position spread of the particle at t > 0 is a gaussian. To calculate 
the spreading velocity we remark that after N such convolutions ( N  large) we obtain 
a normal distribution with variance U’. Still according to the central limit theorem 
(Cramer 19551, this distribution is N times the variance of D,(x).  If we represent 
this variance of D,(x)  by a’, i.e. 

(3) The stochastic random motions induced by the 

(var( 0,)) ”* = a, (2.3) 
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we see that the distribution D1 is obtained after dt  so that we can write after N 
convolutions 

Ax = [var(D1+2+.,,+N)]1’Z = Na 

resulting from N time intervals df. This yields 

A x /  A t  = N a /  N = a 

(2.4) 

(2.5) 

so that the initially localised test particle spreads with a constant velocity a which must 
be equal to c since the result is frame independent. The same result is obtained with 
a particle with a definite position and a momentum distribution with the difference of 
having a different distribution D1 due to the uncertainty of the particle’s direction of 
propagation. 

3. Random walk at the velocity of light 

Starting from the preceding result we shall now attempt, following a very simple 
classical analysis (Avez 1976), to analyse stochastic random walks at the velocity of 
light. To simplify our demonstration we will limit ourselves to the case in which we 
assume that this random walk occurs on a square lattice in a two-dimensional space-time 
(see figure 1). 

We remark at this stage that, properly speaking, the Markov process describing 
the space-time trajectory of our particle takes place on the velocity space which, if 
the particle always jumps at the velocity of light, reduces, as we will soon see, to the 
set of the four possible space-time directions of the velocity of light. To analyse our 
random walk at the velocity of light we will describe our two-dimensional space-time 
with the coordinates xo, xl, and we will make a limit process where in each step we 
will suppose that our particle, starting from an arbitrary point P ( x o ,  x’), can make 
only jumps of fixed length and always at the velocity of light. As is shown in figure 

Figurel. Space-time lattice of dimension T and 
starting point Po. For each possible direction of the 
first jump we marked the corresponding value of the 
couple ( t ,  s). 

Figure2. An example of the four possible suc- 
cessions of two jumps. For each possible ( j + l ) t h  
jump we marked the value of the couple ( E , ,  7,) and 
the corresponding probability. 
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1, this prescription completely determines the lattice of all the possible positions of 
the particle. On this lattice the particle can follow an infinity of possible trajectories. 

In our calculation we will consider first a lattice with fixed dimensions: indeed for 
each jump we pose 

A X o  = t'T, Ax' = ST ( t, s = 2 t  1) (3.1) 

so that for the velocity we always have (we choose here h = c = 1) 

v = Axl/AxO = s/  t = *l. (3.2) 

Here T is the parameter which fixes the lattice dimensions: of course, in order to 
recover the quantum equations, we will consider later the limit T + 0. Moreover, it is 
clear from (3.1) and figure 1 that on this lattice we also consider the possibility of 
trajectories running backward in time: we will interpret them as trajectories of anti- 
particles running forward in time following the usual Feynman (1949) interpretation. 

In order to describe random walks on this lattice we consider the following Markov 
process on the set of the four possible directions of the velocity: we define two sets 
of stochastic variables { E ~ } ,  { T ~ } ,  with j E N, in such a way that the only possible values 
of each and T~ are 2t1 following this prescription 

doesn't change 
changes 

1 .  
E i = {  if in the ( j +  1)th jump the sign of the velocity 

-1 

doesn't change 
changes 

if in the ( j +  1)th jump the direction of the time 

with respect to the preceding jth jump. It means that the realisation of the signs of 
E,, 7, determines one of the four possible directions of the ( j +  1)th jump on the ground 
of the direction of the jth jump, as we can see in figure 2. 

Of course a sequence {E, ,  T,}, with j E N, of values of these stochastic variables 
completely determines one of the infinite possible trajectories except for the first jump 
because there is no 'preceding' jump for it. Thus, starting from Po(xo, X I ) ,  in the first 
jump we can get one of the four possible points P l ( x o +  tT,  x1 + ST) and after N jumps, 
as we can easily see by direct calculation, one of the points P N ( x 0  + I T N ,  x '  + sDN) where 

T N = T ( ~ + T I + T I T ~ +  + 7 ? 1 7 ? 2 . . . T N - l )  
(3.3) 

D N = T ( 1 + & 1 T 1 + E 1 & 2 T 1 T 2 + .  . + & 1 & 2 . . .  E N - 1 7 1 7 2 . .  . TN-1). 

We come now to the problem of the assignment of a statistical weight to each 
trajectory. In order to do that we introduce for each ( j +  1)th jump a probability for 
each realisation of the signs of the corresponding jth couple E,, TJ, In table 1 we have 
listed these probabilities for a general E,, 7, couple, namely for each possibility of each 

Table 1. Probabilities for the four possible successions of two jumps. 

El 7, Probability 

-1  -1 A7 
1 -1 B7 

-1 1 C7 
1 1 Or 
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step of the Markov process on the velocity space. Moreover, we suppose that A, B, 
C, D are constant and positive over all the space-time. 

