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Second-order wave equation for spin-+ fields
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Some features of the second-order Feynman—Gell-Mann wave equation are discussed in order to
show that (1) a statistical interpretation in terms of particles and antiparticles is possible, (2) the
Dirac condition must be considered too restrlctlve, (3) no unwanted results arise from the use of this

equation.

1. INTRODUCTION

In a series of recent papers! the authors proposed a
theory of Spln— particles based on a second-order wave
equation: the so-called four-component Feynman—Gell-
Mann equation? that, in the presence of an external elec-

tromagnetic field 4, takes the following form (fi=c=1): _._

eA)id—ed)—m>Ty
=[(id,—ed,)idF—ed")—
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Beyond a series of well-known remarks? about the use of
(1.1), the main reasons that induced the authors to adopt
it instead of the Dirac equation

(id—ed —m)p=0 a2

are the following. S

(a) If we are looking for a causal interpretation of the .

quantum equations, a classical analogy can be found only_
starting from a second-order differential equation. -

(b) If we want to interpret the appearance of a quantum
potential’*® in the classical equations as the global effect
of a stochastic process induced on the particle by a
subquantum medium, namely, the so-called Dirac ae,ther,
we must use only second-order differential equations.”

{c) Both of the preceding steps are essential in a
coherent causal physical interpretation® of the nonlocal
quantum effects suggested by the experlments on the
Einstein-Podolsky-Rosen (EPR) paradox.?

The present paper is devoted to a deeper examination of
the problems connected with the use of (1.1) and in partic-

ular to an analysis of the features of the conserved densi-__

that the Dirac equation (1.2), considered as a positivity

“condition for the densities, is a sufficient but unnecessary

condition. Finally, in Sec. V, we analyze the problem if
the presence in (1.1) of more solutions than in (1.2) can
give way to some unphysical prediction.

II. PARTICLES AND ANTIPARTICLES

- Let us start with a discussion of the relations between
the four-spinors ¥ solutions of (1.1) and those solutions of

(1.2). From this standpoint we can define the following
sets:
F={y|I-P*y=0},
(2.1)
G = | (TP )1=0}
with
1.
DM=—’;(zay—eA#) . (2.2)

~ Of course .7 is the set of the solutions of (1.1) and & _
the set of the solutions of (1.2). Moreover, to show what

. 9 , is, the following propositions can be proved:

P D,.ND_={p=0},
Py Q. UD_CF,

Py: VY, €Z,3| ¢y €D _3'Y, =vs¥_ .
To prove P, we must only remark that if
YEZ ., ND _ we will have at once
I+PW=0, I—-P)=0 (2.3)

ty. First of all we briefly discuss in Sec. II the relations that immediately give %=0. Furthermore, it can be

between the sets of solutions of (1.1) and (1.2).
from (1.1) are differences of positive densities connected

with the presence of particles and antiparticles and that a
statistical interpretation is possible. In Sec. IV we prove
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In Sec. 11T
we show that the nonpositive conserved densities obtained

_shown that & . C.5:

in fact, if YEZ 4, we have also
that

I —Dp*W=UTFPXI+P)W=0, (2.4)
namely that yE€F. As a consequence, ¥  UZ _C¥.
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However, if Yy, €2, and Yy_E€Z _, each linear com-
bination Y=ay, +by_ is an element of &, but, because
of Py, it cannot belong to &L, or Z_. Hence
2 UD _s£F that completely proves P;.

To prove Py we remark that, if Y . €L ., y_=ys¥,
belongs to &7 _ since

I—=PW_=ys(I+PW, =0. 2.5)

Moreover ys_=1,, so that ¢¥_=ys¥, is exactly the
spinor that we look for. Furthermore, if it would be pos-
sible to find two spinors ®_ and v, such that
ys¥_=vysp_=v,, we should also admit that
vs(¥_—y¢"_)=0, or equivalently that ¢_=¢"_.

