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It is shown that suitable classical analogs for the relativistic quantum systems of two particles always exist, and that they are 
destitute of causal anomalies. 

The wave mechanics lives in a configuration space; 
the classical, hamiltonian mechanics in a phase space. 
This is but one of the difficulties faced by all the 
attempts of  building a coherent interpretation of the 
quantum phenomena in terms of classical concepts. 
The prescription of  the right extension procedures 
from one formulation to another will play, in fact, an 
essential role in the comprehension of the dynamics 
of  the classical analogs. Moreover, from the begin- 
ning of its history, the causal interpretation of the 
quantum mechanics for two or more particles is tied 
to the problem of the direct interactions among them 
[ 1 ]. I f  this poses no serious challenges in a non-rela- 
tivistic theory, in a relativistic one we must verify 
that such a causal description is in fact possible. In 
this letter we will try to formulate suitable classical 
analogs for the relativistic quantum mechanics of two 
particles and verify their internal consistency as a 
preliminary, essential step for all the future 
developments. 

We will start our dicussion with a short and rather 
intuitive outline of  the covariant, canonical formal- 
ism describing the dynamics of  two point-like, clas- 
sical, interacting particles of  identical mass m [ 2 ]. 
Let us consider a set of  canonical variables qa,U PaU 

( a =  1, 2;/~=0, 1, 2, 3) for our two-particle system. 
The evolution in terms of  two scalar parameters ra, 
in general not coincident with the usual proper times, 
is given by means of phase space abstract orbits (sur- 
faces) qg(zj ,z/) ,  p~(z~,z2). This evolution is ruled 
by the canonical equations 

Op~a " U " " ,  Oq~a -- { qU'Hb -~T b -- (p  a'l-lb ~ ' (1) 

written in terms of scalar hamiltonians of  the form 

1 u 
Ha ( q~, q~ ;p~,p~) = ~ PaPal, + Va ( q~, q~ ;p~,p~) , 

(2) 

where, in general, Va contain direct interactions 
between the two particles. These scalar hamiltoni- 
ans, describing the evolution in %, are related to the 
mass m and must not be confused with the energy. 
An equivalent, but less symmetric, description of the 
evolution in qO is indeed possible by means of non- 
scalar hamiltonians related to the energy. The Cau- 
chy problem of  our system consists in finding a 
unique phase space orbit obeying (1), for given ini- 
tial data. We remark here that we do not impose con- 
straints on our canonical momenta: the pa 2 are not a 
priori coincident with m z. The reasons will be clear 
later. It is also well known that our dynamical prob- 
lem has an equivalent formulation in terms of a sys- 
tem of Hamilton-Jacobi  equations of  the form 

Ha (q~, q~; 0 W/Oq u, 0 W/Oq~) = ½ m . ( 3 ) 

A complete integral of  (3) W ( q q , q ~ ; P ~ , P ~ ) ,  para- 
metrized by means of the constants pu, will play the 
role of  the generating function of the canonical 
transformation 

pUa=OW/Oqau, QUa=OW/OPau, (4) 
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which trivialize the movement [ 3 ]. 
The endeavour of  finding orbits in a relativistic, 

canonical formalism in presence of an action-at-a- 
distance, must not be considered in contradiction 
with the no-interaction theorem [4]. In fact, when 
a direct interaction is present, we can solve our Cau- 
chy problem in the phase space (if  the compatibility 
conditions discussed later are satisfied), but we can 
no longer interpret the qg as the true positions in the 
spacetime, since these cannot be canonical variables. 
Indeed the q~ can be interpreted as positions only 
when they satisfy the relations 

0q~'/072 2 = Oq~/Orj = 0, (5) 

or even, from (1), 

{q]',H2}={q~,gl } = 0 ,  (6) 

expressing the fact that eventually, if we want to 
define true world lines from the abstract phase space 
orbits, each particle position must depend only on its 
own time parameter. However, it can be proved that, 
if the canonical variables qU of our hamiltonian, 
Poincarr-invariant system satisfy also the relations 
(6), then the accelerations must vanish and the sys- 
tem must be considered as non-interacting [2]. 
Hence we will be obliged to solve our Cauchy prob- 
lem in the phase space and then deduce the world 
lines in the ordinary spacetime by somehow deter- 
mining the true, uncanonical positions 

x~(q'~,q~;p~,p~) 

among the phase space functions satisfying the posi- 
tion equations 

{xt~,H2}={x~,Hl}=O. (7) 