Among these four constants we can also pose a relation that can be justified as a 
principle of mass flux conservation. If we consider for example, as in figure 2 ,  a particle 
arriving at Pj in its jth jump, we must remember, for the ( j +  1)th jump, that the 
particles running backward in time must be considered like antiparticles going forward 
in time. In this perspective if we want to conserve the flux of particles across the point 
P, between the jth and the ( j +  1)th jumps, we must remark that: 

(a) in the jth jump we have only a particle going right; 
(b) in the ( j + l ) t h  jump we have a 'fraction' DT of the particle and BT of the 

antiparticle going right and a 'fraction' CT of the particle and AT of the antiparticle 
going left. 
If we consider that particles and antiparticles have the same mass, the mass flux 
conservation across P, gives finally 

( - A + B - C + D ) T = ~ .  ( 3 . 4 )  

This relation will be very useful in the subsequent derivation. 

4. Relativistic wave equation 

In order to derive the Klein-Gordon equation we consider a function f ( x o ,  x ' )  defined 
over all the space-time and, generally speaking, with complex values, and then we 
define the following set of functions 

FI;"(x", x ' )  = ( f ( P N ) ) = ( f ( x 0 + ? T N ,  x ' + s D , ) ) .  ( 4 . 1 )  

Here ( a )  indicates an average made over all the possible points PN attained following 
trajectories constituted by N jumps starting from Po(xo,  x ' )  with a first jump made 
in the direction fixed by ( r ,  s). 

In fact it is clear that the terminal point PN is not uniquely determined by the 
initial point Po and the number of jumps N because of the possibility of choosing 
different trajectories of N jumps. Of course in the average, the statistical weight of 
each PN is calculated from the probabilities associated to the trajectories which lead 
to PN as stated in the previous section. We remark finally that, because of the 
arbitrariness of the starting point Po, the function FI;" is defined over all the space-time. 

We can start to make this average from the first jump so that, remembering (4.1) 
and ( 3 . 3 ) :  

Ff;" (Xo, X ' ) = ( f [ X o + ? 7 + f T 7 ) 1 ( 1  + 772+ . . . + 7 7 2 . .  . ~ , J N - ~ ) , X ' + S T + S T E ~ ~ ) ~  

x (1 + E 2 7 7 2  + . * . + E 2  . . . & N - ' 7 7 2  . . . 77h'- I)]) 

= (f( x o  + fT + fT1 TN-' ,  x 1  + ST + SE' 77' DN- ])) 

= DTFI;'- ( x 0  + ?T, x' + S T )  + A~F;;l'ls, ( x o  + t ~ ,  x1  + ST) 
+ BTFGr:-: ( Xo + f T ,  X 1  + ST) + c~Fk-2~  ( X o  + ?T, X' + S T )  

and using ( 3 . 4 ) ,  that is DT= ~ + ( A - B + C ) T ,  we get 

Ff;"(Xo,X')=FI;"-l  ( X 0 + f T , X 1 + S T )  

+ AT[F;'~", ( X o +  ?T, X 1  + ST) + Fg-1 ( X o +  ?T, X '  + S T ) ]  
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+ BT[ ( X o  + tT,  X ' + S T )  - 1 ( X + tT,  X + S T ) ]  

+CT[FL-Jl ( X o + t T ,  X'+ST)+Ffr;-l ( X " + t T ,  X ' + S T ) ] .  (4.3) 

We pass now to the limit N + CO (and T fixed): if we indicate with F'.' the functions 
for N + CO we have from (4.3) 

F'3S(xo ,  XI) = F"'(x0 + t T ,  x '  + ST) + AT[F-'"( X" + tT,  X '  + ST) + F"'(x0 + t7, X '  + ST)] 
+ BT[F-"-~(X'+~T, X ~ + S T ) - F ~ ' . ~ ( X O + ~ T ,  X ' + S T ) ]  

+ c T [ F ' . - ~ ( x ~ + ~ T ,  X ' + S T ) + F ' ~ ~ ( X ~ + ~ T ,  x ' + s r ) ]  (4.4) 
and then 

- ~ ' . ~ ( x ' + t ~ ,  X ~ ) - F ~ , ~ ( X O ,  x ' )  
tT  

- _  s F'"(x' ,  x ~ + s T ) - F " ' ( x " ,  x ' )  - 
t ST 

F"s(Xo+tT ,  X1+ST) -F ' l .S (Xo ,  X ' + S T )  - F ' 3 S ( X o + t T ,  X ' ) - F " ' ( X o ,  X')  + 
tT tT 

In the limit 7 - 0 ,  when our lattice tends to recover all the space-time, we get the 
following set of four partial differential equations (one for each possible value of the 
couple t, s of the first jump): 

(4.6) 

where we neglected the arguments (x", x ' )  of the functions. 
If we define now the following four linear combinations of the four functions F',': 

4 =F'.l+F-',-l+F',-'+F-l.l 

=F1,1+F-1.-1 - F ~ . - ~ - F - ~ S I  
$ =  _F'. l+F-~.- ' -F' ,-~+F-~,l  (4.7) 

=-F1.1+F-1.-1+Fl,-l -F-1 .1  

we can build a new equivalent set of equations by combining equations (4.6): 

a 4 / a x 0 + a x / a x 1  = 2(C - B ) $  

a x / a x o + a 4 / a x 1  = 2(A-  B ) w  

a$/axo+aw/ax' = 2 ( A + C ) 4  

aw/axo+a$/axl =o .  

