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Abstract

We analyse the non-stationary solutions of the Fokker1Planck equations associated to quantum states by stochastic
mechanics. In particular we study the exact solutions for the stationary states of the harmonic oscillator and the potentials
which realize new possible evolutions ruled by the same equations. c© 1998 Published by Elsevier Science B.V.

1. Introduction

In a few recent papers [1] the analogy between
diffusive classical systems and quantum systems has
been reconsidered from the standpoint of stochastic
mechanics (SM) [2,3]. Particular attention was de-
voted there to the evolution of the classical systems
associated to a quantum wave function when the con-
ditions imposed by the stochastic variational principle
are not satisfied (non-extremal processes) in order to
check if and how the evolving distribution converges
in time toward the quantum distribution. This hypoth-
esis constitutes an important point in the discussion of
Bohm and Vigier several years ago about some criti-
cisms to the assumptions of the causal interpretation of
quantum mechanics (CIQM) [4]. In Ref. [1] it was
pointed out that the right convergence was achieved for
a few quantum examples, but no general results were
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available to this effect. Moreover there were also a few
counterexamples: in fact not only for non-stationary
wave functions (as for a minimal uncertainty packet)
there may be no convergence at all, but also in the
case of stationary states with nodes (namely with ze-
ros) we do not get the right asymptotic behaviour. The
problem is that for stationary states with nodes the cor-
responding velocity field to consider in the Fokker1
Planck equation shows singularities in the locations
of the nodes of the wave function. These singularities
effectively separate the available interval of the space
variables into (probabilistically) non-communicating
sections which trap any amount of probability initially
attributed and make the system non-ergodic.

The first new result of this Letter is well understood
in the light of these opening remarks: we show, by
means of a general method (the eigenfunction expan-
sion for the diffusion equations) that for transitive sys-
tems with stationary velocity fields (as, for example,
a stationary ground state) we always have the right
exponential convergence to the right quantum proba-
bility distribution associated to the extremal process,
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even if we initially start from an arbitrary non ex-
tremal process. These results can also be extended to
an arbitrary stationary state if we consider separately
the process as confined in every configuration space
region between two subsequent nodes. However, this
is not the unique path we trod along in the following
pages: the second new feature of this article starts from
the remark that non-extremal processes can be consid-
ered virtual, as trajectories in the classical Lagrangian
mechanics, but that in the same way they can also be
turned real if we modify the potential in a suitable
way. The interest for that lies not only in the fact that
non-extremal processes are exactly what is lacking in
quantum mechanics in order to interpret it as a clas-
sical stochastic process theory (for example in order
to have a classical picture of a double slit experiment
[5]), but also to engineer some new controlled real
evolutions of quantum states. In particular this could
be useful to study (a) transitions between stationary
states (b) possible models for measure theory [3] and
(c) control of the particle beam dynamics in accelera-
tors [6]. In fact it should be pointed out that stochastic
mechanics is also a theory, independent from quantum
mechanics, which has applications in several physical
fields, in particular for systems not perfectly described
by the quantum formalism, but whose evolution is cor-
rectly controlled by quantum fluctuation: the so called
mesoscopic or quantum-like systems. This behaviour
characterizes, for example, the beam dynamics in par-
ticle accelerators and there is evidence that it could
be well described by the stochastic formalism of Nel-
son diffusions [6]. Of course in these systems trajec-
tories and transition probabilities always are perfectly
meaningful. Since to study in detail the evolution of
the probability distributions in these cases, and in par-
ticular to try to understand if and how it is possible
to make a controlled transition between two quantum
states, it is necessary to determine the fundamental
solutions (transition probability densities) associated
by SM to every quantum state in consideration, we
eventually devoted the second part of this Letter to a
sketch of the way we could undertake this task.

