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In this paper the role of the mathematical probability models in the classical 
and quantum physics is shortly analyzed. In particular the formal structure 
of the quantum probability spaces (QPS) is contrasted with the usual 
Kolmogorovian models of probability by putting in evidence the connections 
between this structure and the fundamental principles of the quantum 
mechanics. The fact that there is no unique Kolmogorovian model reproducing 
a QPS is recognized as one of the main reasons of the paradoxical behaviors 
pointed out in the quantum theory from its early days. 

1. I N T R O D U C T I O N  

In a statistical theory it is impor tan t  to make a clear difference between the 
sets of  empirical da ta  and the mathemat ical  (probabilistic) model  built in 
order  to describe them. This remark points out,  on  the one hand, the fact 
that,  in general, there are m a n y  possible models for the same set of  
experimental  results and, on  the other,  the fact that  (being a mathematical  
model  only a useful abstract ion)  noth ing  compels us to strictly adhere to 
one part icular  formal structure of  these models. This remark is particutarily 
suitable for a discussion on qua n t um  mechanics since the difference 
between the classical and the qua n t um  physics (as enforced on us by the 
experimental results and described by means of  general ideas such as the 
superposit ion and the uncertainty principles) can in some  sense be 
described as the difference of  the mathematical  models that  can be adapted 
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to a classical or to a quantum experiment. The aim of this paper is to dis- 
cuss some aspects of this situation by reviewing the peculiar probabilistic 
behaviors induced by the fundamental principles of quantum mechanics 
along with the similarities between the classical and quantum probabilistic 
models. We think in fact that in this direction the deep intuitions of 
L. de Broglie about wave functions, trajectories of quantum particles, 
corpuscular interference, and so on have not exhausted their impressive 
power of suggestion and that a lot of stuff is still there to be understood. 
In this sense this article can be considered as a contribution to the still 
running discussion about the real meaning of the quantum theory and a 
step in a better comprehension of its implications. 

We start with a short qualitative discussion of what a statistical theory 
can be. Let X, Y,... indicate the measurable quantities of our physical 
world, and let us suppose that they take the real values x, y ..... In corre- 
spondence with a given preparation (namely a measurement of some 
physical quantities, followed by a selection of the results) q / o f  the system, 
we are able to calculate probabilities like Pr(X~ B\ql), B~_R by means 
of a suitable frequentistic approach. Here the idea of conditioning is in 
fact already contained in the previous definition. Conditioning means 
acquisition of information in order to evaluate the likelihood (probability) 
of particular events. In this sense even our previous definition is a condi- 
tional (through q/) probability. However, in the usual language the name 
of conditional probability is reserved for subsequent (to a#) conditionings. 
To be precise, we should say that, if we add to our previous definition the 
information derived from another, subsequent preparation ~ ,  our proba- 
bilities will be, in general, modified: Pr(X~ B[ q/, ~ ) .  We remark here that 
no precise relation between Pr (XeB[q / )  and Pr(X~BIql ,  V )  is given 
a priori. Of course we can also define average values of our quantities 
M(Xt q/), new quantities as functions of other quantities: Z = f (X) ,  and all 
sorts of statistical objects. 

We claim that we have a classical (Kolmogorovian) probabilistic 
model of our set of statistical data when we can build a probability space 
(O, ~ ,  #) (O is a set, ~" a a-algebra of parts of f2, and /~ a probability 
measure on ~ )  so that the physical quantities X, Y,... can be represented 
by measurable functions (random variables) 4, q .... and that there is a 
correspondence between measured and calculated probabilities: If /~ 
corresponds to the preparation og, we require Pr(X~BLqZ)=#(~eB). 
In particular, if V is a subsequent preparation corresponding to the 
verification of the event ( Y s A), A ~_ R, we require that 

Pr(X6BIq/ ,  YeA) =#(XeB' Y~A) 
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This rule connecting a priori probabilities and conditional probabilities is 
in fact peculiar of the Kolmogorovian models and in no way can be 
extended to every probabilistic model. Moreover, it should be remarked 
here that in this relation the idea of subsequent preparations, which is 
present on the left-hand side, is replaced on the right-hand side by the idea 
simultaneous events which is present in the joint statement. We point out 
this because, as we will see later, quantum models are characterized by the 
fact that joint statements are no longer always possible, so that it is very 
well understandable that the previous relation no longer holds. Of course, 
in this classical model there is a formal correspondent for every statistical 
object; for example, the Lebesgue integrals (expectation values) correspond 
to the mean values: E(X) = M(X[ ~).  In particular, it is well known that an 
important role is played by indicators of subsets D _~ f2: 

1, t oeD 
ID(c°) = 0, co E/3 

(where /3 is the complement of D). For example, we could describe our 
Kolmogorovian model in terms of algebras of indicators (instead of 
events), and expectation values (instead of probabilities). In this case 
unions, intersections, complements,.., of subsets of f2 are replaced by sums, 
differences, products .... of indicators; and we have #(D)  = E(ID). 

In the next section we will try to reproduce in the quantum case the 
previous well-known classical construction of the basic elements of a 
Kolmogorovian model, and, in order to explore similarities and differences, 
we will consider the quantum mechanics as a well-defined formal theory 3 
(we will refrain, in this paper, from criticizing or modifying it), and we will 
take for granted that quantum physics can be correctly described in ~t 
Hilbert space H where the physical quantities X, Y,... are represented by 
self-adjoint operators X, I?,.. (corresponding to classical random variables) 
and statements are represented by projection operators PL, /~M .... (corre- 
sponding to indicators of classical subsets of (2) on closed subspaces L, 
M, .... Moreover, we will always limit our consideration to the case of a 
finite number of statements in order to avoid the discussion of convergence 
problems, which is not our principal aim here. 

