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It is shown that, for spin-% fields ruled by a second-order wave equation, it is possible to define a

conserved current density whose zero component is positive definite. Hence one can (1) give a
coherent statistical interpretation of the wave function, and (2) define a Hilbert space of the states
with all the usual quantum-mechanical formalism. A new linearized form of the wave equation,
completely equivalent to the second-order one, is finally presented.

I. INTRODUCTION

It is a general opinion among theoreticians that it is im-
possible to give a coherent statistical interpretation for
fields obeying second-order, relativistic, quantum wave
equations. This idea follows from the fact that, for dif-
ferential equations containing second-order derivatives in
time, the usual form of the conserved current density has
as zero component (namely, as conserved density) a quan-
tity that is not positive definite.! This has two correlated
main consequences: (a) the said zero component of the
conserved current cannot be directly interpreted as a prob-
- -ability density; (b) the scalar product, defined by means of
this current, cannot be utilized to define coherently a
norm on the vector space of the states of the quantum sys-
tem. .

It is thus apparently very difficult, if not impossible, to
build on this ground a relativistic generalization of the
usual quantum formalism, with its Hermitian operators
acting in a Hilbert space. As is also well known,' the
first-order Dirac equation is born exactly in order to give
an answer to this problem, and consists in a linearization
(obtained by means of a spinorial formalism) of the
second-order, relativistic wave equation, which yields a
positive probability density.

On the other hand, we must remark that the relativistic,
second-order wave equation still constitutes the most
natural generalization of Schrédinger’s wave mechanics.
From this standpoint, despite the very impressive quantity
of results directly obtained from the Dirac equation, it is a
bit unsatisfactory that this linearization cuts off a sub-
stantial part of the solutions of the second-order equation,
Nothing similar, indeed, is usuvally done on the Klein-
Gordon or on the Proca equation. Moreover, it is well
known, for example, that, in their theory of the Fermi in-
teraction, Feynman and Gell-Mann? described the fer-
mion states by means of spinors that are not solutions of
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the Dirac equation, and yield results (such as parity viola-
tion) which have to be superimposed on Dirac’s solutions.

In the spirit of these remarks, this paper will be devoted
to show that, for spin-% fields ruled by a second-order,
relativistic wave equation, it is possible to define a con-
served current density, whose zero component is always
positive definite. Of course, that will allow us to define
coherently a statistical interpretation, a Hilbert space of
states, and all the ordinary machinery of usual quantum
mechanics, without restricting ourselves to the solutions
of the Dirac equation. Moreover, the formalism is de-
fined in such a way that we will recover all the usual re-
sults, when we consider the particular case of the Dirac
solutions.

We briefly recall here the notation and the results of the
preceding papers® devoted to this argument. If we write

1 1. e
D,,=’—n—c~{zﬁa_u—-;,4,, , (L.1)

the second-order, relativistic wave equation we are talking
about is the four-spinor equation (also called second-order
Dirac equation)

(I—PH(x)=0,

with P=v,D¥, where v, represent the usual 4 x4 Dirac
matrices. In this notation the Dirac equation is written in
the form »

I —Php(x)=0.

Along with Eq. (1.3) we will also consicier the associated
equation

(I +B1fx)=0. (1.4)

We will denote by &, & _, and &, the sets of spinors
¥(x) which are solutions, respectively, of {1.2), (1.3), and
(1.4). Let us now summarize some preliminary results

(1.2)

(1.3)
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that were proved in the preceding papers.>

(a) The only spinor common to & and & _
identically zero spinor ¥(x)=0.

(b) ¥, and & _ are vector subspaces of the vector

" is the

space & . T

(c) There is a one-to-one relation between &  and & _,
in the sense that, for each ¢, of & , there exists one and
only one ¢¥_ in Z_, such that Y =ysp_ (with
Ys=iYoY1Y2V3), and vice versa.

(d) & is the direct sum of &, and & _, in the sense
that, for an arbitrary ¢ of &, we can always construct
two spinors

Yp=5I~DW, y_=53U+DP),
respectively, in &, and & _, such that ¢= ¢+ +_.

