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ASYMPTOTIC BEHAVIOUR OF DENSITIES
FOR NELSON PROCESSES!

Nicola Cufaro Petroni

Dipartimento di Fisica dell’ Universitd and
I.N.F.N.; via Amendola 173, 70126 Bari, Italy;
E-mail CUFARO@BARIINFN.IT

Keywords
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In a recent paper” an idea of Bohm and Vigier® about the possible decay
of every initial probability density function (pdf), whose evolution is ruled by the
quantum Fokker-Planck equation, toward the quantum mechanical pdf has been
discussed in the light of the stochastic mechanics. The causal interpretation of the
quantum mechanics® is based on the idea that a non relativistic particle of mass
m, whose wave function obeys the Schrodinger equation

2
thdyp(r,t) = ~%V27/J(r,t) + V(r, t)y(r, t}, (1)

is a classical object following a continuous and causally defined trajectory with
a well defined position and accompanied by a physically real wave field 4 which
contributes to determine its motion. If we write down (1) in terms of the real
functions R(r,t) and S(r,t) with

W(r,t) = R(r,t) 500 o

'Paper contributed to the Workshop Quantumn Communications and Measurement; Notting-
ham, July 10-16, 1994.
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and separate real and imaginary parts, we have

6‘tR2+V(R2VLD) -0, (3)
(VS)? K2 V2R B
0.5 + 2m V- om R 0, (4)

where R*(x,t) = |¢(r, t)|* is interpreted as the density of a fluid with stream velocity

AVAN
VD

v(r,t) = - (5)

It is important to remark now that, if we define

vS AEN h VR? 6
m om R? (6)

Y4) (I‘ t) =
the continuity equation (3) takes the form
(2. N 2o
L U4y) )

so that R? can also be considered as a particular solution of the evolution equation
of the pdf’s of a Markov process {Fokker-Planck equation)

— 2 3
of =vVif = V(fuyp) (8)
Aharantarioad ho tha valaaiter fald 20 and by o diffnginn oneffeiant
Lilal au Lol 14cu 1 Lilc VCLU\lb.)/ 111U U(+) Allii Uy QA AWALLL UL VOCLIICICELY

V= —, (9)

This points out a possible connection between the density R? and the pdf of a
suitable Markov process describing the random motion of a classical particle. As
a matter of fact this connection is not at all compulsory at this point since the
causal interpretation is a deterministic theory with no randomness involved in its
fundamentals so that the analogy between (7) and (8) could also be considered
purely formai. That notwithstanding the causal interpretation is obliged to add
some randomness to its deterministic description in order to reproduce the statistical
predictions of the quantnm mechanics and hence it identifies the function R? = |y|?
with the pdf of an ensemble of particles. But, since this addition is made by
hand, is it easy for the critics of the model to argue that “it should be possible to
have an arbitrary probability distribution (a special case of which is the function
P = §(x — x¢) representing a particle in a well defined location) that is at least in
principle independent of the 1) field and dependent only on our degree of information
concerning the location of the particle”(®). The physical idea of Bohm and Vigier
was that, even if our ensemble of quantum systems is described by an arbitrary
initial pdf, this will decay in ti because of the
random fluctuations arising from the interactions with a subquantum medium: “no
matter what the initial probability distribution may have been (for example a delta
function) it will eventually be given by P = |¢4|*".

A more convincing connection between quantum mechanics and c¢lassical random
phenomena is achieved by means of the stochastic mechanicst®: here the particle
position is promoted to a stochastic Markov process £(t) defined on some probabilis-
tic space (§2, F, P) and taking values (for our limited purposes) in R*. This process
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stochastic differential equation of the form

dg(t) = vy (£(8), 1)dt + dn(?) (10)

where vy is a velocity field which plays the role of a dynamical variable not given a
priori but subsequently determined on the basis of a variational principle, and ()
is a Brownian process independent of £ and such that