SM is a generalization of classical mechanics based
on the theory of classical stochastic processes [2].
The variational principles of Lagrangian type provide
a solid foundation for it, as for the classical mechanics
or the field theory [3]. In this scheme the determinis-
tic trajectories of classical mechanics are replaced by

the random trajectories of diffusion processes in the
configuration space. The surprising feature is that pro-
gramming equations derived from the stochastic ver-
sion of the lagrangian principle are formally identi-
cal to the equations of a Madelung fluid [7], the hy-
drodynamical equivalent of the Schrödinger equation
in the stochastic interpretation of quantum mechanics
(SIQM) [8]. On this basis, it is possible to develop
an interpretative scheme where the phenomenological
predictions of SM coincide with that of quantum me-
chanics for all the experimentally measurable quanti-
ties. Within this interpretative code the SM is noth-
ing but a quantization procedure, different from the
ordinary ones only formally, but completely equiva-
lent from the point of view of the physical conse-
quences. Hence we interpret here the SM as a prob-
abilistic simulation of quantum mechanics, providing
a bridge between this fundamental section of physics
and the stochastic differential calculus. However, it
is well known that the most peculiar features of the
involved stochastic processes, namely the transition
probability densities, seem not always enter into this
code scheme: in fact, if we want to check experimen-
tally if the transition probabilities are the right ones
for a given quantum state, we are obliged to perform
repeated position measurements on the quantum sys-
tem, so that, according to quantum theory, the quan-
tum state changes in every measurement (wave packet
reduction). On the other hand our transition probabil-
ities are associated to a well defined wave function:
hence it will be practically impossible in general to
experimentally observe these transition probabilities.

Several ways out of these difficulties can be ex-
plored: for example stochastic mechanic scheme could
be modified by means of non-constant diffusion co-
efficients [1], or alternatively it would be possible to
modify the stochastic evolution during the measure-
ment [9]. Here we rather assume the standpoint of the
convergence (in time) of the processes which do not
satisfy the stochastic variational principle toward the
processes associated to quantum states. In this way any
departure from the distributions of quantum mechanics
is quickly reabsorbed in the time evolution [1], at least
in many meaningful cases. However, the possibility
is also considered here that the non-standard evolving
distributions can be realized by suitable quantum sys-
tems for modified, time dependent potentials which,
on the other hand, asymptotically in time rejoin the
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usual potentials. Starting from Ref. [1] we will study
the correspondence between stochastic and quantum
mechanics in several cases of stationary states, and in
Section 2 we will in particular recall the well known
technique of the eigenfunction expansion for Fokker1
Planck equations in order to approach these problems
in a general way in Section 3. In Section 4 we will dis-
cuss a few explicit examples of Fokker1Planck equa-
tions with singular drifts associated to particular wave
functions of the quantum harmonic oscillator. Finally
in Section 5 we will briefly discuss how it is pos-
sible to consider any classical evolution as produced
by a suitable quantum system: a step instrumental to
point out that also non-extremal evolutions could be
in principle produced by means of a suitable (time-
dependent) deformation of the potential.

2. Eigenvalue problem for the Fokker–Planck
equation

Let us recall here (see, for example, Ref. [10]
p. 101) a few general facts about the pdf’s (proba-
bility density functions) f(x, t), solutions of a one-
dimensional Fokker1Planck equation of the form

∂tf = ∂2
x(Df)− ∂x(vf) = ∂x[∂x(Df)− vf] (2.1)

defined for x ∈ [a, b] and t > t0. Here D(x) and
v(x) are two time independent functions such that
D(x) > 0 and v(x) has no singularities in (a, b);
moreover they are both continuous and differentiable
functions. The conditions imposed on the probabilistic
solutions are of course

f(x, t) > 0 , a < x < b , t0 6 t ,
b∫
a

f(x, t) dx = 1 , t0 6 t , (2.2)

and from the form of (2.1) the second condition also
takes the form

[∂x(Df)− vf]a,b = 0 , t0 6 t . (2.3)

Suitable initial conditions will be added to produce
the required evolution: for example the transition pdf
p(x, t|x0, t0) will be selected by the initial condition

lim
t→t+0

f(x, t) = f(x, t+0 ) = δ(x− x0) . (2.4)