Vice versa, each linear combination of elements of g+

and & _ is an element of %.

We remark that, at this stage, concepts such as scalar
product, norm, orthogonality, and so on, are not defined.
Moreover, the above-mentioned properties show that, if
we want to deal with the complete space F of the solu-
tions of (1.2), we must take into account both Egs. (1.3)
and (1.4), and not only the Dirac equation (1.3). In the
subsequent sections we will show that this can be done
without destroying the positivity of the conserved density.
This result is obtained by mixing the Dirac spinorial for-
malism with a procedure similar to that introduced by
Feshbach and Villars* for the scalar field equation. A
more precise comparison with this approach will be dis-
cussed in the following sections of the paper.

H. THE POSITIVE CONSERVED DENSITY

As is well known in the general field theory,’ it is possi-
ble to define several conserved current densities, by means
of suitable local transformations which leave invariant the
Lagrangian density of the given physical system. In order
to point out the existence of a particular current with a
positive, conserved zero component, let us start with a
generalized (i.e., nonreal) Lagrangian density leading, as
Euler-Lagrange equations, to (1.2), namely,

L=¢pp—DoPY .

This unusual utilization of a complex Lagrangian is intro-
duced here only because it allows us to define a general-
ized form of the conserved current density containing, as
a particular case, not only the well-known form of the
current, but also the form we are looking for. If one dis-
likes this approach, however, we must immediately re-
mark that the conservation of the proposed currents is a
straightforward consequence .of Eq. (1.2), and it can be
proved also by direct calculation, without usmg general-
ized complex quantities at all.

From (2.1) we find that the usual form of the general-
ized conserved current density is

_imc | 8.7 = 0.7
Tu= s ¥ a0
=3Py b+6v, DY) . (2.2)
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Its conservation can be directly verified, under the condi-
tion that ¢,y satisfy (1.2). Of course (2.2) becomes real
when ¢=1, and then reduces to the usual form of the
Dirac current

Jux)=9y ¥ (2.3)

when ¢ =1) satisfies the Dirac equation (1.3). In the real
case ¢=1, it is well known that the zero component of
(2.2),i.e.,

Jo(x)=Re(y'Dy) , (2.4)

is not positive definite, unless 9 is a solution of the Dirac
equation. It is on this ground that an expression like (2.2)
is not considered as a suitable starting point to define a
scalar product, and cannot be utilized to work out a sta-
tistical interpretation of the second-order equation (1.2).

To overcome this difficulty we remark now that it is
possible to obtain a real form for (2.2) also when ¢=£1.
Indeed, it is very easy to show that, if ¢ is a solution of
(1.2), so is X =D since we have

(I~ D> =(I — D) PY=Dp—PH=0 .

In fact, the operator P defines a one-to-one map between
the elements of 7, since we have also DX =DP%)=1. We
can thus substitute Py for ¢ in (2.2) and get another gen-
eralized current density

jp.(x)= %(E_M’pﬂﬁb—i—anlﬁ) 4

whose conservation equation can be verified by direct cal-
culation, if only ¢ and ¥ satisfy (1.2). If we take ¢=1) in
(2.6), we now obtain a real conserved current density, with

jox)=11ByByY+yip]>0. @.7)

Of course, this reduces to the usual Dirac expression when
¢ =1 is a solution of (1.3). The positive conserved density
(2.7) can thus now be considered as a probability density,
and hence can constitute a coherent starting point for a
statistical interpretation of the relativistic quantum fields
ruled by Eq. (1.2). Moreover, it will be used as basis for
the definition of a scalar product for the state vectors.
In fact, we know® that the Lorentz scalar .

