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It is shown that Kolmogorovian probability models, like stochastic mechanics, are compatible with the nature of quantum 
conditioning if we admit that the classical processes of the model cannot be all observable at once. 

Conditioning is the acquisition o f  new informa- 
tion. However, while in classical physics this acqui- 
sition process is always cumulative, in quantum 
physics it is not. In fact in the quantum world there 
are incompatible informations, so that when you try 
to put two or more o f  them together (namely by con- 
ditioning) you cannot always cumulate them. Often 
you can retain only the last (in a time sequence) in- 
formation and, by doing so, you destroy the memory 
of  the former informations. This feature, based on 
the uncertainty principle, is the physical reason for 
the different way of  calculating probabilities and ex- 
pectation values in quantum mechanics. 

However, there is a classical approach to quantum 
physics where probabilities can be calculated in the 
usual way and that, notwithstanding, gives rise to the 
correct quantum predictions: stochastic mechanics. 
In its framework, of  course, all the informations are 
compatible since it is a classical theory, but they are 
not all available at the same time for observation. 
Formally that means that in stochastic mechanics you 
have the right to do the usual classical conditioning, 
but not all the conditional probabilities that you can 
calculate are observable in the same experimental set- 
up (namely under the same experimental condi- 
tions). Generally speaking, only those conditional 
probabilities turn out to be observable which can also 
be calculated from the usual quantum formalism by 
means o f  the square modulus o f  the probability am- 
plitudes obtained from state vectors. 

Since the possibility o f  calculating transition prob- 
abilities is connected to the possibility o f  speaking of  

space-t ime trajectories for quantum particles as re- 
cently pointed out [ 1 ], the discussion on these top- 
ics has been revived [2] by the recent advances in 
the experiments directed to find empirical evidence 
for the existence of  real paths even in critical situ- 
ations (like two-slit experiments or other interfering 
devices) [ 3 ]. The aim of  this Letter is to review some 
particular topics o f  this discussion in order to stress 
both the possibility of  speaking of  trajectories given 
by the actual researches and the danger of  making 
too naive statements on this particularly delicate 
point. 

Let us start by showing, by means o f  a very simple 
example, that in fact the rules for computing and 
combining probabilities and conditional probabili- 
ties ~ are not unique, or natural ,  as we in general tend 
to believe, and that we must distinguish between a 
set of  statistical (empirical) data and the mathe- 
matical model that we use in order to systematize 
them and to build a theory of  the natural phenom- 
ena. It must also be stressed here that this formu- 
lation o f  the new probabilistic features o f  quantum 
theory does not deal with the usual terms of  the de- 
bate about quantum paradoxes (non-locality, action 
at a distance, completeness ...) even if it can be said 
that the roots of  all these paradoxes are here [ 4 ]. The 
important  point is that, if there is more than one 

In fact all probabilities are conditional probabilities in the sense 
that probabilities for every event in an experimental situation 
are given only after a preparation, i.e. a preliminary measure- 
ment followed by a selection of the outcomes, namely a 
conditioning. 
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mathematical model available to organize our ex- 
perimental results, we should be very careful in using 
the correct one in order to avoid paradoxes and 
errors. 

Let us suppose to consider three dichotomic phys- 
ical quantities X, Y, Z, taking values _+ 1, and sup- 
pose that, by measuring relative frequencies, we have 

P ( X = + I ) = P ( X = - I ) = ½ ,  

P ( Y = + I ) = P ( Y = - I ) = ½ ,  

P ( Z = + l ) = P ( Z = - l ) = ~ .  ( l )  

Of  course to complete the statistical data we must 
measure conditional relative frequencies by selecting 
the subset of  systems with a given value for the con- 
ditioning quantity and then by calculating the fre- 
quencies of  the second quantity with respect to this 
preselected subset. Let us suppose now that the tran- 
sition matrices are the following bistochastic matri- 
ces (the symmetry properties are supposed here only 
for the sake of  simplicity), 

P(X, Y) = e (  Y, X) = lIP(X= il Y=j)II = 

P( Y, Z) = P ( Z ,  Y) = 

P ( Z , X ) = P ( X , Z ) =  (2) 