2. QUANTUM PROBABILITY MODELS 

Let us introduce the following notations: given a Hilbert space H with 
vectors x, y .... and scalar product (x, y), we will indicate with L, M,... its 

3 See, for example, Refs. 1 or 2. 
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closed linear subspaces and with /3L, /6 M .... the corresponding projections. 
To emphasize that a closed subspace is spanned by the vectors x, y .... we 
will use the notation [x, y,...]. Moreover: L M  will be the closed subspace 
consisting of the vectors belonging to both L and M; M + N will be the 
subspace consisting of all the linear combinations of vectors in L and M; 
finally/5 is the subspace of all the vectors orthogonat to L. The proof of 
the following relations is immediate: 

L + M = L M  

E=L 

L M = L + M  

Furthermore, given two closed subspaces L and M, we will indicate with 
L - M the closed subspace of the vectors of L which are orthogonal to LM. 
Finally we will indicate with [0]  the subspace of H containing only the 
null vector 0 and with [, t3 respectively the identity and the null operators. 

Definit ions 1. Two subspaces L, M are said to be orthogonal, and we 
indicate it with L 2- M, when all the vectors of L are orthogonal to all the 
vectors of M. 

Remark 1. When M ~  L, then L -  M is the subspace of the vectors 
of L orthogonal to M, namely, L - M = L 2 V I ;  when L M =  [0],  then 
L - M = L .  Furthermore, we always have that L - M = L L M  and 
L = H - L .  

Proposition 1. L - M & M <~ M -  L ± L. 

Proofi Suppose that L - M 2. M and take x E M -  L (namely, x e M 
and x ~ LM) and y ~ L. Since L M  is a closed subspace of L, there is one 
and only one decomposition of y such that 

y = u + v  u~LM,  v 6 L - M  

Hence, since u ~ L M  and x 2. LM, we have 

(x, y)  = (x, u) + (x, v) = (x, v) 

But v e L -  M and x e M, so that, by hypothesis, they are orthogonal and 
hence (x, y ) =  O. The inverse is proven in exactly the same way. 

Definit ion Z We will say that L and M are weakly orthogonat or 
w-orthogonal, and we indicate it with © M, when L -  M_I_ M or equivalently 
(see Proposition 1 ) when M - L  1 L. 
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Remark 2. When two subspaces are orthogonal, they are also 
w-orthogonal, but the inverse does not hold: this is the rationale for this 
new notion. For  example, in a three-dimensional Euclidean space endowed 
with three orthogonal axis, two coordinate planes are w-orthogonal but 
not orthogonal. However, if L M  = [-0], the notions of orthogonality and of 
w-orthogonality become equivalent. Of course, as a consequence, L @/S, 
always holds. 

Remark 3. The binary relation ® is symmetric (see Proposition 1) 
and reflexive: 

M - M = M M M =  [0]  _1_ M=*'M @ M 

but it is not transitive, as can be seen by remarking that even the usual 
orthogonality is not transitive. 

Proposition 2. [PL, PM] = 0 ~ L @ M. 

Proof. Let us first suppose that [ply, PM] = O; it is known 4 that this 
implies P L P M = P L M  . If now we take x s L - M  (namely, xEL,  x l LM) 
and y e M, we will have 

PLX=X, PLMx=O, PMy = y 

and hence, because of the self-adjointness of the projections, 

(x, y)= (PLx, f My)= (PMPLX, Y)= (P~MX, y)=0 

namely, L @ M. 
Vice-versa, suppose now that L ® M and take x ~ H. Since L M  is a 

closed subspace of H, there is one and only one decomposition of x such 
that 

x = u + v ,  uELM, v ~ L M  

Hence f l u =  PMu= u, since u belongs to both L and M. Moreover, PLY 
and PMv are in LM, namely, are orthogonal to L M  since, if w e L M ,  we 
have 

(fLy, w)= (v, f Lw) = (v, w) 

(remember that w ~ L), but (v, w) = 0 since w ~ L M  and v ~ LM; hence 
PLY ~ L M  (and similarily PMV ~ LM). However, by definition of projection, 

4 See, for example, yon Neumann, (1) p. 81. 
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/SLv e L, so that /SLv ~ L L M  = L - M (see Remark 1 ). Since by hypothesis 
L -  M l M, we have also /SM/ScV =/SL/SMV = 0 and hence 

/ s L / 5 ~ x  = u + / s L / 5 . v  = u 

/ sM/5~x  = u + P . / S L v  = u 

namely [/SL,/SM] = 0. 

Remark 4. Formal properties of subspaces are not always imme- 
diately transferred into formal properties of projection operators. In fact, 
if to M corresponds /5, we know s that to M corresponds [ - / 5  (here 
[=/5~/ is the identity operator). However, the correspondence is not so 
straightforward in other cases: if to L, M correspond respectively the 
projections P, Q, we cannot expect that to L M  simply corresponds/5Q, to 
L + M corresponds /5 + Q, and to L - M  corresponds / 5 - Q .  Indeed, we 
must bear in mind that in general/50, ts + Q , / 5 - 0  are not even projec- 
tion operators. In fact, we have that/5Q is the projector of L M  only when 
L ® M, namely (see the previous proposition) when /5 and 0 commute. 
Moreover, still supposing that L ® M, namely that /5 and Q commute, 
from L + M = L M  we have immediately that 

&+M=/5+0-/50 
so that the projector of L + M is/5 + 0 only i f /50  = 0 (namely, if they are 
orthogonal projections). Finally (once more in the same hypothesis of 
commutative projections) from the results of Remark 1 we have that 

/ 5 c -  M = P - P Q  

and coincides w i t h / 5 _  0 only when/50  = Q, namely when M_~ L. 

Remark 5. It is easy to see that L @ M if and only if L ® ~r; in fact, 
from Proposition 2 we know that L ® M is equivalent to [PL, PM] = (3 
and, since P ~ = i - P M ,  it is also equivalent to [PL, P ~ ]  =6;  namely 
(always from Proposition2), it is equivalent to L @ 3~. Given the 
symmetry properties of the relation of w-orthogonality, this means also 
that L © M is equivalent to /5  ® M and E @ _~r. 