J Fux)dot(x)

obtained by integrating on a spacelike hypersurface o a
given vector field F,(x), is a quantity independent of the
particular choice of o, if F,(x) is conserved in the sense
that 3,F¥(x)=0. As usual, do*(x) represents the pseu-
dovector surface element on ¢, whose components are
do*=(dx dx%dx?,dxdx2dx>,dx°dx 'dx>,dx °dx 'ds?) .
2.9)

It then follows that the scalar, Hermitian, bilinear form
defined on the vector space of the four-spinors as

(¢ )= [ jux)do*(x)
=3 [ (Boy,py-+yap)do(x)

is independent of the particular o chosen for its evalua-
tion. If, for example, o is the hyperplane orthogonal to

2.5

(2.6)

(2.8)

(2.10)
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the x° axis we will have

¢ 0)=1 [1(BH) PY+9Ty1d’r, (2.11)
so that
W)=+ [Py By+yiypldie>0, 2.12)

where the case (¢,1)=0 is verified only if the spinor $(x)
is identically zero. The bilinear form (-,+) can, conse-
quently, be considered as the starting point to define a
norm on the vector space of the states, as we will see in
the following section.

.

III. THE HILBERT SPACE OF THE STATES

If we want to reproduce the construction of a Hilbert
space of the states by following the standard procedures,
we must now remark that the state of a system described
by the second-order equation (1.2), at a fixed time x°, can-
not be considered as completely specified by the spinor
P(x)|,0 as a function of its spatial coordinates xk,
Indeed, unlike what happens in the Schrédinger and the
Dirac equations, the knowledge of #(x) at a fixed time is
not sufficient to determine the subsequent time evolution
of the spinor. In other words, the knowledge of ¥(x) in
all space-time contains more information than Eq. (1.2)
associated with the incomplete initial condition on
#(x)| o Hence, if we want to study the quantum
mechanics of our relativistic system at a fixed time and
define the Hilbert space of all its states, we cannot deal
only with a spinor y4(r) at a given time, since it, by itself,
constitutes an incomplete determination of the state.

Equation (1.2) is a differential equation which contains
second-order derivatives in time. As a consequence, the
determination of the time evolution of a spinor needs two
initial conditions, namely,

YUX) | o_p=Xa(T),
3.1)
ao¢(X) l xo=o=X2(f) ’

where X(r) and X,(r) are two arbitrary and independent
four-component functions of the space coordinates only.
The more general and covariant way to express the condi-
tions (3.1) is to fix the values of ¥(x)} and 8¢(x) on an ar-
bitrary, spacelike hypersurface 0. In this case® we will
replace the succession of time instants x0, by a continuous
slicing of spacelike hypersurfaces ¢, and Eq. (1.2) Jassoci-
ated with the conditions for $(x) and 3¢1(x) on the given
og] will fix the evolution of the spinor #(x) in all space-
time. Moreover we remark that the initial conditions (3.1)
can be also given in the equivalent form

¢(x) Ex0=0=¢1(r) »
(3.2)
PYx)| o_o=621)

in the sense that we can always deduce (3.1) and (3.2)
from each other. The formulation (3.2) (or its covariant
form on arbitrary spacelike hypersurface o) has the ad-
vantage, with respect to (3.1), that ¢, and ¢, are both
four-spinors, so that it can be considered as the more

Lorentz-symmetric form of the initial-value problem for
Eg. (1.2).

In li%ht of these remarks, we will say that, at a given
time x" (or on a given hypersurface oy), the state of our
system is specified by an ordered couple of spinors
[¢1(r),é,(r)], in the sense that this couple, along with Eq.
(1.2), completely determines the spinor 1(x) in all space-
time. Hence, we take as vector space of the states of our
system (on a hypersurface o or, in particular, at a given
time x9) the space #° of the double-spinors

1 Pilo)
—1/—5- (o)

where ¥(o) means ¥(x)| e, and so on. # becomes a
Hilbert space if we adopt as scalar product

(¥|®)= [ do*TC,

Y(o)= , (3.3)

=7 [ do*Byup1+F2v,62) » (3.4)
where C p are the 8 X 8 matrices
Yu O
=10 Y (3.5)
and
-‘I-’=‘I’fco=[¢1:$z] . (3.6)