Eqs. ( 1 ) and (2) form a set of  statistical data which 
shows the usual coherence properties, as for example 

P ( X = + l l Y = + l ) + P ( X = - l l Y = + l ) = l  , 

and so on. It is easy to see that these data can be sys- 
tematized in a very simple model: let us consider a 
fair die with the elementary outcomes all equiprob- 
able, ~={o9k}, P(o9k)=-~, k =  1 ..... 6, and consider 
the events A =  {o9~, o92, o93}, B = {o92, 093, o94], C =  {o93, 
o94, o95}, and the random variables ~=2IA--1 ,  
r/= 2Ia--  1, ( =  21C-- 1, where IA is the indicator o f  the 
set A, and so on. It is immediately seen that these 
random variables have exactly the same statistical 
properties as the quantities X, Y, Z measured before. 
Of  course, even if we accept this simple model to 
systmatize our measurements, we should not im- 
mediately deduce from this that the real world be- 
hind our empirical data is a die: at present it is only 

one, maybe the simplest, out of  a number  of  possible 
models. 

Let us suppose now that our situation be a bit more 
complicated since our quantities X, Y, Z satisfy ( 1 ) 
but have the following transition matrices, 

p(x, r ) = p ( r ,  x )=  ?8 ) } '  

p(y, z )=p (z ,  r )=  ,~ ,q}, 

P(Z, x) =p(x, z) = ( ~  ~ \,q (3) 

It can be seen that now our model should be that of  
an biased die with outcomes not equiprobable: 
P(091) =P(o94) = s p(o9z)=p(o93)=p(o95) = 3~, 
P(096)=~6, and with random variables ~, r/, ( de- 
fined exactly as before. 

Of  course our model can be complicated in such 
a way that it can systematize less simple data such 
as that obtained from dichotomic quantities with 
probabilities ( 1 ) and bistochastic transition matrices 

p ( x , y ) = p ( y , x ) = (  p l ; p )  
l - p  

(q P(Y, Z)=P(Z,  Y)= 1-q  

( r l - r )  (4) 
P ( Z , X ) = P ( X , Z ) =  I r r " 

This is not the more general situation but it is suit- 
able for our purposes. Indeed from the preceding 
discussion we could be led to think that for all values 
o f  p, q, rE [0, 1 ] we can find a die model, or in any 
case a complicated enough Kolmogorovian model 
[ 5 ], namely a classical probabilistic one, able to sys- 
tematize our empirical data. The fact is that this is 
simply not true and that this situation is far from 
being a mathematical curiosity. 

Let us suppose indeed that the measurements of  
our dichotomic quantities X, Y, Z give results sat- 
isfying (1) and (4)  with 

x / ~ + l  1 
p=q= 2x/~ , r = 5 .  (5) 

It can be seen that there is no die and no other more 
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complicated classical Kolmogorovian model that can 
account for these data [5]. In fact, if such a model 
would exist, we should be able to build a probability 
space (£2, -~, /t) containing three events A = { X =  
+ 1}, B = { Y =  + 1}, C = { Z =  + 1}, such that relations 
like 

/~(Ac~B) 
P(X=+IIY=+I)= 

p(B) 

and similar, with all other possible combinations of 
our events and their complements A, B, C must be 
satisfied. This implies that the eight joint probabil- 
ities / z ( A n B ~ C ) ,  p(Ar~Bc~(~) . . . . .  / t (AmBn(~) 
must satisfy a system of twelve equations of the fol- 
lowing type (from the symmetry conditions in (4) 
we can see that I t ( A ) = p ( B ) = p ( C ) =  ½ ), 

P(X=+IIY=+I)=#(AnB)  
p(B) 

=2  [#(Ac~ B n C) + p(Ar~ B~(~) ] , 

and similar. But this system not always admits a so- 
lution, and in particular for the statistical data (5) 
this solution does not exist. Hence no coherent Kol- 
mogorovian model can be built to accommodate our 
measurements. 