(4.8) 
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By derivation and successive linear combination of equations (4.8) we have 

0 4 = 2( C - B)a$/axo-2(A - B ) ~ u / ~ x '  

= 2 ( A  -2B + C)d$/ax0-4(A - B ) ( A  + C)4 
O X  = 2(A - B)aw/axo-  2( C - B)d$ /a~ '  = 2(A - 2R + C ) d w / a ~ O  

U$ = 2(A + C)d4/dx0 = -2(A+ C)ax/ax' +4(A + C)( C- B ) $  

00 = -2(A+ C)dq5/dx1 = 2(A+ C)dx/ax0-4(A+ C ) ( A -  B ) w  

(4.9) 

(where 0 is a two-dimensional d'Alembert operator) and if we pose 

B = ; (A + C ) ,  2(A2- C 2 )  = m2 (4.10) 

we finally have 

(U + m 2 ) 4  = 0 ,  ox=o 
(U +m2)$=-2(A+C)8$/ax1 

(0 + m2)w = 2(A+ C)ax/axo. 

(4.11) 

We now make the following three remarks. 
(a) We can interpret the first equation of (4.11) as a Klein-Gordon equation. The 

function 4, which satisfies this Klein-Gordon equation, is the complete average of a 
function f over all the possible final points reached following all the possible trajectories 
of infinite jumps: in fact in this function, as we can see from (4.7), we consider now 
also the first jump by supposing that the four possibilities for the signs of t, s are 
equiprobables. 

(b) The functions x, $, w which satisfy the remaining equations in (4.11) are not 
averages like 4 and seem to us to constitute only a formal tool in the deduction of 
the equation for the complete average 4. However, we see that in (4.1 1) the equation 
for 4 is not coupled at all with the other equations for x, $, w so that the solution of 
the Klein-Gordon equation is absolutely independent from the solutions of the rest 
of the system. 

(c) The previous derivation of (4.11) from (4.8) shows that each solution 
(4, x, $, w )  of (4.8) is a solution of (4.11), but it is possible to show that not all the 
solutions of (4.11) are solutions of (4.8). Indeed, for example, we can verify by direct 
calculation that 

4 = exp(ip x )  (with p 2  = m 2 ) ,  x = * = w = o  

is a solution of (4.11) but it is not a solution of (4.8). Therefore it is important to 
analyse the following question: we proved the statement 'the function 4 defined as a 
stochastic average in (4.7) and satisfying the system (4.8) always is a solution of a 
Klein-Gordon equation'; what about the inverse statement 'all the solutions of a 
Klein-Gordon equation are interpretable as stochastic averages satisfying a system 
like (4.8)'? We will show here that this inverse statement also holds in the following 
sense: if 4 is an arbitrary solution of the Klein-Gordon equation we can always 
determine the functions x, $, w in such a way that (4, x, $, w )  is a solution of (4.8). 
In fact, if 4 is an arbitrary solution of the Klein-Gordon equation in (4.11), we can 
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choose x as an arbitrary solution of iIlx = 0 and then we determine CC, and w as follows 

1 1 

It is only a matter of calculation to show that our (4, x, 4, w )  is now a solution of (4.8) 
(with B = $ ( A + C ) )  and of (4.11). 

5. Conclusion 

Despite the fact that the introduction of a square space-time is fundamentally non- 
covariant we get, at the end of the limit process T + 0, a field equation which is covariant. 
That situation becomes clear if we think that a Markov process happens on the space 
of the possible velocities of the particle: it is evident from (3.2) that the set of these 
velocities is the set of the four possible space-time directions of the velocity of light. 
In that sense the ensemble of events of our Markov process is covariant exactly like 
the final wave equation, even if the space-time trajectories are, of course, non-covariant. 
Moreover, we point out that the non-covariance of the space-time lattice disappears 
when T + 0 in the sense that in this limit our points recover all the space-time positions 
and the non-covariant parameter T doesn’t play any role in the ‘continuous’ final 
theory. In a word: the lattice of the ‘possible’ positions of a particle really doesn’t 
exist; only the real trajectories exist and are constituted by choices between possible 
events in the covariant velocity space. 

Finally, we remark that the fact that we developed our construction on a two- 
dimensional space-time can be considered as a real limitation. From that standpoint 
the authors intend to carry out, in successive papers, the analysis of the possibility of 
the application of this method to the four-dimensional space-time and to the two- 
particle case in the configuration space, in order to generalise completely a line of 
stochastic demonstration of the quantum equations that seems to be very suggestive 
because of the clearness of their construction. 
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