E(dn(t)) =0, E(dn(t) dn(t)) = 2v1dt

where dn(t) = n(t + dt) — n(t) (for dt > 0), v is the diffusion coefficient and I
is the 3 x 3 identity matrix. A suitable definition of the Lagrangian and of the
stochastic action functional for the system described by the dynamical variables
J and vy allows us to select, by means of the principle of stationarity of the
action, the particular processes which reproduce the quantum mechanics. In this
formulation the foundations to interpret R? as a particular solution of a Fokker-
Planck equation for the pdf of Markov processes are well established and the idea
proposed by Bohm and Vigier of a relaxation in time of arbitrary pdf’s solutions of
(8) toward the quantum mechanical pdf [#)|? can be checked as a property of the
solutions of the Fokker-Planck equations with the field v, derived according to (6)
from the wave functions solutions of (1). In other words we explore the possibility
that the p associated by the Nelson stochastic mechanics to a quantum state ¢
can be interpreted as the origin of the Bohm and Vigier stochastic ux and we
examinate if and how the solutions of (8) sclected by the stochastic mechanics to
reproduce the quantum predictions attract other solutions which do not satisfy the
stationary stochastic action principle and hence can not be considered as describing
quantum systems.

In what follows we will limit ourselves to the case of the one dimensional trajec-
tories, so that the Markov processes £(¢) considered will always take values in R.
The sct of all the probability density functions (pdf’s) of the absolutely continuous
real random variables defined on a probability space (2, F, P) coincides with the set
D of all the non negative functions f(x) of the hypersphere of norm 1 in the Banach
space L'(R) and hence the time dependent pdf f(z,t) of the stochastic processes
&(t) will be considered as trajectories on this subset D. For Markov processes the
transition pdf’s p(z, t| y, s) classified by means of the initial condition {(s) = y (with
§ < t) are particular trajectories (with non absolutely continuous initial conditions).
In D we then introduce a metrics induced by the norm in L'(R):

d(f,9) = 2/ x) — g(x)|dz.

Here the factor 1/2 guarantees that we always have 0 < d(f, g) < 1: the value 1 is
attained when f and ¢ have disjoint supports, and the value 0 when they coincide
(Lebesgue almost cverywhere). If the stochastic processes £(¢) under exarnination
arc Markov processes {as happens in stochastic mechanics) satisfying the equation
(10) with initial condition £(0) = &, their pdf will satisfy the onc dimensional
evolution equation

0uf (i, 6) = VO F(,8) — oy, O, 1) (1)
with the initial condition f(z,0) = fo(x) if fo(x) is the pdf of &
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Definition 1: We will say that the pdf f(z,¢) L'-approzimates the pdf g(z,t) (for
t — +00), and we will write

fla,t) =~ g(x,t) (t — +00),

when

d(f7 g) — 0 (t — +OO) .

In particular we will say that f L'-converges toward g (for ¢ — 4-o00) if the pdf g(z)
does not depend on the time ¢.

We will examinate next a few properties of the concept of L'-approximation for
processes satisfying the equation (10). First of all we can prove!!) the following
proposition

Proposition 1: If f and g arc solutions of (11). the distance d(f. ¢) is a monotonic
non-increasing function of the time ¢.

Of course, even if this proposition states that the distance d(f, ¢) among the solu-
tions of (11) is a non-increasing function of time, this is not enough to derive the
consequence that this distance actually decreases, let alone the the fact that it is
infinitesimal, when ¢ — +o00. However this property is sufficient to prove that, since
d(#) is a monotone and bounded function of ¢, the limit of d(#) for # — +oc always
exists and is finite. In order to examinate the conditions that are sufficient to make
the distance d(f, g) actually tend to zero when ¢ — +oc, let us now introduce the
following definition:

Definition 2: We will say that the family of the transition pdf's p(ax, |y, 0) L'-
approzimates the pdf g(z, t) in a locally uniform way iny (y - Lu.) for t — +o0,
and we will write

pla, t]y,0) = g(z, 1) y - L. (t — +o0),
when for every K > 0 and for every € > 0 we can find a T > 0 such that
d(p, g) = d(p(2, 1] y,0), g(x, 1)) <
for every t > T and for cvery y such that jy| < K.