However, we could wonder, why should we worry 
about a situation that seems to be only a mathe- 
matical game showing that in some unfortunate cases 
we cannot build a Kolmogorovian model. The fact 
is that these unfortunate cases are neither uncom- 
mon nor physically irrelevant. For instance our ex- 
ample has been elaborated according to the statis- 
tical data that we would have obtained from the 
measurements of the following quantum spin ob- 
servables, ~= d~-S, ~/=fl.S, ( =  f-S, where S =  (ax, ay, 
a~) are the Pauli matrices, the unit vectors &, r, f are 
defined respectively by the polar angles ( ½n, 0), ( ~n, 
0), (0, 0), and the initial state is an eigenstate of ~y. 
Of course a non-Kolmogorovian probability model 
in Hilbert space for this set of experimental data is 
very well known and can be easily built. By para- 
phrasing a very famous statement, we could say that 
"God does not play dice" (or any other Kolmogo- 
rovian game) in cases like this, but in a sense very 
different from that supposed by the author of the 
original sentence. 

More general necessary and sufficient conditions 

on the so-called statistical invariants that must be 
satisfied by p, q, r of (4) in order to assure the ex- 
istence of the different probability models have been 
elaborated long time ago [ 5 ] and we refer to the lit- 
erature on the foundation of quantum probability for 
a discussion of that problem. However, we want to 
remark that up to now a theory of these statistical 
invariants exists only for a few simple cases, and that 
in particular the Bell inequalities and their general- 
izations [ 6 ] can be seen as necessary conditions on 
a set of statistical data for the existence of Kolmo- 
gorovian models. 

This preliminary discussion puts in evidence the 
fact that it is always very dangerous to approach these 
problems from an aprioristically Kolmogorovian 
standpoint [ 7 ], since that could lead directly to par- 
adoxical situations. For instance we could look at the 
Feynman position on the two-slit experiment [ 8 ]: if 
we denote with C the event corresponding to the 
preparation of the particles; with A the event cor- 
responding to the arrival of a particle on a given re- 
gion of the screen; B~ and B2 respectively the events 
corresponding to the passage of the particle through 
the slits 1 and 2; and if we uncritically apply the ideas 
of the Kolmogorovian probability model, we con- 
clude that one should have 

P(AIC)  =P(B,  IC)P(A[B~ ~C)  

+P(B2 IC)P(AIB2 n C ) .  (6) 

But the experiments say that there are interference 
terms so that 

P(AIC)  #P(B~ IC)P(AIBI n C )  

+P(Bz IC)P(AIBz c~C). (7) 

Since Feynman claims that (6) must be true if we 
suppose that (even when nobody looks at them) the 
particle passes through 1 or 2, his conclusion is that, 
since (6) is not true "... it is not true that the electron 
passes either through hole 1 or through hole 2 ..." [ 8 ]. 
The fact not considered by Feynman in drawing this 
conclusion is that it is possible to show immediately 
that the empirical data P(AIC) ,  P ( A I B j n C ) ,  
P(AI B2 c~ C) simply do not admit a Kolmogorovian 
model [7], so that there is no need whatsoever to 
declare meaningless the statement "... B had some 
value ... whenever we make no attempt to measure 
B..." [ 8 ]. And, as a further consequence, there is no 
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need to say that when a particle travels between two 
positions we cannot think of it as being somewhere 
with a given probability, at intermediate times. In 
other words there is no need to rule out the possi- 
bility of speaking of particle trajectories in space and 
time, a problem that will be discussed later. 

We want to emphasize here that a crucial point to 
understand the difference between classical and 
quantum probabilistic models lies in clarifying the 
differences between the two ways of adding new in- 
formation by conditioning. It is already clear from 
the preceding examples that we should be very care- 
ful in discussing particular empirical sets of condi- 
tional probabilities. Here we will remember some 
other particular features of quantum conditioning. 

