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Stochastic collective dynamics of charged-particle beams in the stability regime
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We introduce a description of the collective transverse dynamics of chfogewn beams in the stability
regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described
by time-reversal invariant diffusion processes deduced by stochastic variational pririsiplesn processes
By general arguments, we show that the diffusion coefficient, expressed in units of length, is gWngiThy
whereN is the number of particles in the beam andthe Compton wavelength of a single constituent. This
diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the
stochastic dynamics can be easily recast in the form of a 8itger equation, with the unit of emittance
replacing the Planck action constant. This fact provides a natural connection to the so-called “quantum-like
approaches” to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to
model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the
quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the
beam, either together or independently.
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I. INTRODUCTION erators by standard classical probabilistic technigl&s
Other, more recent, approaches are instead based on suitable
Most of the studies on the dynamics of charged beams igoarse grainings of the constitutive kinetic equations, and
particle accelerators are concerned with classical phenomenigld Schralinger-like equations, with a thermal unit of emit-
of nonlinear resonances as isolated sources of unstable b&NCe replacing the Planck action consténuantumlike ap-
haviors. Following this line of thought, a general understandprolzri]ctrr]:iasS p;%:re\?vr: f?r};?%rpgslléégkplonclassica] mechanical
Ik?zgs cgegssrzgal]gg?ﬁ:gf::] tp;g:;fﬁ ls_ieosw'gvgfr:ﬁéetrzz(;ilee::éorgrite_ria of stability_in order to establish a connectic_m with the
o N ) - statistical fluctuations affecting the beam dynamics. In par-
coherent oscillations of the beam density and profile requir

b lained hani t local lai jcular we deduce a phenomenological expression of the
to be explained, some mechanism of local correlation an@paracteristic unit of actiofemittance which quantifies the

loss of statistical independence. This implies the need to tregfmqunt of these fluctuations and which is ultimately related
all the interactions as a whole, and to introduce an effectivgy the microscopic scales and to the number of particles.

collective dynamics. Moreover, the overall interactions be-gxplicitly, the resulting expression for the diffusion coeffi-
tween charged particles and machine elements are realjent £ in units of length(i.e., the transverse unit of emit-
nonclassical in the sense that out of the many sources @fnce turns out to depend both on the fundamental Compton
noise that are present, almost all are mediated by fundamemavelength\ . and on the numbeN of particles constituting

tal quantum processes of emission and absorption of phahe beam through the simple, but nontrivial, formufa
tons. Therefore the collective effective descriptions of these= )\C\/N, Thus motivated, we model the collective beam dy-
processes could contain, in principle, some quantunmamics by introducing suitable stochastic processes with
signature[2]. long-range coherent correlations.

Starting from the above considerations, different ap- This kind of analysis considers the regime of stability of
proaches to the collective dynamics of charged beams hawsur dynamical systems. In this framework we study the in-
been developed. Some of them, relying on the Fokker+termediate, but physically relevant, regime of beam dynam-
Planck equation and the statistical effects on the dynamics a€s in which a balance is realized, on the average, between
colliding beams, have become an established reference the energy dissipation and the external rf energy pumping.
treating the sources of noise and dissipation in particle accelFherefore our approach differs crucially from the previous

ones, based only on the Fokker—Planck equation, since in
this regime the overall classical beam dynamics can be con-
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and extensively studied in the context of Nelson stochastiabove, some examples of controlled beam evolution in the
mechanicqd5]. They are by now a well-understood subject, quadrupole approximation to the beam-field interaction. Fi-
both from the physical and mathematical point of view. Fornally in Sec. VI conclusions follow.

instance, among the possible physical applications of this

modeling it is worth noticing the recovering of the Titius— ||. COLLECTIVE BEHAVIOR OF DYNAMICAL SYSTEMS

Bode law for planet orbits in the solar system obtained in IN THE STABILITY REGIME