It is also possible to show by direct calculation that

h(x) = N−1 exp

(
−
∫

[D′(x)− v(x)]/D(x) dx

)
,

N =

b∫
a

exp

(
−
∫

[D′(x)− v(x)]/D(x) dx

)
dx

(2.5)

is an invariant (time independent) solution of (2.1)
satisfying the conditions (2.2). Remark that (2.1) is
not in the standard self-adjoint form (see Ref. [11] p.
114). However, if we define the function g(x, t) by
means of

f(x, t) =
√
h(x) g(x, t) (2.6)

it would be easy to show that g(x, t) obeys now an
equation of the form

∂tg = Lg, (2.7)

where L defined by

Lϕ =
d

dx

[
p(x)

dϕ(x)
dx

]
− q(x)ϕ(x) , (2.8)

with

p(x) = D(x) > 0 ,

q(x) =
[D′(x)− v(x)]2

4D(x)
− [D′(x)− v(x)]′

2
,

(2.9)

is now self-adjoint. Then, by separating the variables
by means of g(x, t) = γ(t)G(x) we have γ(t) =
e−λt while G must be a solution of a typical Sturm1
Liouville problem associated to the equation

LG(x) + λG(x) = 0 (2.10)

with the boundary conditions

[D′(a)− v(a)]G(a) + 2D(a)G′(a) = 0 ,

[D′(b)− v(b)]G(b) + 2D(b)G′(b) = 0 . (2.11)

It easy to see that λ = 0 is always an eigenvalue for
the problem (2.10) with (2.11), and that the corre-
sponding eigenfunction is

√
h(x) defined in (2.5).
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For the differential problem (2.10) with (2.11) we
have that (see Ref. [11] p. 138) the simple eigenval-
ues λn will constitute an infinite, increasing sequence
and the corresponding eigenfunction Gn(x) will have
n simple zeros in (a, b). For us this means that λ0 = 0,
corresponding to the eigenfunction G0(x) =

√
h(x)

which never vanishes in (a, b), is the lowest eigen-
value so that all other eigenvalues are strictly positive.
Moreover the eigenfunctions will constitute a com-
plete orthonormal set of functions in L2([a, b]) (see
Ref. [12] p. 134). As a consequence the general so-
lution of (2.1) with (2.2) will have the form

f(x, t) =
∞∑
n=0

cn e−λnt
√
h(x)Gn(x) (2.12)

with c0 = 1 for normalization (remember that λ0 = 0).
The coefficients cn for a particular solution selected
by an initial condition

f(x, t+0 ) = f0(x) (2.13)

are then calculated from the orthonormality relations
as

cn =

b∫
a

f0(x)
Gn(x)√
h(x)

dx , (2.14)

and in particular for the transition pdf we have from
(2.4) that

cn =
Gn(x0)√
h(x0)

. (2.15)

Since λ0 = 0 and λn > 0 for n > 1, the general
solution (2.12) of (2.1) has a precise time evolution.
In fact all the exponential factors in (2.12) vanish with
t → +∞ with the only exception of the term n = 0
which is constant, so that exponentially fast we will
always have

lim
t→+∞

f(x, t) = c0

√
h(x)G0(x) = h(x) , (2.16)

namely: the general solution will always relax in time
toward the invariant solution h(x).

3. Fokker–Planck equations for stochastic
mechanics

We will now examine the consequences of the pre-
vious remarks on the evolution equations of the SM,
and for the sake of brevity in the presentation of the
notation we will take a shortcut borrowed from the
SIQM which, as it is well known, is formally ruled
by the same differential equations as the SM. Let us
consider the (one dimensional) Schrödinger equation

i}∂tp = Ĥp = − }
2

2m
∂2
xp + Vp (3.1)

for a time-independent potential V (x) which gives
rise to a purely discrete spectrum and bound, normal-
izable states, and let us use the following notations for
stationary states, eigenvalues and eigenfunctions,

pn(x, t) = φn(x) e−iEnt/},

Ĥφn = − }
2

2m
φ′′n + Vφn = Enφn. (3.2)

For later convenience we will also introduce the con-
stant

D =
}

2m
(3.3)

which will play the role of a diffusion coefficient when
we will associate a stochastic process to every quan-
tum state. As a consequence the previous eigenvalue
equation can be recast in the following form,

Dφ′′n =
V − En
}

φn . (3.4)

It is also well-known that for these stationary states
the pdf is the time independent, real function

fn(x) = |pn(x, t)|2 = φ2
n(x) . (3.5)