Remark 6. When L @ M, we have also that L -  M = L/I~t. Indeed, 
since M ~ L + _~t = L M ,  we have also L M  c L L M  = L - M .  However, since 
L @ M ,  L -  M = L L M  must be orthogonal to M, namely L L M  c__ 2~, and 
hence L -- M = L L M  = L ( L L M )  c_ L M .  As a consequence, L - M = L/t). 

5 See, for example, von Neumann, C1~ p. 78. 
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Remark 7. Two projections P, Q are said to be orthogonal when 
PQ----(3. This implies that, in order to give rise to orthogonal projections, 
two subspaces must be orthogonal (so that LM= [0])  and not only 
w-orthogonal: w-orthogonal subspaces, according to Proposition 2, give 
rise only to commuting, but not orthogonal, projections. 

Definition 3. We say that a family ~¢ of closed subspaces of H is a 
lattice of subspaces when it satisfies the following properties: 

(L~) H ~ e ,  [ 0 3 ~ ,  

(L2) L ~ S ~ E E ~ ,  

(L3) L , M ~ L M ~ o W .  

Remark 8. The properties L~, L2, L3 imply even that L + M= Lift 
and L - M  = LLM belong to ~ ,  so that it is not necessary to list them 
among the properties of ~ .  

Remark 9. The properties L~, L2, L 3 translate in the language of the 
subspaces of a Hilbert space the characteristics of the sets constituting an 
algebra in the language of the set theory. In fact, these lattices of subspaces 
will be supposed to play the same role in representing statements and 
propositions that the algebras of subsets play in the Kolmogorovian 
probability. 

Example 1. Very simple cases of lattices of subspaces are the 
following: 

= { u ,  rol } 

{H, L, [0]} 

~ *  = ~ ( H )  

where 5~(H) is the family of all the possible subspaces of H. 

Definition 4. We say that a lattice Y is distributive when it satisfies 
the following property: 

(L4) L, M, N ~ L ( M + N ) = L M + L N .  

Remark 10. The previous definition makes sense since lattices are not 
in general distributive, as can be seen from a simple counterexample: take 
in an Euclidean three-dimensional space H the sunspaces M, N consisting 
of two noncoincident straight lines passing through the origin, and the 
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subspace L consisting in a plane passing through the origin and containing 
neither M nor N. It is clear now that M + N is a plane cutting L along 
the one-dimensional line L(M+N) ,  whereas L M = L N =  [0] so that 
L M  + L N =  [0] ~ L (M + N). 

Definition 5. We say that a lattice .~ is orthogonal when it satisfies 
the following property: 

(Ls)L, MeZf '  ~ L  ® M. 

Example 2. Let H be a separable Hilbert space and {Xn},~g a 
sequence of vectors which is everywhere dense in H (of course, the vectors 
xn are not in general orthogonals). Let us now indicate with MI= [Xk]k~z, 
I_--_ N the subspaces spanned by the vectors xk with the k's belonging to a 
subset I of N. It is easy to see that the family of subspaces {Mz}z=u is not 
in general an orthogonal lattice of subspaces for H since (L2) and (L4) are 
not satisfied. However, it can be seen that if {X,},~N is a complete 
orthonormal system, the subspaces Mz become w-orthogonals and 
{Mz}~=_N becomes an orthogonal lattice. 

Proposition 3. ~ is a distributive lattice if and only if it is an 
orthogonal lattice. 

Proofi Let us suppose firstly that ~ is orthogonal: this is equivalent 
(from Proposition 2) to say that [fir, P ~ ]  = 8  for every L, M e  La, and 
hence that PLPM = PLM. As a consequence, we have for every L, M, N~ 
that (see also Remark 5) 

PL(M+ N)= PLPM+ N---- PL(PM + PN-- P~P~) 

= + fiLfiN-- PLPMPN = P PM + PLPN-- fieLPMPN 

and hence L ( M +  N)= L M +  LN, namely, ~ is distributive. 
Vice-versa, if ~ is distributive, for every L, M e ~ we have 

L - M = L L M  = L(L + ff[) = L M  

so that Ze is orthogonal since LA~ r i M. 

Remark 11. A consequence of Proposition 3 is that we can 
arbitrarily use the words orthogonal and distributive in order to qualify a 
lattice of subspaces. Hence, in order to simplify our terminology, from now 
on we will speak only in terms of orthogonal lattices. 



Quantum Probability Spaces 1387 

Proposition 4. For  every L, M belonging to an orthogonal lattice 5¢, 
we have 

L + M = ( L - - M ) +  M 

Proof. Since L - M ~ L ,  we have also that ( L - M ) + M c _ L + M ,  so 
that it will be enough to show that L + M___ ( L - M ) +  M, nemaly, that 
every x e L + M  can be decomposed in the sum u + v  with u e M  and 
v e L - M. In fact, take x s L + M and define u e M as the orthogonal 
projection of x on M; then define v = x -  u e 3~t. Of  course, x = u + v with 
u e M, v e 3~r. We will show now that, since £P is orthogonal, we have also 
v ~ L -  M. First of all, we remark that v = x -  u belongs to both ~r  and 
L + M, namely, that v e ~ t (L  + M). However, since ~ is orthogonal,  we 
have also, by Proposit ion 3, that 

32t(L + M ) =  AIL + 3~¢M= .QL 

Moreover,  since L © M, we have also L - -  M = L)~ r (see Remark 6), and 
hence v ~/],(L + M) = L M  = L - M as required. 