The local nniformity in y of the Ll~a})pr0x

iformi imation of the p’s to a pdf g allows us
now to prove(

1) the following proposition:

Proposition 2: If p(z,t|y,0) = g(z.t), y - Lu., ({ — +00), where p is the tran-
sition pdf of (11) and ¢ an arbitrary pdf, then we have that f(z,¢) = g(x,t), (t —
+00), for every f(z,t) solution of (11).

In the proof we nowhere use the hypothesis that g(x, ) is a solution of (11): in fact
it is enough to suppose that g is a time dependent pdf. However, even if g is not
a solution of (11), the triangular inequality for the metrics d allows us to show(!)
that all the selutions of (11) L*-approximate one another as stated in the following
corollary:

Corollary 1: If p(z,t|y,0) = g(x,1), v - Lu., (t — +o00), where p is the transition
pdfof (11) and ¢ an arbitrary pdf, then we have that fi(z,t) = fo(z,t), (£ — +00),
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forevery fitz,t)and fa{z,t) solutions of {t1):

Hence, under the conditions of Proposition 2, all the solutions of (11) globally tend
to L'-approximate one another after a sufficiently long time. On the other hand, if
we can find two solutions f; and f; of (11) such that d(fy, f,)} is not infinitesimal
for ¢ — 400, then no pdf g can be L'-approximated y - Lu. by the family of the
transition pdf’s p.

In order to discuss a few examples in detail it will be useful to derive a formula
to ealculate the L'-distance among the pdf’s A'(m, o) of normal random variables,

namely pdf’s of the form
o~ (z—m)?/25%

moll) = ———F—
Gm,o () Py

with real m and o > 0. In the following we will indicate with the symbol

P(x) eV gy

1 T
B vV 27 -/voo
the usual error function and we will also pose
d((l, b; p, (I) = d(ga.p7 gb‘q) :

With the previous notations we can now prove(”) that, if p > ¢ we have

0. b p rI’rﬁ[:E,L—b\ /”62_[)\] {/Tl*a\ mff2—-a
b= 10 ) ) ) A

\] /1
JI

ag® — bp* — qpy/(a — b)* + 2(¢* — p?) In(q/p)

xr = (]2 — p2
ag® = bp* + qpy/(a — b)* +2(¢* — p*) In(g/p)
Ty = @ —p? :

if p==¢ and a # b we have
d(a,b; p,p) = 2@(“) |) 1
a _ 1.
b,p % ;

and finally, if p = ¢ and ¢ = b we have d(a,a; p,p) = 0. This will be useful since
in our examples both the transition pdf’s and the pdf’s derived from the quantum
mechanical wave functions are normal. To show this we will use the following
prOposition(l) which indicates a very simple way to find the fundamental solutions
of a class of evolution equations (11) which contains all the situations of our future
examples.

Proposition 3: If the velocity field of the evolution equation (2) has the form
vz, t) = =b(t)z — c(t)

with b(t) and c(t) continuous functions of time, then the fundamental solutions
p(x,t|y,0) are normal pdf’s N(u(t), 8(t)) where u(t) and 5(t) are solutions of the
equations

W b0l +et) = 0
A+ 2b(AB(H) — 92 — 0
MRS \YIAYT
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We will discuss now our examples for systems reduced to a single non relativistic
particle with a mass m, by remembering that the connection between the quantum
mechanics and the stochastic mechanics is guaranteed if the diffusion coefficient
and the Planck constant satisfy the relation (9). Let us consider first of all a
simple harmonic oscillator with elastic constant & and classical (circular) frequency
w = y/k/m and two possible wave functions obeying the Schrodinger equation: the
(stationary) wave function of the ground state

1 1/4

’l,/)o(.’L' t) — ( \ e~zz/402 e~iwt/2
’ \2mo?/

and the (non stationary) wave function of the oscillating coherent wave packet with
initial displacement a

e, t) = (

)1/4 [ (z — acoswt)? ,<4az sinwt — a? sin 2wt N wtﬂ
oxp | b AEOSWE v
270’ P 4a? L 8o 2

where we have defined

From the position (2) we find for our wave functions that

8712/202

RS(I,t) = f()(,’l?,t):

oV 2w

C—-(:Efacosu.lf,)'z/Zo'2

Ri(x,t) = x,t) =
C(I, ) fC(7 ) 0'\/%
So(z,t) = —%hwt

daz sinwt — a? sin wt
8o?