The compatibility of  the Cauchy problem for the 
canonical equations (1) deserves a last remark. The 
evolution of an arbitrary phase-space function 
f(q]',q~;pq,p~) is ruled by ~1 

Of/Oz~ = {f,H,}.  (8) 

It is very easy to see that, if we use (8) in the obvious 
relation 

"~ We adopted the symbol of  partial derivative since f d e p e n d s  
on two parameters, r~ and r2, through its dependence on qg 
and p~: it does not indicate any explicit dependence of  f on r 
and T2. 

02 f l o t  I Or2 = O2f/Or2 Ozl , (9 )  

the Jacobi identity and the arbitrariness of f imply 

{H, , H 2 } = 0 ,  (10) 

or even, from eq. (2), 

{V~,V2}+p*[OV2/Oq]'-p~OVl/Oq~=O. (11) 

The Frobenius theorem [ 5 ] states that (10) is even 
a requirement sufficient to ensure the existence of 
the orbits qU~(Zl,r2),pU~(Zl,Z2) in a unique way, 
assuming given initial conditions. 

We pass now to discuss i fa  quantum system of two 
free particles can be described by means of this clas- 
sical formalism. By quantizing in the usual way the 
hamiltonians of two free, classical particles 

Hca = (1/2rn )p~p,~, (12) 

we get the following system of two wave equations 
( h = c = l ) :  

(ff]a+m2)~u(q~,q~) = 0 .  (13) 

The following ansatz on an arbitrary, but fixed, solu- 
tion of (13) 

q/o(q~,q~) =Ro(q~,q~) exp[iWo(qq,q~)] (14) 

allows now a separation of the real and the imagi- 
nary parts of (13), so that we have the equivalent 
system 

10WoOWo 1 [~aRo lm,  (15) 
2m Oq~ Oqa u 2m Ro 

0--~u / = 0 .  (16) 

Despite an obvious analogy, the usual identification 
[1] of  (15) with a Hamilton-Jacobi  equation 
deserves a short discussion. The Hamilton-Jacobi  
equations of  a classical system of two particles, with 
potentials - [~Ro/2rnRo, are 

1 0 W O W  1 E]~Ro ½m, (17) 
2m O~ Oqau 2m Ro 

where we dropped the label "0" in W in order to 
make clear that now W is a generic solution of (17) 
for a fixed Ro, and not the phase Wo of q/o, which is 
only one particular solution of (17). The form of (17) 
means that, for a fixed ~to, we are considering the 
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classical system ruled by the following hamiltonians, 

1 1 rqaRo (18) 
H°a =f-mm P~Pau 2m Ro 

However, for a fixed ~o, only the solution W= Wo 
will correspond to a quantum state solution of (13). 
All the other solutions W, relative to the same Ro, 
are not, in general, phases of a wavefunction with 
amplitude Ro. Of course these remarks hold for each 
particular wavefunction ~o. 

By summarizing: we can say that the wave equa- 
tions (l 3) are not connected to only one system of 
equations (17), but to an entire set of systems (17) 
with the different potentials derivable from all the 
possible Ro of (14). Moreover, for each Hamil- 
ton-Jacobi equation (17), the wave equations (13) 
select only one solution, W= Wo, as a possible phase 
of a wavefunction. That means also that we cannot 
find the complete integral W(q~, q~ ;P~,P~) needed 
in the Hamilton-Jacobi theory by looking only at the 
solutions Wo derivable from a quantum mechanical 
wavefunction. That is why, in the usual causal inter- 
pretation of the quantum mechanics [1], we have 
only the relation 

pua =OWo/Oqau, (19) 

which represents just a half of the canonical trans- 
formation (4). In other words, the fact that Wo is the 
unique solution of (17) susceptible of an interpre- 
tation as phase of  a wavefunction indicates that a 
quantum system in go must be considered as the 
restriction, to the phase space surface Zo defined by 
(19), of the classical system utilized for its 
description. 