With the ansatz usual in SIQM (see for example Ref.
[7])

p(x, t) = R(x, t) eiS(x,t)/} (3.6)

where R and S are real functions, the function R2 =
|p |2 turns out to be a particular solution of a Fokker1
Planck equation (with constant diffusion coefficient
and time-independent forward velocity field) of the
form

∂tf = D∂2
xf − ∂x(vf) = ∂x(D∂xf − vf) , (3.7)
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where

v(x, t) =
1
m
∂xS +

}
2m

∂x(lnR2) . (3.8)

Remark that the explicit dependence of v on the form
of R clearly indicates that to have a solution of (3.7)
which makes quantum sense we must pick up only one,
suitable, particular solution. In fact in the stochastic
mechanical framework the system is ruled not only
by the Fokker1Planck equation (3.7), but also by the
second, dynamical equation

∂tS +
(∂xS)2

2m
+ V − }2

2m
∂2
xR

R
= 0 (3.9)

namely the so-called Hamilton1Jacobi1Madelung
equation deduced by separating the real and imag-
inary parts of (3.1) (see Ref. [7]). The analogy
between (3.7) and the Fokker1Planck equation (2.1)
is more than formal in the sense that the SM (see Ref.
[2]) shows how to recover both the Eqs. (3.7) and
(3.9) (namely the Schrödinger equation (3.1)) in a
classical, dynamical stochastic context. This dynam-
ics can also be connected to a stochastic variational
principle (see Ref. [3]) which, as usual in the dy-
namical theories, selects the actual trajectories of the
system among all the virtually possible evolutions. In
particular from this standpoint the velocity field v is
not a given field, but becomes a dynamical variable
to be determined by the equations of the system.

We will now fix our attention on a given stationary
solution pn(x, t) and we will remark that in this case
we have

S(x, t) = −Ent , R(x, t) = φn(x) , (3.10)

so that for our state the velocity field is

vn(x) = 2D
φ′n(x)
φn(x)

. (3.11)

This means that now vn is time-independent and it pos-
sibly presents singularities in the zeros (nodes) of the
eigenfunction. Since the nth eigenfunction of a quan-
tum system with bound states has exactly n simple
nodes (see Ref. [11] p. 138) that we will indicate
with x1, . . . , xn, the coefficients of the Fokker1Planck
equation (3.7) are not defined in these n points and
we will be obliged to solve it in separate intervals by
imposing the right boundary conditions connecting the

different sections. In fact these singularities effectively
separate the real axis in n + 1 sub-intervals with im-
penetrable (to the probability current) walls. Hence
the process will not have a unique invariant measure
and will never cross the boundaries fixed by the sin-
gularities of v(x): if we start in one of the intervals
in which the axis is so divided we will always remain
there (see Ref. [13]).

As a consequence we must think the normalization
integral (2.2) (with a = −∞ and b = +∞) as the
sum of n+1 integrals over the sub-intervals [xk, xk+1]
with k = 0, 1, . . . , n (where we understand, to unify
the notation, that x0 = −∞ and xn+1 = +∞). Hence
for n > 1 we will be obliged to solve Eq. (3.7) in
every interval [xk, xk+1] by requiring that the integrals

xk+1∫
xk

f(x, t) dx (3.12)

be kept at a constant value for t > t0: this value is
not, in general, equal to one (only the sum of these
n + 1 integrals amounts to one) and, since the sep-
arate intervals can not communicate, it will be fixed
by the choice of the initial conditions. The boundary
conditions associated to (3.7) are hence imposed by
the conservation of the probability in [xk, xk+1] and
that means the vanishing of the probability current at
the end points of the interval,

[D∂xf − vf]xk,xk+1 = 0 , t > t0 . (3.13)

To have a particular solution we must moreover spec-
ify the initial conditions: in particular we will be inter-
ested in the transition pdf p(x, t|x0, t0), which is sin-
gled out by the initial condition (2.4), since (see Ref.
[1]) the asymptotic approximation in L1 among so-
lutions of (3.7) is ruled by the asymptotic behaviour
of p(x, t|x0, t0) through the Chapman1Kolmogorov
equation

f(x, t) =

+∞∫
−∞

p(x, t|y, t0)f(y, t+0 ) dy . (3.14)