Definition 6. We say that a family ~ of projection operators is a 
lattice of projections when it satisfies the following properties: 

(P,) P, [P, 03 =6, 
(P2) I=PHe~, O=P~oje~, 
(P3) Pe~ l -Pe¢ ' ,  

Remark  12. It  is clear, since projections in a lattice ~ always 
commute,  that, according to Proposit ion 2, a lattice of projections N is in 
correspondence with one and only one orthogonaI lattice of subspaces ~ .  
On the other hand, there are no lattices of projections corresponding to 
nonorthogonal lattices of sunspaces; in fact, in this case projections no 
longer commute and hence products of projections are no longer projec- 
tions, so that we cannot coherently express the property (P4). This fact is 
connected with the possibility of having joint statements and will be 
discussed later. 

Example 3. Very simple cases of lattices of projections are: 

{i,0} 
{L P, i -P,  0} 

825/22/11-5 
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Of course, the family of all the projections is not a lattice of projections 
since they in general do not commute. 

Example 4. Given a self-adjoint operator )(, let us consider its 
resolution of identity 6 Fc(x) and tbe projections 

/6x(B) = f B dT'x(x) = fR IB(x) df'x(X) = I~(2) 

where 

U ( x ) =  {1, xeB,  
0, x e B ,  B ~ ( R )  

and N(R) is the a-algebra of the Borel sets on the real line R. It is easy to 
see that the family of projections 

is in fact a lattice of projections since its elements always commute and, 
moreover, 

0 = I =  F x ( R )  

] -  Pc(B) = Px(B) 

/~x (B1) fi 'x(B2) = Fx(B1 B2) 

belong to Nx because of the a-algebra properties of N(R). In particular, if 
B= (a, b], we have Fx(a, b] = F x ( b ) - P x ( a ) ,  so that, if we define 

t, x ~ b  
Fb(X )=l(_oo,b3(x)= O, x > b  

we have also Fx(x) = Fx(X). The lattice ~x will be said generated by 2. 

Definition 7. We will say that two lattices of projections (orthogonal 
lattices of subspaces) are compatible when every projection of the first 
commutes with every projection of the second (every subspace of the first is 
w-orthogonal to every subspace of the second). Moreover, two self-adjoint 
operators X, I 7 are said to be compatible when the generated lattices ~x, 
~ ,  are compatible. In the same sense we can say that an operator 2 is 
compatible with a lattice ¢~ when the lattices ~x and ~ are compatible. 

6 See, for example, yon Neumann, I1) pp. 118 and 252. 
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Remark 13. When t~ 'o  operators JZ, I7 commute, they are also 
compatible. Moreover, if X, Y are compatible, we can always find a third 
operator 2? and two functions f ( . ) ,  g(.) such that 2=f(2), 17= g(Z). 7 

Remark 14. It is time to remark now that, despite all the analogies 
between a-algebras of events and lattices of projections, there are also 
fundamental differences which are the basis of the distinction between 
quantum and classical probability. In a classical world, when we have two 
different (in the sense that they are not contained one into the other) 
a-algebras of events of a set £2, we can always find a larger a-algebra 
containing both. In a sense a G-algebra represents the set of the statements 
that we can make in our theory. For example, if ~ is the a-algebra 
generated by a random variable 4, it contains all the statements about ~ of 
the form {~eB},  B e ~ ( R ) .  If now t 1 is a random variable which is not 
~-measurable ,  this means that in general the statements about  '7 cannot be 
formulated in J~, namely in terms of 4. Hence, in a probability space 
(f2, o~, #) we cannot even formulate the question what is the probability 
that t 1 has a value falling in B e 9~(R)? In fact in this case ~ contains events 
that do not belong to ~ .  However, we can always find a larger a-algebra 
Y containing both ~,~ and ~ (for example, the smallest one ~ )  and we 
can build a new probability space (f2, o~, #) where all the questions about 

and q can be formulated. If, on the contrary, t /already is ~-measurable ,  
that means that questions about t/ are in fact questions about ~: this is 
clearly expressed in the well known fact that in this case there is a function 
f ( - )  such that q = f(~). These remarks no longer hold in the quantum case: 
when we have two lattices of projections (or equivalently two orthogonal 
lattices of subspaces), we cannot always merge them in a larger one 
because of the commutation rule (P1) (or equivalently Ls) for subspaces, 
as can be seen from the following examples. 

Example 5. From the following two lattices of projections ~ e =  
{L0,/3, f - P } ,  ~ Q = { L 0 ,  Q , / - Q } ,  we can build a lattice containing 
both Ne and NQ if and only if the projection operators P and Q commute, 
since the new lattice must contain P and Q, and (P1) must hold: namely, 
the two lattices must be compatible. 

Example 6. The quantum analog of the classical case of two 
a-algebras ~ and ~ is the case of two lattices of projections Nx = 
{ / ~ x ( A ) } A ~ )  and Ny={/~r(B)}B~e(m generated by two slf-adjoint 
operators X, Y: from remarks similar to that of Example 5, we conclude 

7 F o r  m o r e  deta i ls ,  see von  N e u m a n n / l )  pp.  172-173. 
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immediately that a larger lattice containing both ~x, ~ r  exists only if J( 
and I? are compatible (for example, if [2,  I?] = 13). 

Remark 14 (continuation). As a consequence, it can be said that a 
crucial difference between classical and quantum probability models lies in 
the fact that, while in the classical case we can speak in terms of set theory, 
in the quantum case we speak in terms of Hilbert spaces, namely of vector 
spaces. This means that, in order to represent statements and propositions, 
the a-algebras of subsets (a-algebras of indicators) must be replaced by 
orthogonal lattices of subspaces (lattices of projections) and this require- 
ment introduces in the theory a fundamental rigidity [expressed in the 
properties (Ls) or (Pt)]  with far reaching consequences on the possibility 
of making joint statements, as we will see later. It is clear now that a 
central role in this situation is played by the superposition principle which 
can be considered as the main reason for working in vector spaces. 8 

Definition 7. A quantum space (QS) is a couple (H, 5"(H)), where H 
is a Hilbert space and 5e(H) is the (nonorthogonal) lattice of all its 
subspaces. A quantum representation (QR) is a couple (H, 5a), where ~ is 
an orthogonal lattice of subspaces of the Hilbert space H. 

