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Summary. — In the computer simulations of random acoustic signals to be recognized by
neural networks the amplitudes of the partial vibrations are extracted from a Fermi distribution.
This kind of distributions, well known in the physical literature, seems not to have received much
attention in the specifically probabilistic one. In this paper a few propositions are proved which
are useful, for example, to discuss the convergence of series of random variables with distribu-
tions of the Fermi type.

Sulle serie di variabili aleatorie di Fermi

Sunto. — Nella simulazione su computer di segnali acustici aleatori, prodotti per il ricono-
scimento da reti neurali, le ampiezze delle vibrazioni parziali vengono estratte sulla base di una
distribuzione di Fermi. Questo tipo di distribuzioni, ben noto nella letteratura di carattere fisico,
non sembra aver ricevuto molta attenzione in quella pi specificamente probabilistica. In questo
lavoro vengono dimostrate alcune proposizioni utili, ad esempio, per discutere la convergenza di
serie di variabili aleatorie con densita del tipo di Fermi.

1. - INTRODUCTION

In a few recent papers about the detection of a pitch in acoustic signals by neural
networks (see [3] and [4]) it has been pointed out the necessity of producing random
signals in order to simulate the realistic acoustic environment to be used in the training
of the network. These signals, be they either tones (with a pitch) or noises (without a
pitch), are simulated by giving their discretized Fourier transform. For example, to
characterize the set of all the periodic signals we can consider their representation by
means of a trigonometric Fourier series. Of course, by considering all the possible se-
quences {r,,0,},.n of coefficients (with 7, =0 and 0 < @, < 27) such that the
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trigonometric series

> r,cos (2xnvt + 0,)
n=0

converges (in a suitable sense) we will recover all the set of the realistic periodic signals.
The simplest sufficient condition on the coefficients which guarantees that the trigono-
metric series converges is

2r,,<+°0.

n=0

On the other hand, since following the Ohm’s law (see for example [2], pag. 114) in a
first approximation only the amplitudes and not the phases are relevant for the pitch
perception, these conditions seem to embody the essential physical requirements for a
useful simulation. If now we want to pick up at random a periodic signal we can consid-
er the stochastic process &(¢) given by the random trigonometric series

(1) &) = iofﬂ cos (2mnvt + C,,)

by substituting respectively the numbers 7,, 6, with the sequence of independent ran-
dom variables &, ¢, (§, = 0; 0 < ¢, < 2m; Vn e N). To every sample of the random
sequence {&,, &, }, <, if the corresponding series converges, it is associated a periodic
signal given by the sum of the trigonometric series. Of course our problem will be now
that of the characterization of the random variables £,,, £, in such a way that the series
(1) be convergent (P-a.s.).

From the previous remarks it is clear that a sufficient condition for the convergence

(P-a.s.) of (1) is the convergence (P-a.s.) of >, &,, and a sufficient condition for that is
the convergence of the series i

> B

n=0

An interesting example can be given by assuming that each &, admits a Fern: density
function. We recall that a Fermi density is a probability density function of the
form

A 1
flx) = 111(1+e’1“) 1 4 eMx=a)’
% if x<0,

if x=0,
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with cumulative distribution function

In(1.4 e*e %) .
ek T8 5 e s gpeislg
F(x) = In(1+e*)

O) 1fx<0

where ¢ > 0, A > 0 (see Fig. 1 for an example of the Fermi density with 2 =2 and
1 = 15). Since these distributions, well known to the physicists (see for example [7]),
seem to have received little attention in the probabilitstic literature, we will prove now a
few proposition useful to study the convergence of series of Fermi random variables.

2. - SERIES OF FERMI RANDOM VARIABLES

First of all it would be very interesting to find precise conditions on the parameters
of our Fermi random variables which entail the convergence of the series (1). These
conditions are be spelled out in the following Theorem:

Tueorem 1: Let { &, }, < n be a sequence of Fermi random variables with parameters a,
and A,; among the four statements

(a) D RHERAY SEepon

neN

() 2 (@, 2,1 ) <+,

neN

(c) 2 EE, <+,

neN

(d) DA et - e )

neN
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the following implications hold: (a) = (b) = (c) = (d); if moreover the &, are indepen-
dent, also (d) = (a) holds so that the four statements are in fact equivalent.