(1) Let us consider in a classical probabilistic 
model on a probability space (fl, ~,  P) an event A 
such that P(A) =0  and let us ask if conditioning can 
modify the likelihood of the realization of A. If B is 
a conditioning event with P ( B ) # 0 ,  we can imme- 
diately see that even P ( A I B ) = 0 .  Indeed in a Kol- 
mogorovian model P ( A I B ) = P ( A c ~ B ) / P ( B )  and, 
since Ac~B~_A, we have 0~<P(Ac~B)~<P(A)=0, 
namely P(Ac~B)=0.  Hence no conditioning can 
change the fact that the event A happens with prob- 
ability zero. A similar conclusion can be drawn for 
events which happen with probability one. The sit- 
uation in quantum mechanics is completely differ- 
ent: let us show it with a simple example. Let or" be 
a Hilbert space, X, Y two non-compatible observa- 
bles with non-commuting operators X, 17 and xl, Yl 
two non-degenerate normalized eigenvectors respec- 
tively for the eigenvalues (1, ql of )(, 19. Let us sup- 
pose also that 

I(x, ,Yl)IZ#0 or 1 . (8) 

We initially prepare our state (preparation 4/) by 
measuring many times X and by selecting the sys- 
tems which give ~t as a result. We know that after 
this preparation 

P(X=~I 1 41)= I (x l ,x l )12= 1 , 

P(X#¢ ,  I~/) = l - P ( X = ¢ I  I°~/)=0. 

We now want to add the information that Y has the 
value rh by carrying on a subsequent preparation "t 
consisting of a measurement of Y on our preselected 
set 4/of  systems and in a second selection of the sys- 

tems giving ql as a result; because of (8) we are sure 
that the ensemble of the final systems is not empty. 
However, again because of (8), we have now 

P(X=~t I~,  °?/)=P(X=~l ] ' ~ / ' ) =  I (X l  , Y l ) 1 2 5  1 , 

P ( X # ¢ ,  I¢'. ~/)= 1 - P ( X = ~ ,  I¢ ;  oZ/)#0, 

namely the former probability-zero event becomes 
possible and the former probability-one event be- 
comes less than certain because of our second con- 
ditioning ¢~ 

(II) This particular form of interaction among 
quantum informations is also put in evidence by an 
analysis of the entropy behaviour. When in a Kol- 
mogorovian case the measure of a quantity Xhas only 
several possible outcomes ek with probabilities Pk, the 
average entropy of this scheme in bits of information 
is defined as 

H =  ~ Pk log2p/,-, 
k 

and it can be shown that every subsequent condi- 
tioning can only lessen this quantity [9]. This is not 
always the case for a quantum system. The effect of 
a preparation ~ll is represented here by a statistical 
operator 0 so that the entropy of our ensemble is 
proportional to H(~?l) =Tr(  01n 0)  [ 10]. When we 
condition our measurements by performing the two 
preparations oil, ~ in sequence we have H~ (oil) = 
H ( ¢ )  so that ~2. 

(i) if the two preparations lead to pure states 
0=Px,  I ?=P ,  where Px, Py are the projections of two 
vectors x, y, the entropy remains constant since for 
pure states we have H(q/)  = H (  "~ ) =0; 

(ii) if on the contrary 0=Px  is a pure state, but 
"~ i s  a mixture ( "t could be for example a measure- 
ment of an observable 17, for which x is not an ei- 
genstate, plus a selection giving rise to a mixture and 
not to a pure state) the entropy increases since 
H( ~ ) >~0=H( 4/); 

(iii) if finally 4l is a mixture and ~ is a pure state 
the final entropy is lessened by the second prepa- 
ration since H( ~ ) = 0 ~< H(4/).  

~2 A simple quan tum mechanical measurement  always increases 
the entropy [ 10]; however, it must  be recalled that a prepa- 
ration is not only a measurement ,  but  a measurement  fol- 
lowed by a selection of  the outcomes so that we could keep the 
entropy constant  or even let it decrease as it is shown in the 
following. 
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The crucial difference with the classical case is in 
the fact that in general the second preparation can- 
cels every memory of the previous informations. 
While in the classical case it is possible to say that 
the information contained in a probability measure 
P ( I q / )  is conserved when we add more informa- 
tion in P( I ~, ~/) by conditioning, in the quantum 
case we always have P( I ~,  * / ) = P ( I ' t / ) .  This 
looks like a Markov property, but we must always 
remember that this analogy can in fact be misleading 
since we must distinguish the case when the acqui- 
sition of new information alters previous informa- 
tion (quantum) from the case in which this does not 
happen, even if the initial information becomes ir- 
relevant (classical) [ 7 ]. 