Definition& A quantum probability measure (QPM) defined on a 
(not necessarily orthogonal) lattice ~ is an application 2: ~ --* [0, 1 ] such 
that 2(H) = t and that 2 is additive, namely, that for every L, M belonging 
to 5 ° we have 

L _L. M=~ 2(L + M) = 2(L) + 2(M) 

Definition 9. A quantum probability space (QPS) is a triple 
(H, 5P(H), 2), where H is a Hilbert space, 5P(H) the lattice of all its sub- 
spaces, and 2 a QPM defined on re(H). A quantum probability representa- 
tion (QPR) is a triple (H, ~ ,  ,~), where H is a Hilbert space, ~ an 
orthogonal lattice of subspaces of H, and 2 a QPM defined on Za. 

Remark 15. In a QPS, orthogonal subspaces play a role similar to 
that of disjoint subsets in classical probability spaces. Moreover, it is easy 
to verify that other properties are similar to that of the classical case. For 
example, from the additivity of 2 we can deduce that 2(/7,) = 1 - 2(L) and 
that 2 ( [ 0 ] ) = 0 .  The folowing simple propositions constitute further 
examples. 

8 See, for example, P. A. M. Dirac, (2) Chap. I. 
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Proposition 5. In a QPS, for every L, M ~ 5 ° ( H )  we have 

M c_L ~ 2 ( L -  M ) =  2(L ) -  2(M)  

Proof. Since M ~  L, we have also that L - - M  = Lk~r _1_ M (see also 
Remark 1). Moreover, it is immediately seen that (L - M) + M = L, so that 
from the additivity we get 

2(L) = 2 [ (L  - M) + M ]  = 2 ( L -  M )  + 2(M) 

and hence 2(L - M) = 2(L) - 2(M). [] 

Corollary 1. In a QPS, for every L, M ~ S q H )  we have 

M ~  L ~ 2(M) ~< 2(L) 

Proof. It  follows from Proposit ion 5 if we take into account the 
positivity of 4. [] 

Corollary 2. In a QPS, for every L, M ~ S f ( H )  we have 

2(L - M)  = 2(L) - 2 (LM)  

Proofi Since L M  c L, we have from Proposition 5 that 

2(L - M) = 2 ( L L M )  = 2 [ L L ( L M ) ]  = 2(L - L M )  = 2(L) - 2(LM)  [] 

Proposition 6. In a QPS, for every L, M ~  5a(H) we have 

L @ M=~ 2(L + M )  = 2(L) + 2(M) - 2 (LM)  

Proof. Since L @ M, it follows from Proposition 4 that L + M =  
( L - M )  + M ,  and from Definition 2 that L - M  ± M. Hence, from the 
additivity of 2, we have that 

2(L + M) = 21-(L - M)  + M ]  = )~(L - M )  + 2(M) 

and the proposit ion follows from Corollary 2. [] 

Remark 16. The property of Proposit ion 6 is very similar to the 
analogous property of the classical case. However, like many other proper- 
ties, it does not hold universally in a QPS since, in general, two subspaces 
are not w-orthogonal. Only in a particular QPR is this property always 
true, since in a Q P R  all the subspaces are w-orthogonal. 
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Remark 17. A similar situation arises for the so-called total proba- 
bility theorem of the classical case. In fact, it is very easy to see that an 
analogous property holds in the quantum case only in every particular 
QPR, but not in an entire QPS since the lattice 5~(H) is not distributive. 
To see it, let us consider a finite decomposition of 11, namely, a finite family 
of subspaces {M~}~= l ...... such that 

Mj_I_ Mk, j#k, ~ Mk=H 
k = l  

If now L is a subspace of H, since 5e(H) is not a distributive lattice we 
have that 

L = L  ~, Mk # ~ LMk 
k = l  k = l  

and hence 

namely, the total probability theorem does not hold. In particular we have 

2(L) # 2(LM) + 2(LFI) 

Of course, if L and Mk's are all elements of the same orthogonat lattice (for 
example, if we restrict ourselves to a particular QPR),  the intersection of 
subspaces is distributive and the total probability formula is valid. 

Remark 18. The notion of QPS and QPR can also in a very natural 
way be discussed in terms of projections since they are in a one-to-one 
correspondence with closed subspaces of H. However, we must remark that 
~ ( H ) ,  defined as the family of all the projections corresponding to the 
closed subspaces belonging to re(H),  is not a lattice of projections since 
5a(H) is not an orthogonal lattice of subspaces (see Remark 12 and 
Example 3). That notwithstanding, it is possible to give a definition of 
QPS (and of QPR)  based on projections through the notion of statistical 
operator 9 0, since it is easy to see that the application v: 5~(H) ~ [0, 1] 
defined as 

v(L) = Tr(O/~L), LeS~(H) 

9 For more details see, for example, von Neumann, (1/Chap. IV. 
10 See, for example, yon Neumann, (1) p. 81. 
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is a QPM. In fact, to verify the additivity it is enough to remark that ~° 
when L 2. M we have/3 L + M =/3L +/3~¢- Hence, we can give the following 
alternative definitions of QPS and QPR:  

Definition 10. A QPS is a triple (H, N(H),  ~7), where N(H)  is the 
family of all the projections defined on a Hilbert space H and (7 is a 
statistical operator. A QPR is a triple (H, o~, (7), where ~ is a lattice of 
projections defined on H and 0 is a statistical operator. 

Remark 19. Given a QPS (QPR) in the sense of Definition 10, it is 
clear that a unique corresponding QPS (QPR) in the sense of Definition 9 
always exists. To establish the inverse statement, however, is a much more 
complicated task. This will amount to an answer to the following question: 
Given a QPS (H, 5~(H), 2) (in the sense of Definition 9), is it always 
possible to uniquely determine a statistical operator (7 such that 

,~(L) = Tr((7/3L), L ~ S°(H) 

so that the QPS (H, ~@(H), (7) (in the sense of Definition 10) can be rightly 
considered as corresponding to (H, CJ(H), 2)? Gleason has shown (3~ that 
the answer to this question is positive if the dimension of H is at least 3. 
Counterexamples can be given if the dimension of H is less than 3 (see 
Appendix). 