If we consider now the time (or o) evolution of a state, we
recall that it must be completely contained in only one
spinor function i{x) that is a solution of (1.2) and given
on all the space-time. As a consequence, the state ¥(x) on
all space-time cannot be compounded by two independent
spinors, but must be in a one-to-one correspondence with
the elements ¢¥(x) of #. The preceding analysis of the in-
itial conditions suggests that we associate to each ¥(x) of
& the double-spinor

w 1 Plx) 3
so that the generalized initial-value problem becomes
Y(oy)=dg, (3.8)

where ®; is an arbitrary double-spinor given on oy The
expression (3.7) evidently clarifies the connection with the
discussion of Sec. II. In fact, if W(x) and ®(x) are
double-spinors of the form (3.7), the scalar product (3.4),
on an arbitrary o, coincides with the Hermitian bilinear
form (2.10) defined on the vector space of the four-
spinors:

(V| ®)=7 [ do*(iy.b+Diy,pé)
=(1,4) . (3.9)

By recalling now that (¥,¢) is independent of the o chosen
to calculate it, we deduce also that the scalar product
(W] ®) does not depend on this choice. Of course, this
corresponds to the complete arbitrariness of the o chosen
to give the initial conditions (3.8).

Moreover, the initial-value problem (3.8), which does
not contain explicit conditions on the derivatives, suggests



that W(x) must satisfy some first-order differential equa-
tion. In fact, it is well known that a second-order equa-
tion can, in general, be made equivalent to a system of
two first-order equations.* Now, the general double spi-
nor

P(x)
d(x)

1

=— 3.10
¥(x) 73 (3.10)

is a quantity defined on all the space-time by means of
two four-spinors, so that the equation

# | P T 3.11

with ' |
0 I

Y (3.12)

is a synthetic form for a system of two equations which is
equivalent to (1.2). In fact, it is easy to derive from (3. 11)
that

d=pv, I—-DPHP=0, - (3.13)
namely, that ¥(x) must have the form (3.7), where #(x) is
a solution of (1.2).

We see here a striking analogy of the preceding pro-
cedure with the method adopted by Feshbach and Villars,*
in reducing the second-order Klein-Gordon equation for a
scalar field to a system of the first-order (in time) equa-
tions, on a two-component function, constituted by the
field and its time derivative. Here, however, the positivity
of the conserved density and the perfectly Lorentz-
symmetric form of the double spinor (3.7) allow us to give
a coherent reformulation of the relativistic quantum
mechanics for particles ruled by Eq. (1.2). First of all, the
states of our quantum system are represented by double-
spinors at a given time (or on a spacelike hypersurface)
and their time evolution is ruled by Eq. (3.11). The vector
space & of these double-spinors is a Hilbert space, where
" the norm is defined by means of the scalar product (3.4),
which is independent of the o chosen for its evaluation.
The statistical interpretation, in the usual sense, 1s based
on a conserved probability density of the form viy, and
the observables are represented by Hermitian operators in
the given Hilbert space #°. If, for example, we maintain
the ordinary association between the more common ob-,
servables and operators, we can also identify a simple
Hamiltonian operator. In fact, if i#0/0t is, as usual, the
energy operator, we deduce from (3.11) that -

C oDo¥(x)=(C + C ; Dy )¥(x), (3.14)
and hence
i#0W(x) = %Ao+mc(]B +A.D |¥x), (3.15)

with
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w0 (3.16)
A= CoCr=1, 'ak ,
so that the Hamiltonian >operator is
H =edy+mc B+ A ;D). (3.17)

1IV. THE ENERGY EIGENVALUE PROBLEM

If the Hamiltonian H is independent of time (i.e., if the
external electromagnetic field 4, is constant in time), the
energy eigenvalue problem

31 4.1)
is solved by the stationary states
Vi (x)=e "B/ @ (1), (4.2)
where, of course, ®z(r) is a solution of
H Qp(r)=Edg(r) . 4.3)

Hence, from (3.17), we can see that Wz(x) will have the

- form (3.7), where now the higher four-spinor

Pg(x)=e ~E/Ag (1) (4.4)

%s a stationary solution of (1.2), and the lower four-spinor
is

Dyg(x)=e —'E/% LZ(E —edq—mcroy Dy )pp(r)

me
4.5)
.so that we will have for (4.3)
o 1 dr(r)
V2 miz —eAg—mc*oy Dy )pp(T)

In this sense, it is perfectly equivalent to have a stationary
state (4.2) that is a solution of (3.11), or a four-spinor (4.4)
that is a solution of (1.2). The stationary character of
(4.2) is easily seen from the fact that the conserved proba-
bility density

P CoWp =L (r)®g(r) 4.7)

is a completely time independent function of the spatial
coordinates.