(III) Let us thirdly remark that in the quantum 
probabilistic case, while a conditioning is always 
possible, it can be meaningless to make a joint state- 
ment. In the Kolmogorovian models we are used to 
think that joint probabilities and conditional prob- 
abilities are strictly related concepts; we even know 
that an elementary definition of conditional proba- 
bility is inherently based on the concept of joint 
probability. This is not the case in the non-Kolmo- 
gorovian models, as we already know since the pre- 
vious proof of the non-existence of Kolmogorovian 
models for particular sets of statistical data was based 
on remarks on the non-existence of a coherent set of 
joint probabilities. We will devote a subsequent pa- 
per to a deeper analysis of these questions, but here 
we want to remind of some simple facts. In a Hilbert 
space model the events are closed subspaces M of the 
Hilbert space ~ and the relative projectors/~M play 
the role of the indicators of subsets in a classical 
probability space. However, there are formal and 
substantial differences between these two descrip- 
tions. For instance it is always possible to calculate 
both joint and conditional probabilities for classical 
events; but, given two projectors/~M, fiN on .g(, even 
if we can always calculate the conditional probability 
of the event M given the event N as P ( M I N ) =  
Tr(PM/SN), it has no meaning to speak of the joint 
probability of these events unless 

[tiM, /~N] = 0 ,  (9) 

which is verified only in particular cases. In fact if 
we try to calculate the joint probability as 
P(M, N)=Tr(UPMPN) for a given initial prepara- 

tion oil we must immediately say that the definition 
is not coherent since PMPN is neither a self-adjoint 
operator nor a projection unless (9) is verified and 
hence our joint probability will take in general com- 
plex values. If  we substitute PMPN with ½ {PM, PN} we 
get a self-adjoint operator which is not a projector so 
that our would-be joint probability will be real but 
its values will not always belong to [0, l ]. Then we 
could think to use the definition P ( M , N ) =  
P(MN) =Tr(0/SMN), where now /SMN is the projec- 
tor on the intersection subspace MN. But even in this 
case we would have disturbing properties; for ex- 
ample, since the intersection is not distributive with 
respect to the linear sum of two closed subspaces, 
namely since in general M N + M / q # M ( N + l q ) =  
M, we will have P(M, N) +P(M,  lq) # P(M),  where 
lq is the orthogonal complement of N. Finally we 
could hope to use the conditional probability to de- 
fine the joint probability as P(M, N ) =  P (MIN)  
P(N) .  However, even this last definition is not co- 
herent since the theorem of total probability does not 
hold in general in quantum mechanics, as (7) and 
the previous examples have shown, and hence we will 
have again 

P(M, N) +P(M,  lq) 

= P ( M  [N)P(N)  + P ( M  t lq)P(iq) V=P(M). 

One could wonder at this point, why are we ready to 
accept the fact that a set of probabilities does not 
verify the theorem of total probability, namely 

P ( M I N ) P ( N ) + P ( M I N ) P ( N ) # P ( M )  , (10) 

as we did in (7), but cannot accept that 

P(M, N ) + P ( M ,  lq) 4= P ( M ) .  (11 ) 

The difference lies in the fact that in ( 11 ) the prob- 
abilities are all calculated with respect to the same 
probability measure (we are always in the same 
preparation ~)  so that this inequality appears as a 
logical incoherence ~3; on the contrary in (10) the 
probabilities are calculated with respect to two dif- 
ferent preparations, ~', ~ s o  that this inequality only 
indicates the impossibility of collecting all these data 
in a unique classical probability space, namely it in- 

#3 N and lq are a partition of our event space and there is no 
third possibility beyond them, so that in no coherent frequen- 
tistic interpretation our probability can verify ( 11 ). 
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dicates the incompatibility of the two preparations. 
Let us finally come back to a discussion of the two- 