Ref. [6]. The study of these dynamical systems is based on ) , s
an extension of the variational principles of classical me- Eﬁgctlve wave equations of thg Schiinger f.orm., but
chanics to include the case of a diffusive kinematics replacgssomated to a nonfundamental unit of aplﬂtbmt is, differ-
ing the deterministic ong7]. This is remarkable since varia- ent from the Planck constgnthave been introduced to de-

tional principles are a very powerful tool in the description scribe the collective dynamics for classical physical systems

of physical systems. In the present case the stochastic variﬁ'—ith many degrees of freedom, including optical fibge$

: o : ; : d charged particle beams in acceleraf@rs The basic
tional principle yields two coupled hydrodynamic equatlons,an ) >
respectively for the density and for the forward velocity feature common to all these systems is their high degree of

field, which provide an effective description of the transverseCOherence’ which allows one to introduce an effective de-

oscillations of the beam density in the regime of stability. scription in terms of collective degrees of freedom. These

On the other hand it is also interesting to remark that thdepresent the cooperative dynamical behavior of the many

two nonlinear coupled hydrodynamic equations of the stoconstituents of the system. This collective motion is summa-

chastic mechanics are equivalent to one linear equation fﬁed by theajeffe'cttwe quuatéﬁns f?r t.?e f.ccl)cr;flguratlofml
the form of a Schrdinger equation, with the Planck action phase-spagedensity and for the velocity fields.

constant replaced by the diffusion coefficient of the random Here we specialize for the dynamics of charged beams a

kinematics. This fact connects our approach to the quantungeneral. scheme pfe."'ous'y mtroducgd for the study .Of the
like approaches to beam dynamics. Moreover, since this d dimensions of St"%b"'ty for macroscopic aqd MEesoScopic Sys-
scription involves not only a Fokker—Planck equation but gms[lO]. The'u!t|mate goal of the gnaIyS|s of stability is to
also a dynamical prescription connected with an external po,?m.glf3 out a(tmlrllmallz ;Jhn't fOf aCt'??hm _tetrms ?.f the cZar?(;]
tential, it allows one to implement the powerful techniques enstic constants, of the form of Ihe interaction, and of he
of active control for the dynamics of the beam. This is atlmear dimensions of the considered system. This analysis
variance with the case of a purely dissipative Fokker—Planci/ll allow us to relate the parameters associated to the col-
dynamics which only describes a passiireeversiblg evo- lective degrees of freedom with the characteristics of the

lution of the state, and where you have no control whatso-micrOSCOpiC co_nstituents. In_th_e Appe_ndix we summarize the
ever on the velociity field procedure, while here we will just quickly quote the results.

In fact, on the basis of the description of the beam collec- .V_Ve mtrod_uce a unit of actiorr (which will turn out to be
tive dynamics in terms of the hydrodynamic equations ofm'n'mal) defined by
Nelson stochastic mechanics with the proper diffusion coef- ~,
ficient, we will show how we can implement techniques of a=mo=T, @
control already developed in the general context of stochastic _
dynamical systemg8]. These technigues exploit the transi- wherev denotes the characteristic mean velocity per particle
tion probabilities, a fundamental object in the theory of dif- in the system, whiler is a characteristic microscopic time
fusion processes, in order to drive the beam toward a specwhose size must be determined self-consistently. Imposing
fied and controlled evolution. In particular in our suitable criteria of stability, we obtain as a first requl€]
quantumlike approach we construct time-dependent poterthat the order of magnitude of this small timen (1) must
tials which drive the system toward final states characterizetie given by
by an improved collimation. At the same time, and indepen-
dently, also the transverse betatron oscillations can be con- T
trolled and varied. T= N 2