It is clear at this point that in every interval [xk, xk+1]
(both finite or infinite) we can solve Eq. (3.7) along
the guidelines sketched in Section 1 by keeping in
mind that in [xk, xk+1] we already know the invariant,
time-independent solution φ2

n(x) (or, more precisely,
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its restriction to the said interval) which is never zero
in this interval with the exception of the extremes xk
and xk+1. Hence, as we have seen in the general case,
with the position

f(x, t) = φn(x)g(x, t) (3.15)

we can reduce (3.7) to the form

∂tg = Lng, (3.16)

where Ln is now the self-adjoint operator defined on
[xk, xk+1] by

Lnϕ(x) =
d

dx

[
p(x)

dϕ(x)
dx

]
−qn(x)ϕ(x), (3.17)

where we have now

p(x) = D > 0 , qn(x) =
v2
n(x)
4D

+
v′n(x)

2
. (3.18)

To solve (3.16) it is in general advisable to separate
the variables, we then immediately have γ(t) = e−λt

while G must be a solution of the Sturm1Liouville
problem associated to the equation

LnG(x) + λG(x) = 0 (3.19)

with the boundary conditions

[2DG′(x)− vn(x)G(x)]xk,xk+1 = 0 . (3.20)

The general behaviour of the solutions obtained as ex-
pansions in the system of the eigenfunctions of (3.19)
has already been discussed in Section 1.

4. Harmonic oscillator states

To see in an explicit way how the pdf’s of SM
evolve, let us consider now in detail the particular ex-
ample of a quantum harmonic oscillator (HO) char-
acterized by the potential

V (x) =
m

2
ω2x2 . (4.1)

It is well-known that its eigenvalues are

En = }ω
(
n + 1

2

)
, n = 0, 1, 2 . . . (4.2)

while, with the notation

σ2
0 =

}
2mω

, (4.3)

the eigenfunctions are

φn(x) =
1√

σ0
√

2π2nn!
e−x

2/4σ2
0 Hn

(
x

σ0

√
2

)
,

(4.4)

where Hn are the Hermite polynomials. The corre-
sponding velocity fields are easily calculated and are
for example

v0(x) = −ωx ,

v1(x) = 2
ωσ2

0

x
− ωx ,

v2(x) = 4ωσ2
0

x

x2 − σ2
0

− ωx , (4.5)

with singularities in the zeros xk of the Hermite poly-
nomials. If we now keep the form of the velocity fields
fixed we can consider (3.7) as an ordinary Fokker1
Planck equation for a diffusion process and solve it
to see the approach to the equilibrium of the general
solutions. When n = 0 Eq. (3.7) takes the form

∂tf = ωσ2
0∂

2
xf + ωx∂xf + ωf (4.6)

and the fundamental solution turns out to be the
Ornstein1Uhlenbeck transition pdf

p(x, t|x0, t0) =
1

σ(t)
√

2π
e−[x−α(t)]2/2σ2(t) ,

(t > t0) (4.7)

where we used the notation

α(t) = x0 e−ω(t−t0) ,

σ2(t) = σ2
0[1− e−2ω(t−t0)] (t > t0) . (4.8)

The stationary Markov process associated to the tran-
sition pdf (3.1) is selected by the invariant pdf

f(x) =
1

σ0

√
2π

e−x
2/2σ2

0 (4.9)

which is also the asymptotic pdf for every initial con-
dition when the evolution is ruled by (4.6) (see for
example Ref. [1]) so that the invariant distribution
plays also the role of the limit distribution. It is re-
markable that this invariant pdf also coincides with the
quantum stationary pdf φ2

0 = |p0|2; in other words, the
process associated by the SM to the ground state of a
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quantum HO is nothing but the stationary Ornstein1
Uhlenbeck process.