By recalling what ys represents for the symmetry
operations on spinors,” we can conclude that & 4 contains
the antiparticle wave functions moving backward in
space-time and with the sign of energy inverted with
respect to the particle wave functions [solutions of the
Dirac equation (1.2)] belonging to & _.. In other words,
we would say that & contains both particle and antiparti-
¢le solutions and we will show now that it also contains
all their superpositions. In fact it can be proved that

Py WEFI| Yy, €Z, A ¢—Eg—5'¢=¢++¢— )

since it is very easy to see that, if Y&, the spinors
Yi==(IFP)) belonging to P, are such that

Yyt+y_=.

III. CONSERVED DENSITY

The mixing of particles and antiparticles in the general
solutions of (1.1) is particularly evident in the form of the
conserved density. It is well known'® that Eq. (1.1) can be
deduced from the scalar Lagrangian density

L={0—eAVPid—eA)p—mip (3.1

so that the conserved current density is
I,= # Re[ Ty, (id—ed)] ; (3:2)

that, of course, does not coincide with the Dirac current
" Yy, unless the spinor ¢ is a solution of (1.2). As a
consequence the conserved density Jy will not be positive
definite. This feature, which is common to all the relativ-
istic second-order quantum equations, forbids a direct sta-
tistical interpretation of (1.1) with the conserved density
playing the role of a probability density.

The way out proposed by Dirac’ was, in some sense, the
restriction of the physically acceptable states to the solu-
tions of (1.2), so that the conserved density becomes
tpfrlzz 0. We will examine in the next section whether this
Dirac condition can be considered general enough to con-
tain all the physically meaningful solutions leading to a
positive density. Here we will limit ourselves to analyze
another interpretation'® of the appearance of nonpositive
densities: Jg is not a probability density, but an auxiliary
function which obeys many relations we would expect
from such a probability. In fact it behaves like an average
charge density where, for mixtures of particles and an-
tiparticles, “charge” must be understood in the widest

sense, i.e,, as a certain property which distinguishes be-
tween pagticles and antiparticles which are identical to
each other in all other respects (electric charge, baryon
number, etc.). In this sense we can calculate averages of
physical observables exactly as in the ordinary probability
calculus, but using a “probability measure” which is not
positive.

From this standpoint the connection between the non-
positivity of J, and the mixing of particles and antiparti-
cles is better understood if we consider that in the preced-
ing section it was determined that each &% is a super-
position of _ and ¢, namely of a particle and an an-
tiparticle state. As a consequence, we get from P, that

Ju=Re[(§, +¢_)y, B, +1.)]
=Re[(§4 +F )7~y +9_)]
=;l’-—‘}’p1/f— _'Z+7p¢'+ ’ (3.3)

ie, the conserved current J, is the difference of two
Dirac-type conserved currents for particles and antiparti-
cles. Moreover

Jo=vly_—yly,, (3.4)

which means that the nonpositive conserved density J; is
always a difference of two positive Dirac densities for
particles and antiparticles. The result (3.4) is perfectly
coherent with the point of view that considers J, as a
nonpositive measure, because a classical result of the mea-
sure theory!! states that each real measure is the differ-
ence of two positive measures.

IV. POSITIVITY CONDITIONS FOR THE DENSITY

In this section we will show that the Dirac condition
(1.2), which selects in & solutions with Jy>0, is too re-
strictive in the sense that it is a sufficient but unnecessary
condition. This result will be proved in a particular case
by showing that, for the free fields, the more general posi-
tivity condition admits states which are not solutions of
(1.2).

In fact, if 4, =0, (1.1) becomes

(O+m*y=0, 4.1)

so that the general form of a plane-wave solution of (4.1)
is

Pp(x) =Ne?>y | (4.2)

where N is a constant and u is an arbitrary four-spinor
constant in space-time. Of course, in order to have a solu-
tion of (4.1), p, must satisfy the relation p,,p“:m2 so
that there will be solutions with both positive and negative

energies:
E=1tm[1+(p/m?)/%. (4.3)

The main difference with the plane-wave solutions of the
free Dirac equation is that no a priori restrictions on u
such as’

(prmu =0 (4.4)

are requested, so that there is no a priori connection be-

i
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tween the sign of @u and the sign of the energy.