slit experiment in the light of all these observations 
on the conditioning in quantum mechanics. It has 
been remarked in recent papers [ 1,2 ] that an inter- 
pretation of the experimental results in terms of 
space-time trajectories is in fact not forbidden (as 
even here recalled in the discussion about Feyn- 
man's argument). However, it must be emphasized 
that a correct appreciation of the subtleties of this 
problem can be achieved only if the discussion is 
done by taking into account all the constraints that 
the quantum empirical results impose on the math- 
ematical probability models. In this sense we think 
that in the light of previous remarks it is rather mis- 
leading to say simply that the interference term of 
P(AIC)  in (7) "... has no direct physical signifi- 
cance in terms of the particle properties and it also 
lacks meaning in the framework of probability the- 
o131" [2], or to state without further specifications 
that the standard Bohrian statistical interpretation 
"... deviates from the general spirit used in standard 
mathematical probability theory, where the main task 
is to construct the space of elementary events which 
happen under the same conditions under which the 
event considered happens" [2]. Even to show that 
relation (6) can always be forced on the experimen- 
tal data [ 2 ] could lead to the only half true idea that 
a Kolmogorovian model of the quantum mechanical 
empirical results is at hand and that it should only 
be picked up by everyone who wants to see it. In fact 
that situation looks not so linear: we agree with Bozi6 
and Mari6 on the fact that the quantum probabilistic 
model deviates sharply from the usual classical one 
(and we have devoted some discussion to elucidate 
the need to do that); we agree also on the fact that 
a Koimogorovian model for the quantum results is 
always possible; however, we think that something 
more has to be said about this model and that this 
can be said only if we build it not only by hand in 
some particular cases, as in the two-slit experiment, 
but in the general framework of a systematic theory. 

This theory in fact exists: stochastic mechanics 
[ l l] simulates all the quantum mechanical results 
in the framework of a completely classical probabi- 
iistic formalism and we will devote some final re- 
marks to discuss how this is possible without con- 
tradictions with what has been argued until now on 

the need of a non-Kolmogorovian model of quan- 
tum probability. We simply refer to the existing lit- 
erature [ 12 ] for the details of the formulation, here 
adopted, of this model on the basis of a stochastic 
variational principle, and we will limit ourselves only 
to say that the quantum behaviour of a scalar non- 
relativistic particle can be simulated by means of a 
stochastic process ~(t), describing the evolution of 
the particle position, which is a solution of a sto- 
chastic differential equation of the form 

d~(t) =v~+)(~(t), t) dt+dfl(t) , (12) 

where fl(t) is a Wiener process with diffusion con- 
stant v=h/2m. Here ~(t) does not contain all the 
information about the state of our system, but is only 
a sort of configurational variable, the rest of the in- 
formation being stored elsewhere. Indeed stochastic 
mechanics introduces the so-called forward and 
backward derivatives of F(~(t) ,  t), where F ( r( t ), t) 
is an arbitrary regular function, as 

(Dc+)F)(r,t)= +lim 1 - ~ . o  ~ E ( A ~  -+ ) F l ~ ( t )  = r )  , 

where A ~-+ )F=F(¢(t+ At), t+ At) -F(¢( t ) ,  t), and 
hence the forward and backward velocities 
v~+)(r, t ) =  (D(_+~¢)(r, t), and takes both ~(t) and 
v(+) (r, t) as the dynamical variables of our problem 
in the sense that v~ +) will not be given a priori but 
will be determined, as a part of the problem, by 
means of a stochastic variationalprinciple which will 
select the physically realized (measurable) processes 
among all the possible (virtual) processes described 
by ( 12 ). By doing so we will have a model which is 
a stochastic control theory [ 13 ] and that, by means 
of a suitable choice of the Lagrangian [ 12 ] that we 
cannot discuss here, leads directly to a perfect re- 
production of the quantum results. 

We can also look at this procedure from another 
standpoint: starting from the Schr6dinger equation 

ihOtq/(r ' t )=(-  h2v2+V(r ' t ) )  , (13) 

stochastic mechanics associates a different process 
to every ~u(r, t) in the following way: from the de- 
composition ~(r, t)=R(r, t) exp[iS(r, t)/h] we 
can calculate the forward velocity as 

v~+ )(r, t)=2vVW~+ )(r, t) , (14) 
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where Wt+)(r ,  t ) = l n { R ( r ,  t ) e x p [ i S ( r ,  t ) / h ] } ,  we 
can separate (13)  into its real and imaginary parts 