At this point we need to introduce the following 
definition: we will say that a quantum system of two 
free particles in the state ~to admits a suitable clas- 
sical analog when we can find two hamiltonian func- 
tions H~(q]', q~;p~,p~), satisfying the compatibility 
conditions (10), leading to time-like trajectories in 
the ordinary sapcetime and such that their restric- 
tions on Zo satisfy the following relations, 

( OWoOWo)  
H~Iz°=H~ qq'q~; Oqju' Oq2u 

10WoOWo 1 D~Ro 
-2rn  Oqua Oqau 2m Ro - ½ m ,  (20) 

namely such that Wo(qq,q~) is a particular solution 
of the corresponding Hamilton-Jacobi system. It is 
clear that the form of Ha will depend on the partic- 
ular, fixed wavefunction ~Uo. However it should be 
remarked that in general the requirements listed 
above may not fix the classical analog in a unique 
way. 

In the light of this definition it is clear now that 
Hoa of eq. (18 ) does not give a suitable classical ana- 
log for our quantum system. In fact, while its restric- 
tion on Zo verifies the relations (20), the 
compatibility conditions (10) are satisfied only by a 
too restrictive number of states. Indeed the form (18) 
ofHoa, which is the simplest extension of (15) to the 
entire phase space, indicates that we have chosen as 
classical extended potentials the so-called quantum 
potentials 

1 ['-]aRo Voa(qU~,q~) - - - - ,  (21) 
2m Ro 

which are independent of the canonical momenta 
pua. However, if Voa depends only on qua, we have 
{Vow, Vo2}=0, so that, from the arbitrariness ofpua 
(which are independent, unconstrained variables) 
the compatibility relations in the form (11 ) imply 

0 Vol/Oq~ = 0 Vo2/Oqq = 0.  (22) 

It means that Vo~ (Vo2) cannot depend on q~ (qq) 
and hence that we can describe only systems with zero 
direct interaction. This is a too restrictive require- 
ment, not satisfied by every potential (21 ) derived 
from a non-factorizable wavefunction go. It also 
clarifies the difficulties of the previous approaches to 
this problem, based on the naive extension (18) of 
our dynamics to the entire phase space [6 ]. More- 
over, even in the case of a single, relativistic, quan- 
tum particle, it can be shown that the naive extension 
from Zo to the entire phase space 

~m 1 DRo 
Ho= P"Pu 2m Ro (23) 

leads to the following relation, 

Clu =dqu/d'r = { qu,Ho } = m - 'Pu ,  (24) 

and hence on Z o we will have 

~ I,:o = m - l  aWolaq u • (25) 
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But, as can be shown by means of simple examples 
[ 7 ], this implies that these velocities O.(r) I zo can be 
both time-like and space-like, so that they violate an 
essential requirement of  the idea of causality. 

In order to show that a suitable classical analog of 
our two-body quantum system does in fact exist, we 
propose here an alternative extension based on the 
remark that all the hamiltonians of the form 

1 f , OA "~f _.ff_q~q~), 
/_/. = ~mm ~ . p -  0~.~, )~p.i ,  OA (26) 

where A (q~', q~) is an arbitrary scalar function of the 
canonical coordinates only, always satisfy the com- 
patibility conditions (10). Forthese hamiltonians we 
have 

" 1{ l, cOA~ 
Oqoor,, - {q'J,H,,} =~,,, mkp~ - ~ q ~ ) ,  (27) 

so that q~ verify the position equations (7) and are 
good candidates to play the role of  the true positions: 
indeed (26) indicates that qg(r~) depends only on 
its own time parameter, so that it defines a true world 
line. Another consequence of (26) is that the veloc- 

It ities OqJOG are not parallel to pg, differently from 
the case of  the naive extension (18). Moreover, it 
can be verified that 

2 It O q. 
={{q,,H~},H,}=O, (28) 

so that the trajectories in the configuration space are 
straight lines. Hence, if they are time-like somewhere 
in the configuration space, they will retain this char- 
acter along all their evolution. 

We must now define A so that (26) will take the 
correct value (20) when restricted on Z0. We pro- 
pose, as the simplest choice, 

A(q~',q~) = Wo(q~',q~) - WF(q~,q~), (29) 

where Wo is defined in (14) and Wv satisfies 

1 0 W v O W v _ ! m .  
(30) 

2m Oq~ Oq.. 