However we will show that there is a condition, less re-
strictive than (4.4), connecting the sign of Zu and the sign
of the energy, that gives a positive conserved density.

First of all let us use spinors u normalized in the sense
that (if @u is not identically zero)

Gu=PP/N ==+1.

We can now separate the solutions of (4.1) with positive
and negative 7iu by introducing a label e==*1 so that

)

U lle=€ . (4.6)

By writing down our four-spinors u in terms of two-
component elements, we get as a more general form

Ha)é 47):
Ye= \H_(a)y @
with
gle=n"n=1, Cus

HJ a)=3(e*+ee ), a€[0,»],

where the two-component quantities £, 7 and the parame-
ter a are fixed only by supplementary informations like
polarization, etc. Now the free Lagrangian density is

Lo=10Pidy—m Py

so that the free comserved current for plane waves be-
comes

, 1 = 1 = 1 -
Ju=" Re(¢7yla¢)=;Re(¢7,ﬂ¢)=—n;17p¢¢ ,
1 _ 1 .
=Tn—N2p‘u'uEu€: "n—q-é'sz# 4.10)
and the conserved density is B
. i 2 .
=— . “.10
Jo="" eN°E (

Of course the more general positivity condition for jj is

e=sgn(E) 4.12)
and hence the states -
W x)=Ne® *u _pu(ry 4.13)

always lead to a positive jg.

We can show now, in a simple particular case, that
there are spinors of the form (4.13) which are not solu- _
tions of the free Dirac equation. In fact, if we consider
the solutions (4.13) at rest, we get from (4.7) the following
spinors: -

P, =N e ™ § cosho =m >0) -
+7 N+ 7 sinha =T e
(4.14)
it Esinha _
‘lll__,=N_e ')'ICOSha =—m SO) 3 ,i
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with £ and 7 arbitrary two-component quantities and
a €[]0, 0 ]. On the other hand, the free solutions at rest of
the Dirac equation are restricted by (4.4) so that we have’

(E=m>0),

—im. §
Yr=Nie ™|,

(4.15)

PP =N_etimt (E=—m<0).

M

In other words, only the value =0 is possible for Dirac

_ _solutions at rest and hence the condition imposed by (4.4)

_.must be considered sufficient but unnecessary in order to
have positive conserved densities.

V. MOTT CROSS SECTION

In the preceding sections it was established that it can-
not be forbidden in principle to use solutions of (1.1)

--—— -which do not obey to the Dirac equation (1.2). However

one could suspect that all the physically meaningful states
be solutions of (1.2). In fact this standpoint could be sup-
ported by the trivial remark that Dirac’s equation works.

(4§ " Therefore we will discuss at the end of this paper if the

-use of (1.1) can lead to some unwanted physical predic-
tion. Of course an ultimate answer to this question is not
yet possible, but we must remark that, in all known cases,
the use of (1.1) leads to very reasonable results, from the
domain of atomic physics'?> to that of the quantized

“ theory of fields.> 13

Here we will limit ourselves to present, as an example,
the outlines of the calculation of the Coulomb cross sec-
tion to order e? (Mott cross section) starting from (1.1).

- If we consider an external electromagnetic field of the

form

Ao—————z—gl, A =0 (5.1)
4T r
~ at the first order in e2, Eq. (1.1) becomes
2 .Zez 2 4 1
= —_—————T R 5.2
(B+m=1 l417 r ot r3ra ¥ 5-2)
where, if o, are the Pauli matrices,
0o
a=|_ol- (5.3)

. We will use as initial and final states the plane waves

¥ _ipi‘xui, Yr=Nye _ipf'xuf (5.4)

of the type described in Sec. IV. The matrix element is
now

-———N,-e
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1
—ra
P Sl

Sﬁoi fd"'x Jf
o« [up(2E; — q-a)u; 1B —Ey)
q

with q=ps—p;. We have now
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3.~ 2i 1
P fdxuf I—TE,—Fr-a

ue —i(Pf—Dz)'rS(Ef —E,)