In order to better discuss the energy eigenvalue prob-
lem, let us remark now that the proposed linearization
(3.11) of the second-order equation (1.2) is quite different
from the well-known Dirac linearization. In fact, the set
of the double-spinors ¥(x) that are a solution of (3.11) is

_ in a one-to-one correspondence with all the set & of the

solutions of (1.2), and not only with the subset & _ of the
solutions of the Dirac equation (1.3). In other words
(3.11) contains both Eqgs. (1.3) and (1.4). To directly see
that, it is sufficient to remark that the matrix C com-
mutes with (C — C pD"), and has as eigenvalues 1 and

—1, and as eigenvectors
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1 P(x)
V2 | E(x)

that are solutions of the equation

CWi(x)=+W,(x) .

W, (x)= , 4.8)

4.9)

Hence, the solutions of (3.11) can be simultaneous eigen-
vectors of C : if we substitute (4.8) in (3.11) we immedi-
ately find that ¥(x) must be a solution of (1.3) or of (1.4),
following the choice of the sign in (4.8). In this sense, the
Dirac linearization consists in taking on only one of the
"two eigenvalues of C, and more precisely the value + 1.
It is also very easy to verify that

p.—-1 iz c (4.10)
are the projection operators that project each double-
spinor ¥(x), that is a solution of (3.11), in the double-
spinors W.(x) of the type (4.8). In this case we will have
also that

W(x)=W (x)+¥_(x).

4.11)

These remarks show that the relations among the sets of
the double-spinors W(x), ¥, (x),¥_(x) are exactly the
same as the relations among the corresponding sets of
four-spinors #,% ,,%9_. As a consequence, we can,
without confusion, consider & as the vector space con-
taining the double-spinors solutions of (3.11), and & ; as
the subspaces relative to the projections P ;. Indeed, all
the relations recalled in Sec. I still hold, and now we can
also prove that & ., and & _ are two orthogonal sub-
spaces of #. In fact, if

1 |¥(x) o(x)
V3 |d(x) —(x)

are two>arbitrary double-spinors, belonging, respectively,
to 2, and & _, we will have from (3.8) that

(¥ |@ )= [ do*¥,C,d_

=3 [ do* Py, p—br,$)=0.

In other words, each double-spinor of .# can always be
decomposed in two double-spinors, belonging to the
orthogonal subspaces &, and & _. The one-to-one con-
nection between elements of &, and & _ is here ob-
tained by means of the matrix

ys 0
0 —7s|-

1

, <I>_(x)=~‘/—§ (4.12)

{4.13)

(4.14)

Ci=

On the ground of these remarks, we can now show that
the energy spectrum of a quantum system, obtained in the
framework of the second-order equation (1.2) [or,
equivalently, of Eq. (3.11)], is always exactly coincident
with that obtained from the first-order Dirac equation
(1.3). In fact, it is very easy to verify that the relations
connecting the elements of &, | ,& _ are obtained by
means of operations, like (4.10), (4.11), (4.14), which
preserve the form (4.2) of a stationary state, since they
consist in linear combinations of components, all mulii-
plied by the same phase factor e ~*Z*/% The difference is

that now, for each given eigenvalue, we must take as the
eigenstate in % both the eigenvectors of &, and & _.
This means that we can always approach an energy eigen-
value problem, by discussing it by means of the Dirac
equation (1.3): the spectrum will always be the same for
the complete equations (1.2) or (3.11). Then, we can get,
from the solutions of & _, the solutions of & . belonging
to the same eigenvalue, by means of the matrix (4.14).
The complete set of the eigenstates in & will be constitut-
ed by both the solutions belonging to 2, and & _. It is
for that reason, for example, that we get the complete hy-
drogen atom spectrum also if we work out only the solu-
tions of the Dirac equation.