It is easy to see that the corresponding hamiltonians 

H v ~ = ~ m ( p  ~ O(Wo-Wv))(p.,,Oqa. O(Wo-Wr)Oq~ ) 

1 { , OWo~O(Wo-WF) 
=H°a--~mkPa' - -~q~)  Oqa. 

have the correct restriction 

HFa ]Zo =Hoa IZo 

(31) 

1 0 Wo 0 Wo 1 I--]aR o 
- 2 m  Oq~ Oq~ 2m Ro ½m, (32) 

indicating that W0 is a solution of the Hamil- 
ton-Jacobi equation associated to (31). The true 
quantum potentials, extended to the entire phase 
space in a non-trivial way will now depend on the 
canonical momenta following the relations 

1 0 ( W o - W v )  O(Wo-Wv) 
VF. = 2m Oq~ Oqa l, 

_ ! p ~  0( Wo - w~) 
m Oq~ 

1 I--1.Ro 1[" u OWo'~O(Wo-WF) 
- - 2 m  Ro m~,P~--~qU~, ] -Oq-fu ' 

(33) 

so that its restriction on Zo is the old well-known 
quantum potential (21): 

1 DaRo 
gva lzo = roa - -  (34) 

2m Ro 

To completely show that Hv,, are hamiltonians 
describing suitable classical analogs of the quantum 
system in the state q/o, we remark that, from (27) 
and (29) we have 

Oq~ 1{ ~ O( Wo- W~) UUa --OT~a---~kl)a-- 5~a, a ] ,  (35) 

and hence 

I OWF 
u~ Izo - m  Oqa. ' (36) 

which are always time-like vectors, since (30) holds. 
Moreover, since U~a are constant vectors, as (28) 
shows. U"a are time-like vectors along all their evo- 
lution, so that no causal paradoxes are possible in 
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this scheme [8]. However, while we have rectilinear 
trajectories because u~ are constants, velocities and 
momenta  are no longer parallel, so that p~ are not 
constants. That is why we did not take constrained 
momenta in our classical formulation: even if 
u ~'a u,,~, -- l, as required when q~ are true positions and 
r ,  usual proper times, P~Pa~, is not in general a con- 
stant. By summarizing, the action of a quantum 
potential can be described by means of a sort of  gauge 
field which will not disturb the free motions in the 
configuration space, even if it deeply influences the 
canonical momenta.  

Of  course H~a is no unique possible classical ana- 
log for our quantum system: other extensions to the 
phase space perhaps exist, as indicated in a pioneer- 
ing work about this subject [9]. The main interest 
of  the proposition (31 ) lies in the fact that it shows 
that for a quantum relativistic system of two parti- 
cles, a classical analog, satisfying the compatibility 
conditions (10) and leading to time-like trajectories 
in the spacetime, always exists. That this result was 
not at all trivial can be understood from the remark 
that the usual phase space extension (18) was not a 
good choice. It should be remarked, however, that 
this departure from the extension (18), that is com- 
pulsory in the relativistic domain, should be enlarged 
even to the non-relativistic limit. Indeed it makes no 
sense to adopt two definitely different phase space 
extension procedures for the relativistic and the non- 
relativistic case. Whether this will imply deep mod- 
ifications even in the usual and well-established 
causal interpretation of  the non-relativistic quantum 
mechanics will be discussed in forthcoming papers. 

Two other topics seem to be worth further devel- 
opments: first of all our classical analog (31 ) is still 
largely undetermined because WF, which is essential 
in describing the true motion in the spacetime, is not 
exactly specified. It must only satisfy eq. (30) which 
is the relativistic analog of the well-known straight 
light rays equation. However, we will indicate here, 
as a possibility, the fact that (30) can be interpreted 
as the real part of  the quantum potential type of the 
non-linear, relativistic SchriSdinger equation [ 10], 
but we will postpone any deeper examination of this 

connection to a future discussion. Finally we must 
remark that the particular relevance of  the phase 
space surface Zo is ill understood from a purely clas- 
sical standpoint. We can only say here that Zo is 
determined by means of the function Wo, which plays 
a special role because it is the unique solution of the 
Hamilton-Jacobi  equation of the classical analog, 
which is also a solution of  the continuity equation 
(16). We did not examine this equation in this paper, 
but it is easy to see that (16) is directly connected 
with a problem that we have not even mentioned at 
this stage: namely that of  the statistical statements 
and of the probabilistic interpretation of the theory. 
Of  course that will constitute the second half of every 
complete reinterpretation of the quantum mechanics. 
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