To prove this Theorem we will need the estimates of the following Lemma:

Lemma 2: If & is a Fermi random variable then
(I) 4t exists an universal real constant C > 0 such that EE< C(a \V A71);

() when a < 1 we have

A1 —a)
1 A24? t
E(EN1) = ( + dt).
avipl

Aln (14 e™) 1+e¢

Proor: We remark first of all that E & = 1 ~!g(Aa) where g is the following function
defined on [0, + o [:

e of T4e =

When x — + ®© we have for this function

: 1 [ u
~ 1 i du
o) J 1+ et 1+e gL ol +e™ 5

so that from the relations

R =

f v g1 x_2)=£
4 lae™* x \ 2 2

we immediately have g(x) ~x — (1 /2)x = (1 /2)x. Hence we can say that it exists a
real number 4 > 0 (which of course is independent from the parameters of our Fermi
random variable) such that g(x) < x for x > 4. If then » is the maximum of g(x) on the
interval [0, #], we have

J 1_ du ~ x ,
o LiEe

{mﬂ.‘l if ad <b;
EE=

A7 YaAd) =a otherwise .

As a consequence, our universal constant is C = 7z \V 1 and the statement (I) is proved.
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The proof of the statement (II) is in the following relations which hold for
a<l1:

1 A

A % 1 u
E(§N1 dx = du =
s (1 +e") J ] ele= ,1ln(1+ed)J T4er i
1 ak A
U U
= du + du| =
Aln(1+e) Oj L4er " M-[ Li4pek % u)

ak A
1 u u —al
> — Zdu+ | ————du| =
).ln(1+e‘”1)(oj O Jl+e“‘“ u)

al

12,2 A1 -a)

1 a t

= + dt|.
/lln(1+ej")( 4 oJ. 1+¢f )

This completes the proof of the Lemma ®

Proor or THeEoREM 1: We observe that the implication (5) = (c) follows from (I)
of Lemma 2, and that (¢) = (d) is trivial. Moreover the validity of () = («) in the
case of independence is a well known result (see for example [6] Ch. III, § 4) so that
we are reduced to prove just the unphcatlon (a) = (b).

If (2) holds, then E(£, A1)—>0 and this also implies that &, kst 0, namely
that

ln(l +el,,(a,,—e)) »

(2) PE, > 0)= =m0, Me>0.

As a consequence we can show now that

lignl,,=+°°, h'flna,,=0.
First of all the sequence {4, },cn is certainly bounded: indeed, if {4, },.n is not
bounded it would contain a subsequence tending to + % and we could extract an infi-
nite set H of integers such that the sequence {4,4, }, <z has a (finite or infinite) limit.
If then ¢ > 0, we would have A, (4, — €) ~ 4,4, for n — % in H, so that it would follow
from (2) that

lim P(§,>¢)=1
neH
which contradicts the convergence in probability &, i o Now, if {4, }, .~ does not

tend to + ®© we could find an infinite set of integers J such that both the subsequences
{a,},c,and {4, },, admit a finite limit, respectively and A. If then £ > 0, we would
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have from (2) that

In(1+e*=9)
lim P(&, > &) = —————
- e ST EY )

which again contradicts the convergence &, Lo. Finally, if the (bounded) sequence
{a, },<n is not infinitesimal we could always find an infinite set of integers K such that
the subsequence (4, ),  x converges toward a finite number ¢ > 0. Hence, if 0 < ¢ < 4,
from (2) and from the fact that A, — + ® we could get
A,(a, =€) _
11'1111<P(§n>.~3)=linll< =E"E nip

A’nan a ’

o s . P
still in contradiction with &€, — 0.
Let us take now a real number g > 0 such that

(3) In(14+e*)y<2x, Vx>gq
and define
L={neN: A,a,<gq}, M={neN: A,a,>q}, (LUM=N).