Remark 20. Coming now to the problem of defining joint statements, 
it is clear that this is not allowed in general in a QPS (H, N(H), (7), even 
if it becomes possible in every particular QPR (H, N, (7) (see Remark 12). 
In fact, if/3, 0 belong to ~ (H) ,  in general they do not commute, so that 
/5 0 is not a new projection (it is not even self-adjoint) and no other 
combination can be found to play the role of the representative of joint 
statements. For example, the operator 

1 /30 + 0/3 
5 {/3' Q}= 2 

is self-adjoint but still it is not a projection. Finally, we could hope to 
define joint statements working in a QPS in the sense of Definition 9: 
Given /3, 0 ~ ~ (H) ,  if L, M e 5e(H) are the corresponding subspaces, we 
could think of defining the joint statement as /3LM, which is now a projec- 
tion operator. However, as already remarked in a previous paper, ~4~ the 
fact that the total probability theorem does not hold (see Remark I7) 
prevents us from coherently using the intersections LM as representatives 
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of joint statements in a general QPS. For example, 2(L) 4: 2(LM) + 2(LAI), 
and hence we cannot consider LM and LAir as true joint statements since 
they should be alternative statements and hence 2 (L)=  2 ( LM) +  2(L37I) 
should logically be verified. As a consequence of this impossibility of a 
definition of joint statements, we must also remark here that in a QPS it 
is impossible to define independent statements and hence independent 
observables in the general case: In a QPS only the notion of noncorrelation 
can be coherently given, but not that of independence. 

Remark 21. The previous remarks about the impossibility of 
coherently defining joint statements in a QPS forbids also a definition of 
conditional probabilities along the usual lines (see also Ref. 4 for further 
details). For example, given a subspace M such that 2(M) # 0, we could try 
to define a conditional probability as 

2(LI M) - - -  
2(LM) Tr(UfiLM) 

2(M) Tr(O/~M) 

However, 2(.[M) should behave like a new QPM, namely, it should be 
additive, but it is easy to see that 4(. [M) is not additive since 6e(H) is not 
distributive: 

2(LM) + 2(/5M) 2(LM+LM) 
2(LI M) + 2(LI M) - 

2(M) 2(M) 

2[(L + E) M] 
# - 1  

2(M) 

Hence we cannot consider 2(-IM) a conditional probability since it is not 
a QPM. As a consequence, if we want to define conditional probabilities, 
we must follow a (well-known in quantum mechanics) different road which 
has nothing to do with joint statements; rather, it is connected with the 
idea of a sequence of preparations. In this way it can be seen that cannot 
always retain, after the second measurement, the information obtained 
from the first preparation--another behavior of the quantum physics in 
striking contrast with the classical case (for a more detailed discussion see, 
for example, Ref. 4). 

3. CONCLUSIONS 

A striking difference between quantum and classical probability 
becomes apparent in the structure of the mathematical models that can be 
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built in order to describe the sets of statistical data in the two situations. 
In every such mathematical model a central aim is to reduce to a sort of 
unity the multiplicity of the world of the measurements. Here, by the word 
unity we mean the individuation of a sort of common source of all the 
probabilistic statements which are possible in a theory (after all, the 
calculus of the probabilities has always been connected with the idea of 
calculating the probabilities in complicated situations from that of simple 
events). The difference between the two approaches is in the way in which 
different informations (coming from different measurements) are brought 
together.., if they can. In the classical world this problem has an answer in 
the construction of the usual Kotmogorovian models (f2,-~, #); however, 
we should realize that, even in the classical case, this model is not given 
a priori but is, in a sense, the result of an operation of unification and 
abstraction executed on the set of our empirical data: the physical quan- 
tities X, i1,.., can be endowed with individual distributions; then we 
consider their joint (or conditional) distributions; and finally we can give 
an abstract formulation by defining the space of all the possible results of 
individual or joint measurements. This leads to the idea of the sample 
space ~, whose elements are exactly the abstraction of the possible results 
of an experiment. As a consequence of this operation, all the richness of the 
empirical world is unified in the mathematical model (~, ~,~, #), in the 
sense that every probabilistic statement (probabilities of events, distribution 
functions, joint and conditional probabilities...) concerning the physical 
quantities X, Y,... can now be deduced from a unique probability measure 
# by means of the idea of the random variables as measurable functions 
4, t/ .... defined on f2 with values in some other measurable space. Moreover, 
the model is in some sense indefinitely open. Take a new measurable 
quantity Z (not initially considered for our construction even if we suppose, 
for the sake of simplicity, that ~ is rich enough to contain also the results 
of the measurements of Z): if it can be described by a random variable 
which is already measurable with respect to the a-algebra ~-, nothing more 
is needed. If, on the contrary, this is not so (namely if o~ is not contained 
in o~), it is always possible to widen the a-algebra o~ in a a-algebra 
containing both ~ and o~. This means that one can always describe all the 
statistical data in this unified way. 