For n > 1 the solutions of (3.7) are no more so
easy to find and, as discussed in the previous section,
we will have to solve the eigenvalue problem (3.19)
which, with ε = }λ, can be written as

− }
2

2m
G′′(x) +

(
m

2
ω2x2 − }ω 2n+ 1

2

)
G(x)

= εG(x) (4.10)

in every interval [xk, xk+1] with, k = 0, 1, . . . , n, be-
tween two subsequent singularities of the vn field. The
boundary conditions at the endpoints of these intervals
are deduced from (3.13)1(3.15) and are

[φnG′ − φ′nG]xk,xk+1 = 0 (4.11)

and since φn (but not φ′n) vanishes in xk, xk+1, the
boundary conditions to impose are

G(xk) = G(xk+1) = 0 (4.12)

where it is understood that for the conditions in x0 and
xn+1 we respectively mean

lim
x→−∞

G(x) = 0 , lim
x→+∞

G(x) = 0 . (4.13)

It is also useful at this point to give the eigenvalue
problem in an nondimensional form by using the new
nondimensional variable x/σ0 (which will still be
called x) and the eigenvalue µ = λ/ω = ε/}ω. In this
way Eq. (4.10) with the conditions (4.12) becomes

y′′(x)−
(
x2

4
− 2n+ 1

2
− µ

)
y(x) = 0,

y(xk) = y(xk+1) = 0 (4.14)

where x, xk, xk+1 are now nondimensional variables. If
µm and ym(x) are the eigenvalues and eigenfunctions
of (4.14), the general solution of the corresponding
Fokker1Planck equation (3.7) will be

f(x, t) =
∞∑
m=0

cm e−µmωtφn(x)ym

(
x

σ0

)
. (4.15)

Of course the values of the coefficients cm will be fixed
by the initial conditions and by the obvious require-
ments that f(x, t) must be non-negative and normal-

ized (on the whole x axis) along all its evolution. Two
linearly independent solutions of (4.14) are

y(1) = e−x
2/4M

(
−µ+ n

2
,

1
2

;
x2

2

)
,

y(2) = x e−x
2/4M

(
−µ+ n− 1

2
,

3
2

;
x2

2

)
, (4.16)

where M(a, b; z) are the confluent hypergeometric
functions.

We consider now the case n = 1 (x0 = −∞, x1 = 0
and x2 = +∞) so that (4.14) will have to be solved
separately for x 6 0 and for x > 0 with the boundary
conditions y(0) = 0 and

lim
x→−∞

y(x) = lim
x→+∞

y(x) = 0 . (4.17)

The eigenvalues are µm = 2m with m = 0, 1, . . . and
the complete set of eigenfunctions is given by

ym(x) = x e−x
2/4M

(
−m, 3

2
;
x2

2

)
=

(−1)mm!√
2(2m+ 1)!

e−x
2/4H2m+1

(
x√
2

)
. (4.18)

In fact this is the form of the eigenfunctions for both
x > 0 and x 6 0. In particular it is easy to see that

y0(x) = x e−x
2/4 (4.19)

and its relation with the quantum eigenfunction φ1 is

φ1(x) =
y0(x/σ0)√

σ0

√
2
, (4.20)

and the general solution of (3.7) with v = v1 is

f(x, t) =
∞∑
m=0

cm e−2mω(t−t0)φ1(x)ym(x/σ0) .

(4.21)

To determine the cm’s we must now impose an initial
condition: in particular, the initial condition for the
transition pdf’s requires

cm =
2√

σ0

√
2π

(2m+ 1)!!
(2m)!!

ym(x0/σ0)
y0(x0/σ0)

. (4.22)

As a consequence we will have
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p(x, t|x0, t0) =
σ2

0φ
2
1(x)

xx0

∞∑
m=0

e−2mω(t−t0)

22m(2m+ 1)!

×H2m+1

(
x

σ0

√
2

)
H2m+1

(
x0

σ0

√
2

)
. (4.23)

A long calculation shows that this series can be
summed up to

p(x, t|x0, t0)

=
x

α(t)
e−[x−α(t)]2/2σ2(t) − e−[x+α(t)]2/2σ2(t)

σ(t)
√

2π
(4.24)

where α(t) and σ2(t) are defined in (4.8). It must
be remarked once more that the form (4.24) of the
transition pdf must be considered as restricted to x > 0
when x0 > 0 and to x 6 0 when x0 < 0, and that only
on these intervals it is suitably normalized. In order to
take into account at once both these possibilities we
can also introduce the Heavyside function Θ(x) so
that for every x0 6= 0 we will have

p(x, t|x0, t0) = Θ(xx0)
x

α(t)

× e−[x−α(t)]2/2σ2(t) − e−[x+α(t)]2/2σ2(t)