Since
S, +A; )= 2@, +A,; )+ X (g, +A,1) <
neN nel neM

S(1+g7 ") Xa,+(1+q) 24,1
neM

nel

to prove (b) we must only show that

24, <+, 2 o i F 0B

neM nel

The first statement follows from the remark that, since 2, —> 0, we can always suppose,
without loss of generality, that 4, < 1 for » € N so that from (3) and (II) of Lemma 2
we have

{720 HZael da,
AL e 8

E(§,N\1) =2

To prove the second limitation, since 4,,(1 —a,,) 5 + o, we should just remark that
for n — o in L (with L supposed an infinite set) it follows from (II) of Lemma 2
that

An(l—a,) 4 oo

1 t . £
L dt ~ :
EguAL) A, In(1+e7) OJ 1+e ; A, In(1+e?) of 1+€tdt

This completes the proof of the Theorem. ®
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This Theorem shows that it will always be possible to have (P-a.s.) convergent
trigonometric series when the sequence of the amplitudes {&,},<n is constituted of in-
dependent Fermi random variables with a suitable choice of their parameters.

3. - ESTIMATES FOR EXPECTATION AND VARIANCE

We will prove now a few results about the expectation and the variance of a Fermi
random variable.

ProposiTioN 3: If & is a Fermi random variable, we have

1 n? )
E - _— —‘I M >
£,
, 540 Lt i
. + L) - ————| 5 -~ L) |,
Y 121n(1+e“)[ 2.9 R T e ey 2
where
A b o -3 L
Il(x)_JHe_tdt, L (x) OjHe_td;, 6= 2 -5

and £(+) is the Riemann C-function.

Proor: Since from the normalization integral and the change of variable

t = Alx —a) we have that
x A f dx A 1 f dt
(1 ety o o ptema it In (1it=e Y ol et

0 Aa

we have also that

A (o A o [ _dt 1 [ ¢
E&= dx = 7 ey dt| =
s In(1+e™) J- 1+ 1n(1+e’1“)(/1_1[ 1+¢f /'Lz_J 1+¢f )

0

© 0
1 3 Z
=a+ dt + dt].
‘ lln(1+e’l”)(J'1+e’ _J; i )

0

Moreover, since (see for example [5], formula 3.411.3)

(4) f x"7 dx=(1-21"")I(v)Ew); Rev >0
¢ 154 g% g

and since (see [5], formula 9.542.1 and 9.71) I'(2) = 1 and §(2) = #? |B, | = #* / 6,
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we get the first relation

1 ? )
prasigndisldaiios b da adsn et
Sk Mn(1+e“)(12 A

With the same change of variables, and taking (4) into account we have also that

A 3 x?
E&%= dx =
s 1n(1+e“')oj 1+ M
A 22 [ dt B4 T b 1 [ 22
= —t | = + = —dt+ — dt| =
1n(1+e“)(/1_i 1+ef Az_i 1+e¢! 13_1 1+ef )
_ 2 1 amiiy 38(3) i )
a +—_ﬂ.1n(1+ej“)(_6 2z111(ﬂ.a)+—2/I + ;LIZ(M) "
Hence the variance can also be calculated as
38(3) 1 7 3
VE=EE — (EE) = L +Iﬂa——(———[ Aa) .
& E&—(E&) /121n(1+e‘”)[ 5 2(da) (144 | 12 1(Aa)

This completes the proof of the proposition. ®

Since it is not possible to express the functions I; (x) and I, (x) in terms of elemen-
tary functions, it will be useful to obtain some estimates:

ProrosiTioN 4: For the functions I, (x) and I, (x) defined in the Proposition 1, the fol-
lowing inequalities hold ¥ x = 0:

2
—(1—e*—xe*) <I(x) — 2‘-2— <0,

3
—(2—=2eF—2x¢ F—x%e*) < L(x) — x? <0;

moreover Yn = 1 and N x = 0, even the following inequalities hold

b

2n+1 —kx —kx 2 2n —kx —kx
4 1 —e ke : nind i l—e™™ —kxe
2 (-1 e shib) o= 20-1) o

3
<12(x)—"?