Sel(z,t) = —%hwt —h
and hence we can calculate from (6) the corresponding velocity fields
1)&)(2:, t) = —wx
vy, t) = —wt+wa(coswt - sinwt) .
This means that fo and fo are respectively of the form (0, 0%) and A (a coswt, o%),

and that the fundamental solutions po(z,t|y,0) and pe(z,t|y,0) of (11) can be
calculated by means of Proposition 3 with

bo(t) = w, co(t) =0
be(t) =w, co(t) = —wa(cos wt — sinwt)
so that they will respectively have the form N (io(t), Fo(t)) and N{(uc(t), Be(t))
where
Bo(t) = o*(1 — ™), pro(t) = ye ™"
Bo(t) = a*(1 — e ™), pol(t) = acoswt + (y — a)e™".

second class of examples can be drawn from the wave functions of a free
article of mass m. In particular we will choose to examinate the behavior of the



(non stationary) wave function of a wave packet of minimal uncertainty centered
around x = 0 with initial dispersion ¢? > 0:

/ 1 N
vrlet) = o /oD
2o

(D))

where
, v
x(t) =1+ 1wt W=
o
[n this case we have from (2)
C~.’L‘2/202a2(t)
Re(z,t) = fp(r.t)= ——o—
w(z,) Tr(r,1) 2moa(t)
h/ wix?
Sp(z,t) = 5(%2—@2(—5 — arctan uﬂf)

where
a(t) = |x(1)} = V1 T 2.

This means that fr is normal of the form N(0, c2a?(¢)). Moreover the velocity field
15

1 —wt
F [ o
Ui (w,1) = e

and the fundamental solutions pg(z, |y, 0) of (11) can then be calculated by means
of Proposition 3 with

1 —wt "
1+ w?t?

so that they will have the form N (up(t), Bp(t)) where

up(t) = ymc'arcmnwt

ﬁp(t) — 0-2(1 —i—thZ)(l _ e»?arctanwt).

bi(t) = ep(t) =0,

We can now usc (12) in order to calculate d(po, fo), d{pc, fe) and d{(pr, fr): a
long but simple calculation will show that (y - 1.u.}

po~ fo, pe = fo (t — +o0)

in the examples drawn from the harmonic oscillator, but that pr will not L!'-
approximate fp since d(pp, fr) turns out to be different from zero and still de-
pendent on y in the limit ¢ — +oo:

dpr. fi)  —  @(ey —VI—e T/y2 —In(1 —e 7))
~0(ely + VI— ey —In(1 - o))
—o(ePyvT—e 7 — \Jyr —In(1 - e )
I e I s Y

For example, if 4 = 0 (so that both pr and fr will remain centered around z = 0
along all teir evolution) we get in the limit  — +oo:

d(pr, fr) — 2[@(6’/2,/- In(1 —e ™))~ o(e"*V1 — e/~ In(l — e ") )] ~0.011.
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It is also possible to show that in this case two transition pdf’s with different initial
conditions y # ' will never L'-approximate onc another as t — +oo, since

!
o,/ 0)) - 20( YLy s
2v/em — 1/
which is zero if and only if ¥ = . Hence on the basis of the Corollary 1 we can state
that every solution of the evolution equation (11) L'-approximates the quantum
mechanical pdf (for ¢ — +00) only in the examples of the harmonic oscillator but
not in that of the free particle.