O,R2 + V" (R2"~- )  =O , 

m V2R 
O,S+ ~ - -  2m R -  + W=0,  

and finally we can cast the continuity equation in the 
form of  a forward Fokker -P lanck  equation for the 
density of  our process, 

Otp= - V. (pv~ + ) ) + vVZp . (15)  

However,  we must  r emember  that  now (15) is not 
a Fokker -Planck  equation in the usual sense since 
v~+ ~, as remarked before, is not an a priori given 
function but depends on the solution p of  (15) 
through (14) .  In fact, if  we fix a solution ~u of  (13) ,  
the form of  (15) (namely v~+)) will also be fixed. 
However,  (15)  has an infinity of  solutions p, and 
among them only one satisfies the stochastic varia- 
tional principle. This solution verifies p = R 2 =  I~'l 2, 
so that it corresponds to the probabil i ty density of  
the extremal process and can be considered as se- 
lected through the initial condition p i ( r ) = R ( r ,  ti). 
Of course other solutions corresponding to different 
initial conditions are formally available: for example 
there are transition probabili t ies p(r,  t; ri, ti) solu- 
tions of  ( 15 ) for an initial condition like 

l i m p( r ,  t; ri, t i ) = 6 3 ( r - r i  ) ,  
ILli 

but, if the initial density does not coincide with the 
R (r, li ) of  our given wave function V, these solutions 
of  (15)  are in some sense virtual since they do not 
satisfy the stochastic variat ional principle, so that we 
cannot associate to them a direct meaning of  phys- 
ical observability. Of  course these solutions do not 
correspond to the square modulus  of  a wave func- 
tion solution of  (13) .  

Let us suppose now that we have a screen, with 

Table 1 

Situation Hole 1 Hole 2 

"1" open closed 
"2" closed open 
"1,2" open open 

two holes located in rl and r2, between a source of  
particles and a detector located in r, and let us ask 
for the probabil i ty densities of  the detected particles 
in the three situations given in table I. 
F rom the initial conditions 

I/ /(I)(r ,  ti)=c~3(r--rl ) , 

~(2 ) (  r, / ' i ) = ( ~ 3 ( r - - r 2 )  , 

~u(l,2)(r, t i ) = c l S a ( r - r l  ) + c 2 6 3 ( r - r 2 )  , 

(where Ic112+ JCzJ 2= 1 ) we can calculate the wave 
functions ~,~'~ (r ,  t) ,  ¢~2) (r, t) ,  ~u {''2~ (r, t) ,  respec- 
tively for the three proposed situations, and we can 
verify directly that the probabili ty densities do not 
add (a relation perfectly analogous to (7 ) ) ,  

I ~utl'2)(r, t )12~ Icl 121~utt)(r, t)12 

+ Ic2121 ~'t2)(r, t)12 , (16)  

the difference between the two sides being, of  course, 
in the interference terms. However,  f rom the wave 
equation ( 13 ) we can determine the Fokker-Planck  
equations corresponding to every situation. In the 
cases "1"  and "2"  the transition probabili t ies are 

p t l ) ( r ,  t; r l ,  / i ) =  1~(I ) ( r ,  t ) j  2 , 

p t 2 ) ( r ,  l; r2, l i ) =  [ u/(2)(r ,  t ) [  2 . ( 1 7 )  

As for the situation " l ,  2" the solution selected by 
quantum mechanics (or  equivalently by the sto- 
chastic variational principle) for the corresponding 
Fokker-Planck  equation is ] ~,( 1,2)12 giving the prob- 
ability density on the screen (interference) when 
initially the state is ~u! 1.2) (r) .  Of  course in our scheme 
i~utl.2) 12 is the probabil i ty distribution function of  a 
stochastic process and hence it follows trajectories in 
the space- t ime.  But if we try to consider this prob- 
ability distribution function as the statistical super- 
position of  observable transition probabilities, we get 
into trouble. In fact we can calculate the solutions 
p (.,2) (r, t; tl, li ) and p (1,2) (r, t; r2, ti ) o f  ( 15 ) in the 
case "1, 2", namely the transition probabil i ty den- 
sities respectively either f rom " l "  or f rom "2"  to the 
screen when two holes are open, but we should bear  
in mind that  now 