So strong is the suggestion of this picture that we are often led to 
think that this model is in fact coincident with the underlying reality of the 
physical world, that this reality can be asserted only if such a (~, ~ ,  ~) can 
be constructed and we forget that, on the contrary, this model could be 
nothing more than a useful abstraction. This can be considered the reason 
for the fact that sometimes we consider paradoxical a situation in which 
such a picture is not possible, even if other unified models are available, 
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and, as already seen in the Remark 14, this is exactly the situation in the 
quantum physics. (5) 

In fact, the unification plus abstraction operation is possible also in the 
quantum world, but the result is not a Kolmogorovian model; rather, it is 
a QPS (H, ~9~(H), #) (or (H, ~ ' (g) ,  0)). In some sense this mathematical 
model does exactly the same job as the Kolmogorovian models do in the 
classical world: the probabilities of all the possible statistical statements 
(however, not all the joint statements are possible: see Remark 20) can be 
derived from this unified model. But this model cannot be put in corre- 
spondence with a unique classical model whatsoever. To see that, let us 
remark that, given a QPR (H, N, O) (for example, let ~ be the lattice of 
projections generated by a complete set of commuting observables11), there 
is always a way to describe the same empirical results in a perfectly classi- 
cal model. However (see Remark 14), as soon as we introduce in our 
description a new observable noncompatible with N, we are obliged to 
abandon our QPR and work in a QPS (H, ~(H) ,  0), where ~ ( H )  is no 
longer a lattice of projection, since no lattice can contain noncommuting 
projections. In this case we immediately lose the possibility of describing 
our empirical data in a classical Kolmogorovian model. In a sense, we 
could say that a quantum probabilistic model is something allowing of 
many partial (namely, describing only some of the physical observables) 
but of no unified classical model, the different partial classical models being 
not mutually compatible. 

Classical models can actually be constructed in every QPR for our 
quantum system. For example, it is very well known that for a quantum 
particle, in the representation of the position, we can build a completely 
classical theory (the stochastic mechanics (6)) which perfectly simulates all 
the quantum results. In this theory there are classical behaviors which are 
not compatible with the quantum mechanics, but they are not directly 
observable in the sense that they correspond to virtual (namely, not 
satisfying the stochastic variational principle which generates the dynamics 
of the theory) stochastic processes. Even a transformation theory is allowed 
in the stochastic mechanics (v) so that we can also change our representa- 
tion and consequently locally explore our QPS by meansof classical models 
which are observably not distinguishable from it. 

We must finally remark that in a QPS, namely, in a coherent unified 
mathematical model for a set of quantum statistical data, the notion of 
conditioning as acquisition of new information is radically different from the 
corresponding notion in the classical world. As already pointed out (see 
Ref. 4 and refernces therein), while in the classical physics this acquisition 

11 See, for example, P. A. M. Dirac, ~z) Chap. 3, §14. 
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process is always cumulative, in quantum physics it is not since there are 
incompatible informations (connected to the different QPR's of a unique 
QPS), which can be considered as a probabitistic way to state the uncer- 
tainty principle. This remark, along with that about the superposition 
principle (see Remark t4), puts the formal structure of a QPS in a direct 
connection with the basic postulates of the quantum mechanics. But there 
is more: the new way of calculating the conditional probabilities in a QPS 
(namely, the calculation of transition probabilities such as ](x, y)12 for 
x, y e H)  puts in evidence a limitation of the classical definition of condi- 
tional probability which was already remarked, although in a different 
context, by De Finetti: ~2 in the classical way of calculating conditional 
probabilities, the new information does not in fact change our previous 
evaluations of the likelihood of events: the definition 

# ( A n  B) 
#(A I B) - - -  

# ( B )  

is inherently based on the a p r i o r i  probability #(-)  and "derives indeed 
from the same a p r i o r i  judgment, by subtracting, let us say, the doubt 
components concerning the trials whose result has been acquired. ''(8) QPS's 
belong, instead, to a different class of mathematical models: those where a 
conditioning can modify even the a pr ior i  probability measure. 
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A P P E N D I X  

We will continue here the discussion started at the end of Remark 19 
in order to show that it is not always possible to realize a Q P M through 
a statistical operator 0. Let us consider indeed a complex, two-dimensional 
Hilbert space H with the usual norm I[xt[2= (x, x). The unique subspace 
of dimension 2 is of course H itself; the unique subspace of dimension 
0 is [0].  On the other hand, if L is a one-dimensional subspace of H, for 
every x, y e L we will have y = cx,  c ~ C: in fact, to be in the same one- 
dimensional subspace amounts, for two vectors of H, to the equivalence 
relation of being parallel. In order to choose a unique representative x for 

~2 See, for example, Ref. 8, p. 25. 
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every one-dimensional subspace L (and we will write L =  Ix] ) ,  we take a 
(complete) system of two orthonormal vectors x t ,  x2 (IlxllI 2= Itx2112= 1, 
(xl ,  x2 )=  0), and then, if x 2 e L we take x2 as the representative of L 
(L = Ix2 ]). If, on the other hand, x2 ¢ L, we consider an arbitrary y e L 
and then we wilt take as representative the vector 

e - i a rg(xl"  y)  

x = y, arg(xl,  y) ~ [0, 2re) 
IlYll 

which is normalized and is characterized by the fact that (xl ,  x) is real and 
(xl,  x )~  (0, 1] (remember that in general [(xl, x)l ~< Ilxlll" Ilxll = 1), In par- 
ticular, when x~ ~ L, then y = cxt, so that the representative chosen will be 
exactly xl .  This procedure to choose a representative leads, of course, to a 
unique result. This is obvious if x2 ~ L since, by definition, the unique 
choice is x2. On the other hand, if x2 ~ L, suppose that x is the repre- 
sentative of L, namely L = [x ]  with Ilxl[ = 1, 0 < (x, x~) = (x~, x) ~< 1; we 
will show that every y e L  with the same characteristics (l lYll=l,  
0 < (y, Xl) = (Xl, y) ~< 1 ) must coincide with x. In fact, since y ~ L we have 
y=cx; but we must have Icl = 1  (from Ilyll = 1 )  and arg(x~, y ) = 0  (in 
order to keep (xl,  y) real and positive). Hence, y =x .  