It is apparent from our examples that the Markov processes associated to the
quantum mechanical wave functions by the stochastic mechanics do not always
exhibit the behavior required by the Bohm and Vigier hypothesis. In fact the
calculations show that, in order to recover the property of a global relaxation in
time of the pdf’s toward the quantum mechanical solution, we must restrict ourselves
to a particular sct of physical systems. The different behaviors of our examples are
in fact inscribed in the form of the time dependence of the parameters of the normal
pdf’s involved in our calculations. It 1s easy to see that, in the case of the harmonic
oscillator, for every real y we have (for t — +00)

Ho(t) — 0, Bo(t) — o
hel) —acoswl] =0, Belt) o”.

On the other hand up(t) and Fr(t) behave differently from the corresponding pa-
rameters of the quantum mechanical pdf fr, since (for t — +00)

le(t) — eiw/Q"Jwﬂ — 0, |Bp(t) — (1 - 97”)02w2t2| — 0,

while the quantum mechanical fr is a normal pdf which remains centered around
x = 0 with a variance which diverges as o%w?t?. In this case it is of no avail to remark
that both pp and fp will flatten to zero when ¢ — +o00o: the relevant fact is that this
flattening happens at rates different enough to make the L!'-distance remain non
zero even in the limit ¢ — +oo. It is remarkable, however, that in the formulation
chosen in the original Bohm and Vigier paper no one of our three examples would
have shown the correct property: our L'-metrics plays here an important role in
discriminating the well behaved systems among all the possibilities.

The fact that the Nelson transition pdf’s do not always L!-approximate one
another also means that it is impossible to find a unique pdf g Li-approximated by
them independently from y, and hence that the solutions of (11) in the discussed
free particle case will not globally tend to L'-approximate one another in time. Of
course nothing forbids a priori, even in this case, that particular subsets of solutions
can show the tendency to mutually L'-approximate and hence the field is open to
investigations about, for instance, the possibility that some particular solution of
(11) can be stable with respect to small perturbations of their initial conditions:
which in some minimal sense was the essential intention of the Bohm and Vigier
proposal. In any case our examples show that, at least for a significant set of sys-
tems and wave functions the Bohm and Vigier property holds in the L!-metrics if we
adopt the transition pdf suggested by the Nelson stochastic mechanics, and hence
it can be surely stated that their original idea posed an interesting an physically
well grounded problem. It is not possible at present to state clearly and in a general
way in which cases we realize the conditions for a global (or at least local) mutual



L'-approximation of the solutions of (11). The examples discussed show that the
discriminating property is not the stationarity of the quantum mechanical wave
function since also the square modulus of the non stationary, coherent, oscillating
wave packet of the harmonic oscillator attracts in L' every other solution of (11).
An indication can be perhaps found in the fact that the main difference between
two systems seems to be principally in the fact that their cnergy spectra are very
different: the harmonic oscillator has a completely discrete spectrum and the free
particle a completely continuous one. Hence a first idea can be to distinguish be-
tween bound states, which exhibit the Bohm and Vigier property, and scattering
states, which do not. Of course the scttlement of this question will require the dis-
cussion of further examples and the investigation of more general properties. Finally
it must be pointed out that we have made the very particular choice of selecting the
transition pdf’s of the Nelson stochastic mechanics as a good candidate to the gen-
eration of the right stochastic flux exhibiting the Bohm and Vigier property in some
suitable sense. As a consequence another possible conclusion could also be that the
Nelson flux is not the right candidate to represent, in the general case, the inter-
pretative scheme of Bohm and Vigier. Hence we consider wide open the possibility
that the right transition pdf’s can be built in a different way. For example it is well
known that in the Nelson stochastic mechanics the diffusive part of the stochastic
differential equation (10) is given a priori. Hence, since the transition pdf which
propagates a given time-dependent pdf f(r,?) is not uniquely determined (and are
not, in gencral, observable in the stochastic mechanics), nothing forbids to find a
diffusive flux, different from that of Nelson, which exhibites the Bohm and Vigier
property for every possible quantum wave function. In particular a possibility lies
in a generalization of the stochastic mechanics where also the diffusive part of the
stochastic differential equation ruling the process is dyndmlcally determined in a
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