pt l ' 2 )  (r ,  t; r l ,  t i ) v ~ P t l ) ( r ,  t; rh ti) , 

p t l ' 2 )  (r ,  t; r2,/i) ¢:P(2)(r, t; r2, ti) , (18)  
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and that, differently from p ( 1 ) (r, t; r l ,  ti) and p ~2) (r, 
t; r2, t~) (which correspond to processes that  are ex- 
t remal  separately in the s i tuat ions " l "  and " 2 " ) ,  the 
transit ion probabil i t ies p (1.2) (r, t; r~, t~ ) and p (~.2) (r, 
t; r2, t~) cannot  be calculated as the square modulus  
of  a wave function (since they do not  correspond to 
processes that  are extremal  in the s i tuat ion " l ,  2" ) ;  
namely that  they are the probabi l i ty  densi t ies  of  vir- 
tual processes. Of  course, since l~ ( l ' 2 ) ( r ,  t )[  2, 
p(L2) (r, t; r~, t~) and p(,,2)(r, t; re, ti) are solut ions 
of  the same classical Fokke r -P lanck  equation,  and 
classical probabil i t ies superpose as usual, we will have 

I ~'(1"2)(r, t)12= Icl [ 2P(l'2)(r, t; r l , / i )  

+ [C2 [ 2p(1"2) (r, t; r2, /i) , (19)  

a relation analogous to (6 ) ,  and this result is not  in 
contradict ion with (16)  because we have to take into 
account (17)  and ( 18 ) [ 14 ]. It  has also been shown 
that  all these t ransi t ion probabi l i ty  densi t ies  can be 
calculated by means o f  path  integrals [ 1,15 ] if  all the 
processes (measurable  and vi r tual )  are taken into 
account.  In this way every t ransi t ion from an init ial  
to a final posi t ion can always be built  in a proba-  
bilistic way by taking into account all the possible 
t rajectories  with real, posi t ive statistical weights, but  
our  t rajectories  can also be virtual.  In other  words: 
in the process corresponding to the interfering wave 
function ~u (1.2) (r, t) the trajectories  going to r e i ther  
from r~ or  r2 are endowed with a well-defined prob-  
abi l i ty  and we can calculate the mathemat ica l  tran- 
sit ion probabi l i ty  densi t ies  satisfying ( 19 ); but  if  we 
want  to observe these paths and measure the cor- 
responding t ransi t ion probabi l i ty  densi t ies  we must  
perform a physical conditioning (namely  we must  
measure  and select) in a way that  changes the wave 
functions and the corresponding extremal  process. 
In doing so we obta in  the measurable  t ransi t ion 
probabi l i ty  densit ies (17) ,  but, since the second 
prepara t ion  is not compat ib le  ( in the sense dis- 
cussed in the first part  o f  this Let ter)  with the init ial  
one, we have (16)  and (18)  and the interference 
disappears .  

As a consequence i f  we want  to describe the quan- 
tum interference effect by means  of  space - t ime  tra- 
jector ies  we get the following ambiguous  si tuation: 
the interference pat tern  can always be considered as 
the sum of  suitable t ransi t ion probabi l i ty  densi t ies  

for particles coming either from hole "1"  or  from hole 
"2",  but  only in the sense of  the virtual processes and 
of  the mathemat ica l  condit ioning.  On the one hand 
we can always calculate suitable classical condi t ional  
probabi l i t ies  and use them in a classical way, even 
in interference experiments;  on the other  hand we 
should remember  that  these processes are virtual;  
namely not directly physically measurable:  i f  we try 
to observe them they get modi f ied  by the new prep-  
arat ion in such a way that  the interference disap-  
pears. Indeed it is a characteris t ic  o f  stochastic me- 
chanics [ 16 ] to allow one to calculate not only all 
the results of  quantum mechanics (as in the sto- 
chastic in terpreta t ion o f  quan tum mechanics  [ 17 ] ), 
but  also some extra quanti t ies  (as the t ransi t ion 
probabi l i t ies  for vir tual  processes)  which, however,  
seem to be not directly observable.  

The author  wants to thank Professors L. Accardi ,  
F. Guer ra  and J.P. Vigier for invaluable discussions 
and suggestions. 
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