(=1)

Zgl 22— 2e " — Dloxe TF — p2x2e &
< &3

2n = —kx _ —kx _ 12,2,k
<2(—1)/e2 2e 2ksxe k’x’e '

k=1 k3
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Proor: Since it is easy to see that V# =0 and for » =0, 1, 2... we have

2n
(1+e—t) E(_l)/ee—let=1+e—(2n+1)t> 1’
k=0

2n+1

(1+e35) 2 —1feM=1-e 2t <,
the following inequalities hold Vx =0 and for » =0, 1, 2, ...:

2n + 1 x 2 x
b (—l)the"“ d<Lix)< 2 (—l)kjte_k’ dt,
£=0 g E=0 ;

2n+1
E (—1)kjt e Rgn < T (%)< E(—l)kj 2y

0

Then the inequalities of the Proposition follow by elementary integration.

A consequence of Proposition 4 is the following Corollary which gives the expecta-
tion of a Fermi random variable in terms of a series expansion (a similar result can be
deduced for the variance):

CoroLLARY 5: If & is a Fermi random variable then its expectation bas the form E § =
= 17 'g(al) where
2 2 ©
1 T Z 1)/e 1+ Ax o

X
g st el g 2.0 22

Proor: Since from Proposition 4 the quantity I; (x) — x / 2 always falls in between
the even and odd terms of the sequence of the partial sums of a convergent series, it is
immediate to recognize that it coincides with the sum of that series:

1) 1—e ™ —bxe ™

/ez
The result then immediately follows from Proposition 3 and the fact that (see for
example [5], formulae 9.522.2, 9.542.1 and 9.71)

L -% = 3 (-

& e 1 1
— — IS — 2 —_— e e—
Ie§=:1( 1) E > &(2)
This completes the proof of the Corollary. ™

We remark that as a consequence of the Corollary 5 we could immediately deduce
the relation g(x) ~ x / 2 for x — + o that was used in the proof of the statement (I) of
the Lemma 2. Moreover it is also possible to use the results of Proposition 3 and the in-
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equalities of Proposition 4 in order to get upper bounds for E § and V £. As an example
we will only make use of the simplest among the inequalities of Proposition 4, even if in
this way we will get only some very rough estimates. More precise results can be ob-
tained by means of the other inequalities.

CoroLLArY 6: If & is a Fermi random variable the following inequalities are always

verified

1 2 o 1 2 2
<al = < — + +
E¢ “(2 + /1242)’ VE<a (12 12,42 1250

Proor: Since In (1 +¢*) >lne=s5,Vs >0, and (see for example [1], pag. 811)
&(3) < 4 /3, taking into account the previous propositions we have:

Eg=a+—1——(”—2—11(/1a))<
Aln(1+e%)\ 12
[ 1 7 A2a? s _M)
<all4 ————| = -2 +1- — Aa <
¢ /'Laln(1+e’1“)(12 2 i ¢
! 1 Azaz) 1 ( 1242) 1 2
<a|1+ ————|2—- 25 || <41+ 2- =a[ =+ ;
“ /1aln(1+e“‘)( 2 ] a[ A%a? 2 a(z lzaz)
1 3@(3) 1 (_7[2 )2
VE= + L) - ——— == - (Aa)] | <
- lzln(1+e“)l 2 ¢ n(1+e)\12

1 3.£(3) Aa’ 1 Ata? ( ﬂz) 2 2
< 3 = =l Hoeenjd <
/121n(1+e‘“)[ 2 3 In(14e*) 4 12 y

gty § Mﬁiﬁ_zz)zzi 2l i
<w[2+3 L2 g <o+ 22 2.

This completes the proof of the Corollary. ™
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