The paper is organized as follows: In Sec. Il we exploit
some basic criteria of mechanical stability in order to supply . o . .
a phenomenological support for our fluctuative approach te{vhereTls the macroscopic time scale afsomated to the entire
collective dynamics of beams in particle accelerators. In parsystem, and defined through the relatior R/7; whereR
ticular these criteria will allow one to connect tifrans-  denotes the global length scale of the system. Therefbre,
vers@ emittance to the characteristic microscopic scale andas the meaning of a characteristic traveling time for a par-
to the total number of the particles in a bunch. In Sec. Ill weticle inside the system. Moreover, we obtain for {meini-
introduce a time-reversal invariant, stochastic description offal) unit of actione the general expression
the collective dynamics of the beam in the stability regime.
The (hydrodynamig equations of motion for the density and a=m"R¥%JF(R), )
the profile of a bunch are here derived from a stochastic
variational principle. In Sec. IV we sketch the general struc-whereF(R) denotes the value of the force ruling the system,
ture of controlled dynamics for quantum and quantumlikecomputed on a distance scale of the order of magnitude of
systems. In Sec. V we explicitly construct, as mentionedhe global scale of the systejh0].
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It must be noted that the relatiq®) has been originally tance. The emittance is a scale of action that measures the
conjectured by F. Calogefd 1] in a different context. It is spread of the bunch in phase space. It can also be defined as
remarkable that, when tested in the range of all known stabla unit of equivalent temperature or, in configuration space, as
macroscopic and mesoscopic aggregates of particles, the ra-unit of length. It is clear that this quantity must depend on
lation (3) always yields the order of magnitude of the Planckthe characteristic scales and on the total number of the el-
action constanftl0]. This is the reason why we identityas  ementary components in the system. In the framework of our
a minimal unit of action. It was not obviously trivial that scheme we are able to provide, at least in order of magni-
from a purely mechanical criteria of stability the fundamen-tude, a quantitative estimate of this dependence.
tal microscopic scale of action could emerge. Moreover this We proceed as follows: in the regime of stability and of
fact, together with the observation that we have selfthermal equilibrium, that we explicitly consider, the emit-
consistently obtained the expressi@) for the microscopic tance can be expressed as a unit of equivalent thermal action.
time 7, strongly hints to two further conclusions. We denote byl the equivalent unit of equivalent temperature

First, the factor 1yN in the scaling relatiorf2) typically ~ of the system(namely the unit of energy divided by the
hints to the presence of collective fluctuations, whose charBoltzmann constankg), and we define the characteristic
acteristic scale of time is given by This is not a surprising thermal unit of action associated to the systenkgEZ, the
fact due to the large number of constituents in the systenproduct of the unit of thermal energy and of the characteristic
Second, the universal coincidence of the minimal unit ofglobal time. In our scheme, whea=#, the time 7 con-
action with the Planck action constant strongly points to thenected to the microscopic scales can also be identified with
fact that these collective fluctuations are ultimately con-the usual scale of time associated to a microscopic system at
nected with the fundamental microscopic scales. It is wortithe equilibrium temperatur®; hence
noting that, as we will show later, this fact is not connected

to complicated or mysterious effects of direct quantum ori- _h
. e ; ) : T=— (5)
gin, but it simply takes into account the constraint given by kgT
the characteristic spatial extension of the microscopic con-
stituents. Using relation(2) we finally obtain the equivalent thermal

In the specific instance of charged beams we first verifyunit of action, the transverse emittaneg in terms of the
the numerical coincidence af with the Planck action con- minimal actions and of the total number of particls:
stant. We then single out the expression of tttansversg
emittance in terms of the microscopic minimal length scale keT7T
and of the number of elementary constituents. This second = on =hi\N.
step of our analysis is performed in the particular instance of
proton beams since it would be impossible to find a classical Up to now our results hold both for protons and electrons.
characteristic length extension for the electron. However, the previous relation allows a more direct check if

In the first step we consider a representative prgedec-  written in terms of characteristic units of length. We know,
tron), in the reference frame comoving with the bunch. Con-however, that electrons do not possess a finite characteristic
finement and stability for the transverse motion of the bunchiength extension, while for protons we know that such a
arise from the many interactions both among its constituentnear extension coincides, in order of magnitude, with the
and between the same constituents and the external focusi@mpton wavelength. Thus, specializing to protons, we can
electromagnetic fields. It is well-known that the net effectshow that, at least in order of magnitude, the numerical value
can be, in the first quadrupole approximation, summarize@f the transverse dimension of the bunch is
by a harmonic force of modulus(r)=Kr, whereK is the

(6)

effective phenomenological elastic constant associated to the € \/—
transverse dynamics. Then ES) yields ﬁ;:)‘c N, @)
a=mY?R?K12, (4)  where the Compton wavelengih=#%/mc (m is the proton

mass anc is the velocity of lighj.