σ(t)
√

2π
. (4.25)

This completely solves the problem for n = 1 since
from (3.14) we can now deduce also the evolution of
every other initial pdf. In particular it can be shown
that

lim
t→+∞

p(x, t|x0, t0) = 2Θ(xx0)
x2 e−x

2/2σ2
0

σ3
0

√
2π

= 2Θ(xx0)φ2
1(x) , (4.26)

and hence, if f(x, t+0 ) = f0(x) is the initial pdf, we
have for t > t0

lim
t→+∞

f(x, t) = lim
t→+∞

+∞∫
−∞

p(x, t|y, t0)f0(y) dy

= 2φ2
1(x)

+∞∫
−∞

Θ(xy)f0(y) dy = Γ(q; x)φ2
1(x) ,

(4.27)

where we have defined the function

Γ(q; x) = qΘ(x) + (2− q)Θ(−x) ,

q = 2

+∞∫
0

f0(y) dy . (4.28)

Remark that when q = 1 (namely when the initial
probability is equally shared on the two real half-axis)
we have Γ(1; x) = 1 and the asymptotical pdf coin-
cides with the quantum stationary pdf φ2

1(x); if on the
other hand q 6= 1 the asymptotical pdf has the same
shape of φ2

1(x) but with different weights on the two
half-axis.

If finally n = 2 we have x0 = −∞, x1 = −1, x2 =
1 and x3 = +∞, and Eq. (4.14) must be solved in
the three intervals (−∞,−1], [−1, 1] and [1,+∞).
The two linearly independent solutions are now

y(1) = e−x
2/4M

(
−µ+ 2

2
,

1
2

;
x2

2

)
,

y(2) = x e−x
2/4M

(
−µ+ 1

2
,

3
2

;
x2

2

)
, (4.29)

and it is easy to verify that µ = 0 is an eigenvalue for
all the three intervals with eigenfunction

y0(x) = e−x
2/4M

(
−1,

1
2

;
x2

2

)
= e−x

2/4H2

(
x√
2

)
= 2 e−x

2/4(x2 − 1) (4.30)

so that the relation with the quantum eigenfunction is

φ2(x) =
y0(x/σ0)√

8σ0
√

2π
. (4.31)

As for the other eigenvalues and eigenfunction they
are not too easy to find so that a complete analysis of
this case has still to be elaborated. A few indications
can be obtained numerically: for example it can be
shown that, beyondµ0 = 0, the first eigenvalues in the
interval [−1, 1] can be calculated as the first values
such that

M

(
−µ+ 1

2
,

3
2

;
1
2

)
= 0 (4.32)

and are µ1 ∼ 7.44, µ2 ∼ 37.06, µ3 ∼ 86.41. Also
for the unbounded interval [1,+∞) (the analysis is
similar for (−∞,−1]) the eigenvalues are derivable
only numerically.
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5. Conclusions

We want to conclude this Letter by remarking
that the processes discussed in the previous sections,
namely the processes solutions of (3.7) but not as-
sociated to quantum mechanical states solutions of
(3.1) (in other words, the processes that do not sat-
isfy either the stochastic variational principle [3] or
the Nelson dynamical equation [2]), are not without
a deep relation with the quantum mechanics. In fact
we will show here that to every solution f(x, t) of a
Fokker1Planck equation (2.1), with given v(x) and
constant diffusion coefficient (3.3), it is possible to
associate the wave function of a quantum system with
a suitable time-dependent potential. This means in
practice that even the virtual (non-optimal) processes
discussed in this Letter can be associated to proper
quantum states, namely can be made optimal albeit
with a potential which is different from the V (x) of
(3.1).