V. THE FREE PARTICLE
For a free particle Eq. (3.11) can be written as
(i C 0¥ —me C)¥(x)=0. (5.1)
The plane-wave solutions of this equation have the form
Y, (x)=Nei@x/Az (5.2)

where N is a normalization factor, = is a constant (in the
space-time) double-spinor, and €==1 is the sign of the
energy. Indeed, as usual in the relativistic quantum
mechanics, the energy can take positive and negative
values and, if we use the expression

2
._LJ
me

to represent the absolute value of the energy, we can fac-
torize its sign by means of .

If we substitute (5.2) in (5.1), we find that the double-
spinor = is not completely arbitrary, since it must satisfy
the equation

172
>0 (5.3)

. epo=FE =mc? [1-{—

(e Cppt—mc C)E=0. (5.4)
If we pose
3
5=% nl (5.5)

we get from (5.4) that, if p,p*=m?? £ is an arbitrary
spinor and

—e-Z
n=e€— £, (5.6)
so that, the most general form for a plane wave is
N §
V7 — Y —lep-x/h .
e,p(x) Vol eJ’—§ (5.7)
mc

In order to obtain the orthonormality relations (in the
generalized sense of the § functions), we consider the fol-
lowing scalar product between double-spinors of the form
5.7):
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(Wep | Yo p) = [@*rT, h(x)Co¥e y(x) |
— NN'83(ep—e'p)2rhifie ~HeE—¢E1/AE m2e 2720"_14_;6277@' ig, ’ (5.8)
. |
that, from the usual properties of the ¢ matrices, become’i 7 Asa conséquence we get also
(Yep | Ye,pr? =NN '(ZWﬁ)S "8eed(p—p’) - Exr‘,%ﬁv=§ATG(P)§N¢=8M'5”J . (5.19)

(5.9)

To further calculate, we remark that the spinor § can be

chosen as the eigenstate of a commutative set of opera-

tors. For example, if we fix p,, we can consider the ma-
trix

G(p)=-L, —(5.10)
mc o
such that G%(p)=1I, with eigenvalues A=+1. Since the

space of the spinors £ is a four-dimensional, complex, Eu-
clidean space, we need another matrix to remove all the
degeneracies. If we take now a vector s,, with SusbF=—1
and p,s#=0, which plays the role of a spin polarization
vector, it is easy to verify that the matrix

(5.11)

3(s)=ys5
has as eigenvalues 7=+1, since 3%(s)=1I, and that
[G(p),=(s)]=0. (5.12)

Hence we can take, for fixed p, and s,, as a basis the spi-

nors &;, (A,7==1) that are simultaneous solutions of the

following eigenvalue equations:

G(p)rr=AExr » 2(s)ép,=TErr -

It is a nice exercise to show that the explicit form of these
spinors is

(5.13)

Ur

. AL
172 Po+me

Po +mc

- (5.14)
2mce

gl.'r:

_po
Po+mc

U_r

-7

where u, is a two-component spinor solution of

s'ou,=7u, (r==*1), (5.15)
with

s’=s—soz_fﬁ . - (5.1’6)
If we take the orthonormalized solutions of (5.15), name-
ly, if

uiu,: =8, (5.17)
we can show that the following relations hold:

Enebnr =A0pad,r (5.18)

Going back now to the plane wave (5.7), we can easy
deduce that the set of double-spinors

172
mc?

EQ2m#)?

—iep-x/fi 1

\I’Ay T e»p(x) =

AT

is an orthonormalized set, because from (5.9), (5.19), and

- (5.20) we get

(Prrep | Vi re,p ) =8308,88(p—p') . (5.21)

— By comparing (5.20) with (4.8) we obtain also that these

plane waves are all elements either of & | or of & _. Of
course the most general solution of (5.1) is a wave packet
of the form

Vx)= 3 [d*pcinepIWrnepx)
A, Ty€

(5.22)

and it is not, in general, a solution of the Dirac equation.
The wave packet (5.22) will also be normalized if

(W[ ¥)=T [d’|cpnep)|?=1.