We can now estimate by introducing, besides the protonor ~ We can now interpret Eq(7) in the following, simple
the electron mass, the experimental values for the transvergeay: The(transversemean dimension of the beam at equi-
linear dimensiorR and for the effective elastic constaikit  librium is connected to the characteristic length sogleof
We have[1] K=10"' Nm™! (transverse oscillations of its microscopic constituents through the scaling factbt.
protons at Heraand K=10"1* Nm™?! (transverse oscilla- This last peculiar form, in turn, suggests a fluctuation mecha-
tions of electrons in linear colliderswhile R=10"7 m in  nism which stabilizes the system. As previously anticipated,
both experimental situations. As a consequence, in botthe microscopic scales influence the system only through the
cases Eq(4) yields a=h. We have therefore reached our minimal length scale, i.e., the length extension of the el-
first goal. ementary constituents, without direct connections to more

We now move to the second step to single out the paramnvolved quantum effects.
eter associated with the stability of the system at the mesos- Inserting in Eq(7) the numerical data of the proton wave-
copic scale in the case of charged beams. This parameterlsngth and of the number of protons in typical accelerators
given in terms of a characteristic unit @ransversgpemit- [1], we obtain the experimental order of magnitude of the
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transverse dimension of the bunch™7610°8 m [10]. On  of two coupled hydrodynamic equations describing the evo-
the basis of our phenomenological scheme, we introduce ifution in time of the beam density and of the velocity field of
the next section a quantitative stochastic description of bearthe beam profile. In the following we give a brief sketch of
dynamics in the stability regime. In the following, consistentthe stochastic variational method and we introduce the
with the analysis carried out so far, we take as diffusioncoupled hydrodynamic equations, referring the reader for de-
coefficient, expressed in unit of length, for the stochastidails to Ref.[7].

kinematics the quantitytransverse emittante Given the stochastic differential equati@), one can as-
sociate to the diffusion procegfs) a probability density

__ € :E\/ﬁ ®) p(r,s), wherer=(x,y) denotes the transverse coordinates
" 2mc 2V (the radial coordinate and the vertical coordinatesides

the forward drift v(,(r,s), we can define a backward
where the factor 2, which does not affect the order of magdrift v_,(r,s)=v(r,s)—2&(Vp)(r,s)/p(r,s), with V
nitude, is introduced for later computational convenience. =(4,,d,). Itis useful to introduce two new variablegyr,s)
andu(r,s), respectively, the current and the osmotic velocity
Ill. STOCHASTIC COLLECTIVE DYNAMICS fields, defined as
IN THE STABILITY REGIME
o _ | | 0 R/ P C5 T © WAL T
In this section we model the spatial fluctuatidassoci- 2 2 p
ated to the diffusion coefficieri8)] via the random kinemat-
ics performed by a representative particle that oscillates, in @he velocities in Eq(10) have a transparent physical mean-
reference frame comoving with the bunch, around the closethg: the current velocityw represents the global velocity of
ideal orbit. This representative particle is identified with thethe density profile, being the stochastic generalization of the
collective degree of freedom by letting the associated probvelocity field of a classical perfect fluid. On the other hand
ability density coincide with the real density of particles in the osmotic velocityu is clearly of intrinsic stochastic na-
the bunch. This last step is achieved by suitably rescaling thaure, for it is a measure of the nondifferentiability of the
normalization of the total number of particles. Before pro-stochastic trajectories, and it is related to the spatial varia-
ceeding, we establish the notations according to the standatibns of the density.
conventions. In order to establish the stochastic generalization of the
We denoter=(x,y) a point in the transverse section or- least action principle, one introduces a mean classical action
thogonal to the beam direction. We then measure the time im strict analogy to the classical deterministic action. The
unit of length through the arclengthalong the design orbit main difficulty in the stochastic case is due to the nondiffer-
(curvilinear coordinate We now consider the(two-  entiable character of the sample paths of a diffusion process