(5.5

fif(ZE[ —q-a)u,-ﬁ(Ef—E,-)=t_tf[yg(Ef‘yo—pf'}’)+(Ei}f0—pi '7)}'0]u!-5(Ef—Ei )

=a Yy s+Pivo) S Ef—E;)

and hence

Sp %af(m B OuSEp—E;) . (5.7
In calculating the cross section we must use | Sy [? and
sum over the unobserved states. However, differently
from the calculation based on the Dirac equation, there is
no connection between the constant spinors #; and u; and
the momenta py and p; (see Sec. IV) and hence we must
sum over the complete orthonormal sets of initial and fi-
nal spinors {u;,} and {ugg}. Of course we will have

> Uiallia= > usglpg=1I (5.8)
[ B

so that our cross section will be
do

-

0 2 | Tyl +Pivolu; | 2

a,

=Ty s +2:v0) P ryo+ra?i)]
=2Tr(m*+ywivas) » (5.9)

which, as is well known,’ leads exactly to the Mott formu-
la. In other words, starting from (1.1) we are obliged to
use (5.8) instead of the sum over polarization states,” but
this modification of the standard calculation is exactly
compensated by the appearance of the term r-a/r in (5.2).

VI. CONCLUSIONS

We remark, in conclusion, that, up to now, there are no
unwanted results emerging from the broadening of the set
of the solutions of the Dirac equation (1.2) to that of the
four-component Feynman—Gell-Mann equation (1.1). Or
better still, 5 also contains spinors that are not solutions
of (1.2), but that constitute the base for the V-4 theory of
the weak interactions.>!* Moreover, a statistical interpre-
tation of (1.1), different from the interpretation that iden-
tifies the conserved density directly with a probability
density, is possible and the appearance of negative values
for the density can be interpreted on the ground of the
mixing of particles and antiparticles. Anyway, the limita-
tions imposed to the solutions of (1.1) by the condition

(5.6)

(1.2) in order to get positive densities must be considered
much too severe, so that, also in this respect, we should
widen our horizon beyond the boundaries of & _.

Of course a crucial test, to judge whether or not we can
completely adopt (1.1) instead of (1.2) for fermions, is the
analysis of the bound states of well-known quantum sys-
tems such as H atoms.

First of all we will point out that (1.1) can be con-
sidered as a generalization of a Klein-Gordon equation on
a four-spinor ¢ taking into account “the interaction of the
electromagnetic field with an electric and a magnetic di-
pole moment, collectively called ‘Dirac moment of the
electron’. .. . If the electromagnetic field is sufficiently
weak, the effect of this term on the energy eigenvalue is
small and can be calculated by approximation methods
which involves first order perturbation theory and an ex-
pansion in inverse power of ¢, the velocity of light.”!?
Hence we can claim that the eigenvalues of (1.1) for the
bound states of an H atom will not be different, apart
from the perturbation spin terms, from the eigenvalues of
a Klein-Gordon equation with external Coulomb interac-
tion. On the other hand it is well known'? that this
Klein-Gordon spectrum of an H atom coincides with the
corresponding Dirac spectrum, exactly apart from the
spin terms. From these preliminary considerations can be
deduced that the eigenvalues of (1.1) for an external
Coulomb interaction will reproduce the Dirac case
without differences.

However it will be very interesting to solve exactly (1.1)
for an H atom because it is evident that this second-order
equation allows different selections of the complete set of
commuting cbservables used in classifying the eigenstates.
For instance it is possible for (1.1), but impossible for (1.2)
to work out solutions that are also eigenstates of y5; in
other words, it is possible to solve our bound-state prob-

lem also in the framework of the two-component formal-

ism of the so-called Kramers equation that, as is well
known, “gives the same results in standard problems as
the usual Dirac theory, but often the calculations are
simpler and the physics more transparent.”!* The impor-
tance of this analysis lies, beyond its own interest, in the
fact that, in this case, we would look for solutions of (1.1)
exactly in the same domain in which Feynman and Gell-
Mann worked their theory of the Fermi interaction:®* a
complete exposition of this problem will constitute the ar-
gument of a forthcoming paper.
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