Let us take a solution f(x, t) of the Fokker1Planck
equation (2.1), with given v(x) and constant diffusion
coefficient (3.3): if we define the functions R(x, t)
and W(x) by

R(x, t) =
√
f(x, t) , v(x) = W ′(x) , (5.1)

and we remember that [2] the following relation
holds,

mv = ∂x

(
S +

}
2

lnR2

)
= ∂x

(
S +

}
2

lnf

)
(5.2)

if S(x, t) is supposed to be the phase of a wave func-
tion as in (3.6), we immediately get

S(x, t) = mW(x)− }
2

lnf(x, t)− θ(t) (5.3)

which allows us to determine S from f and v (namely
W) up to an arbitrary function of the time θ(t). How-
ever, in order that the wave function (3.6) with our
R and S be a solution of a Schrödinger equation, we
must be also sure that the Hamilton1Jacobi1Madelung
equation (3.9) be satisfied. Since S and R are now
fixed, this Eq. (3.9) must be considered as a relation
defining the new potential which, after a short calcu-
lation, becomes

V (x, t) =
}2

2m
∂2
x lnf

+
}
2

(∂t lnf + v∂x lnf)− mv2

2
+ θ̇ . (5.4)

Of course if we start with a quantum wave function
for a given potential and if we pick up as a solution of
(3.7) exactly f = R2 formula (5.4) will correctly give
back the initial potential, as can be seen for the ground
state and the first excited state of the harmonic oscil-
lator which (by choosing respectively θ(t) = }ωt/2
and θ(t) = 3}ωt/2) give as result the usual harmonic
potential (3.1).

On the other hand let us consider now the (non-
stationary) fundamental solution (4.7) associated to
the velocity field v0(x) of (4.5) for the case n = 0 of
the harmonic oscillator (we put t0 = 0 to simplify the
notation): a short calculation shows that, by choosing

θ̇(t) =
}ω
2

(
2σ2

0

σ2(t)
− 1

)
=
}ω
2

1
tanhωt

→ }ω
2

(t→ +∞) , (5.5)

we get the time-dependent potential

V (x, t) =
}ω
2

[
x− α(t)
σ(t)

]2
σ2

0

σ2(t)
− mω2x2

2

→ mω2x2

2
(t→ +∞) . (5.6)

Of course the fact that for t → +∞ we recover the
harmonic potential is associated to the fact, already
noted, that the usual quantum pdf φ2

0(x) is also the
limit distribution for every initial condition. As for the
case n = 1, with v1(x) from (4.5) and the transition
probability (4.25) as given non-stationary solution,
the calculations are lengthier. However, if we define

F(x, t) =
e−[x−α(t)]2/2σ2(t)

σ(t)
√

2π
,

G(x, t) =
e−[x+α(t)]2/2σ2(t)

σ(t)
√

2π
, (5.7)

T

[
xα(t)
σ2(t)

]
=
xα(t)
σ2(t)

F(x, t) + G(x, t)
F(x, t)− G(x, t)

,

T(x) =
x

tanhx
, (5.8)

and if we choose
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θ̇(t) =
}ω
2

(
4σ2

0

σ2(t)
− 2σ2

0α
2(t)

σ4(t)
− 1

)
→ 3

2
}ω (t→ +∞) (5.9)

we have as time dependent potential for every x 6= 0

V (x, t) =
mω2x2

2

(
2σ4

0

σ4
− 1

)
+ }ω

[
1− σ2

0

σ2
T
(xα
σ2

)]
− }2

4mx2

[
1− T

(xα
σ2

)]
→ mω2x2

2
(t→ +∞) .

In this case the asymptotic potential is the usual har-
monic potential, but we must consider it separately on
the positive and negative x semi axis since in the point
x = 0 a singular behaviour would show up. This means
that, also if asymptotically we recover the right poten-
tial, this will be associated with new boundary condi-
tions in x = 0 since we will be obliged to keep the sys-
tem bounded on the positive (for example) semiaxis.

These simple examples show that we can always
design a suitable (time dependent) potential which
realizes arbitrary diffusive evolutions of classical sys-
tems. This has more than a purely formal interest since
it can allow one, for instance, to produce a quantum
evolution between two stationary states of a system
by means of a deformation of the original potential.
Since also the measurement processes (which can not
be described along a time evolution in the usual for-
malism of quantum mechanics) can be considered as
a transition between two states, these techniques seem
to indicate a way to simulate a continuous reduction
of a wave packet controlled by a time dependent po-
tential. A subsequent paper will be devoted to a dis-
cussion of this point which, however, will require a
generalization of the results on the solutions of the
Fokker1Planck equation to the case of time dependent
velocity fields since in this case we will have to do
with non-stationary quantum wave functions.
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