A€

(5.23)

VI. CONCLUSIONS

The authors consider, in some sense, astonishing the

_fact that spin-+ particles should be described by means of

a first-order equation, whereas the spin-O and the spin-1
fields are usually ruled by second-order equations, which
are the most natural quantum analog of the relativistic
energy-momentum relations. Of course, they know that,,
the Dirac form of the wave equation is extensively used -
because of its enormous amount of very good results and
predictions. However, they tried to show, in the present
paper, that these results and predictions can be preserved
also in a theory ruled by the second-order equation (1.2).
In fact, in this case, it is perfectly possible to define a
coherent statistical interpretation, a Hilbert space of the
states and all we need in order to have a quantum
mechanics in the ordinary sense. Moreover, it was shown
in Sec. IV that all the energy eigenvalue problems have
the same spectra in the two approaches and that the ener-
gy eigensolutions Wz(x) are doubled by means of the ma-
trix Gs. Despite the fact that these additional eigenstates

" have the same probability density as the original states,

smce
(Cs¥p) ey =i, ,

this doubling of the eigenstates points out two facts.
(a) It is possible, by means of linear combinations, to
find complete orthonormal systems of eigenstates that are

(6.1)
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quite different from the Dirac system, and hence it is pos-
sible to define complete systems of commuting observ-
ables that are not available in the Dirac theory.

(b) The space F is, is some sense, more symmetric than
4 . in fact the matrix ys [that does not commute with
the Dirac operator (1.3) and that transforms & , in & _
and vice versa) is a symmetry operation in . It corre-
sponds to the fact that the space of our spinors is no
Ionger a representation space for the Lorentz group only,
but it contains also discrete symmetries. This can be con-
sidered as an advantage in the sense that, for example,
contains also subspaces corresponding to the two-
component theory of Feynman and Gell-Mann.?

However, 1f a relativistic quantum mechanics is possi-
ble for spin-1 particles, even on the ground of a second-
order wave equation, we must also ask how it is possible
to extend this program to the bosonic case. In fact, if we
try to reproduce our present method for a scalar field
ruled by a Klein-Gordon equation, we immediately find
some difficulty. If, for example, we start with a general-
ized Klein-Gordon current density

QY — 8,8 ) ——— A, Y,  (6.2)

we do not find a form for ¢ and 1/J such that I, is real
with Iy >0. That is connected with the followmg remark:
the generalized current (2.2) for the spin-4 case is not im-
mediately analogous to (6.2). Indeed, we have from (2.2)
that its Gordon decomposition is

1, (x)—

Julx) =50 (¢a,,¢ 3uP)—

T
+ me J (¢0’yv¢) » (6.3)

—i F¢¢

with a third term which has no correspondent in (6.2).
This term, which is separately conserved by symmetry
reasons, plays an important role, in the sense that we
could not obtain a current with a positive zero com-
ponent, if we did not take it into account. In fact, if we
take Yy=P¢, the first two terms of (6.3) have no positive
zero component. Hence, the problem arises if it is possi-
ble to find a more general form of the Klein-Gordon
current that allows us to define a positive conserved densi-
ty. On the other hand, we must remark that the reduction
of a second-order equation to a first-order one does not
guarantee in itself the possibility of building a conserved
positive density, as the Feshbach and Villars approach
shows.*

However, one thing seems to be clear to us: we would
not succeed in defining a positive conserved density for
(1.2) without passing through the Dirac formalism with
its four-component wave functions, and its decomposition
of the second-order operator by means of the ¥ matrices.
Maybe, it means that, for bosonic wave equations also, we
should pass in the framework of the linearized wave equa-
tions given, for example, in the Kemmer spinorial formal-
ism.” The discussion of this problem will be the argument
of a forthcoming paper.
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