We have shown that every one-dimensional subspace of H can be 
characterized by means of one and only one normalized vector: we will try 
now to use this fact in order to describe the set of the one-dimensional 
subspaces by means of numerical parameters. Let us remember that every 
x ~ H has a unique representation of the form 

x = c l x l  + c2x2,  cl = ( x l ,  x) ,  c2 = (x2, x )  

Hence the representatives of our one-dimensional subspaces can be 
parametrized by means of the complex numbers cl,  cz; or, better still, since 
the representatives of subspaces must be normalized and must have e~ real 
and positive, our subspaces can be parametrized by means of cz only. In 
fact, when L = [x2],  we will have Cz = 1 (and Cl = 0). If, on the contrary, 
x2 ¢ L, we calculate c2 = (x2, x), and the real and positive number cl will 

be fixed as cl = x / 1 -  ]c2] 2. Of course, in this second case we will always 
have Ic2] < 1 (and hence 0 < c 1 ~< 1). Hence, if we define the following set of 
complex numbers: 

A = {1} ~ {c~C: [el < 1} 

we have a one-to-one correspondence between the one-dimensional sub- 
spaces of H and the elements c of A. If we indicate with Lc the subspace 
individuated by c ~ A, we will have, for example, [x2] = L~, [x~ ] = L0, and 
in general L C = l-x/1 - Icl 2 x~ + cxz] .  
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With this notation the lattice of all the subspaces of H is 

On the other hand, every arbitrary orthogonal lattice of subspaces of H 
will be selected by a vector x ~ H and will contain the following elements: 

{[0], [x], 

For example, ~ = ~ 2  = { [0], Ix1], [x2], H} is a particular orthogonal 
lattice of subspaces of H. 

If now 9 = {Lc}cs ,  1 is the family of all the one-dimensional subspaces 
of H, it is easy to see that we can separate it in two subfamilies 91, 9z with 
the following properties: 

(a) every one-dimensional subspace of H is either in 9t or in 9z, but 
never in both; 

(b) two subspaces of 91 (~2) are never mutually orthogonal; 

(c) for every subspace of 91 (92) the corresponding orthogonal 
subspace is in 92 (91). 

In fact, two one-dimensional subspaces are orthogonal, [x] _L [y] ,  if and 
only if the corresponding complex parameters in A, c =  Icl e ~ for x and 
b = [b] e ~ for y, satisfy the following relations: 

t b t :  l ~ l c ] 2  ' B = { ~ + ~ ,  if ye [0 ,  rc) 
- ~ ,  if 7 s [re, 2~z) 

As a consequence, if we define the following subsets of A: 

= w c ~ C : l c l - ~ , a r g c ~ [ O , n )  

A2={1}•  c ~ C : ~ < I c l < l  u c~C:lcl=--~,argcE[n, 2n) 

we immediately see that A 1 w A 2 = A, A t ~ A2 = ~ZS, that two one-dimen- 
sional subspaces represented in At (A2) are never mutually orthogonals, 
and that for every subspace represented in AI (A2) the corresponding 
orthogonal vector lies in A2 (A0. Hence, we obtain the required partition 
of 9 in ~1 and 9 2 if we define 

It is immediate to see that xt ~ 91 and x2 ~ 92. 
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We can now define a 
following QPM: 

simple QPS (H, 5~(H), ,~) by means of the 

0i if L =  [0]  
2(L) = if L =  H 

if L~@I 

l l - p ,  if L e ~ 2  

Hence, for example, 2(l-x1]) = 2(Lo) = p and 2([x2])  = )~(L~) = 1 - p. It is 
very easy to verify that this 2 is additive since if L E ~ ( ~ 2 )  the unique 
orthogonal one-dimensional subspace M will belong to @2(~) and hence 
their respective probabilities are p and 1 - p  (or vice-versa), so that 
;4L + M) = ;t(L ) + ;4M). 

We will show now that it is impossible to find a statistical operator (7 
such that 

2(L) = Tr(U/SL), LsA~(H)  

In fact, in the representation established by means of the orthonormal basis 
x l ,  x2, we should calculate the four complex components of the 2 x 2 
matrix 

uo = (xi, C%),  i, j = 1, 2 

Since for every one-dimensional subspace L =  [ x ] ¢ ~  we have 
Tr(~)/3L) = (x, ~)x), we get immediately that 

Ull = P, U22 = 1 - p 

so that the requirement Tr  U =  1 is authomatically satisfied. Moreover, 
since 0 must be Hermitean, we have UI2 = U*I = lul e 'v. Finally, 0 must 
be positive definite and hence, given an arbitrary normalized vector 
X : a x l  31- bx2 E H, with a = l a] e i~, b = ]b] e ifl, [a I 2 ..}_ I bl 2 = 1, we must 
require that 

(x, Ux) = (1 - ]hi z) p + Ib[ 2 (1 - p) + 2 ]bl. ]u] x/1 - Ibl 2 cos(y - ~ - /3) /> 0 

This means that we should have 

p + ( 1 - Z p )  tbl 2 
lul <<. 

2 Ibl x/1 - I b t  z 

for an arbitrary ]b[ ~ [0, 1], and this is possible only if lut is smaller than 
the minimum value taken by the right-hand side. It is easy to see that this 
implies the following limitation: 

lul ~<.,/~1 - p )  
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However, we can show that this requirement is incompatible with the 
values that must be imposed in order to reproduce 2. In fact, take, for 
example, the two normalized vectors 

x l + x 2  1 (11) x l + i x 2  ~ 2 ( 1 )  
Y -  ; - i 

Since these vectors correspond respectively to the values 1/x/~ and i/x/-2 of 
the parameter c, and since these values both lie in A1, by definition we 
have 2 ( [ y ] ) =  2 ( [ z ] ) = p .  If we impose now that 

(y, @ )  = (z, Oz) = p 

we deduce that U12 = U*I = ½(2p- 1)(1 - i) so that [ut= ( l /x/2)  12p- lI, 
which is not compatible with the limitation imposed by the positivity 
requirement for every value of p ~ [0, 1 ]. For example, if p = 1/6, we get 
lu[=x/-8/6>~x/~/6=x~---~). Hence, it is not always possible to 
reproduce a QPM defined on a two-dimensional QPS by means of a 
suitable statistical operator U. 
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