dimensional diffusion processj(s) which describes the mo- which does not allow one to define the time derivatiyef
tion of the representative particle and whose probability denthe process. Such a definition is possible only in an average

sity coincides with the particle density of the bunch in thesense trough a suitable limit on expectations. The stochastic
transverse direction. The evolution in the “times’of the  action is then defined 4§]

procesg is described by the Ttetochastic differential equa-

tion s1 m/(Aq 2
A(sp,s1;9(+))= lim E[E(—) =V(aq)

ds,
da(s)=V(s(a(s), S)ds+ VEdw(s), © % asmgr 214

(11)

wherev. is the (forward drift, dw(s)=w(s+ds)—w(s) _ ,
is the 5-correlated time increment of the standard WienerVhereE(-)=Jdr(-)p(r,s) denotes the expectation of func-

noise, and, as already anticipated, the diffusion coefficient i{§0nS of the process with respect to the probability density,

the characteristic transverse emittance. Equat@rdefines denotes an external potential, andq(s)=q(s+As)

the random kinematics performed by the collective degree of d(S)- It can be shown that the mean actidri) associated

freedom. to the diffusive kinematic$9) can be recast in the following
In the stability regime the energy lost by photonic emis-Particularly appealing Eulerian hydrodynamic fof6i:

sions is regained in the rf cavities, and on average the dy- . m

namics is time-reversal invariant. We are thus in a situation . N 2_ .2

in which there are both a random kinematics and time rever- *(%0+S1 V)= LO dsf drj 5 (v~ 1) V(r)}p(r,s),

sal invariance. Therefore the dynamics must be indepen- (12

dently added to the kinematic¢at variance with the purely

dissipative Fokker—Planck cgsby introducing a suitable wherev andu are defined in equatioflL0). The stochastic

stochastic least action principl&]. The latter is obtained as variational principle now follows by imposing the stationar-

a generalization of the variational principle of classical me-ity of the stochastic actiondA=0) under smooth and inde-

chanics, by replacing the classical deterministic kinematicspendent variation$p of the density, andSv of the current

dg.(s)=v¢(s)ds, with the random diffusive kinematics of velocity, with vanishing boundary conditions at the initial

Eq. (9). The equations of motion thus obtained take the formand final times.
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As a first consequence we get that the current velocity hamg from a different point of view, leads to a description
a gradient form: formally analogous to that of the quantumlike approaches to
beam dynamic$4].
mv(r,s)=VS(r,s), (13
IV. CONSTRUCTION OF CONTROLLED STATES

while the nonlinearly coupled Lagrange equations of motion  For QUANTUM AND QUANTUMLIKE SYSTEMS
for the densityp, and for a current velocity of the form

(13) are the continuity equation typically associated to every In the previous section we have introduced two coupled
diffusion process equations that describe the dynamical behavior of the beam:

the first is the ltoequation(9), or equivalently the Fokker—
dsp=—V-(pv), (14  Planck equatior{16); the second is the HIM equatigh5).
Here, we briefly sum ugwith the present notationg gen-
and a dynamical equation eral procedure exploited in Rg#] to control the dynamics
of quantum and quantumlike systems, while in the next sec-
m V2\/; tion we will give an explicit application of the method to the
dsS+ 5v2—2m52 7 +V(r,s)=0, (15  transverse beam dynamics. From now on we will consider
P one-dimensional processes denotingébg one-dimensional

. . . . ._space variable, in suitable units. In the next section the vari-
which characterizes the particular class of time-reversal in-

variant diffusion processe§Nelson processes The last able& will be one of the transverse space coordinates. In Ref.

equation has the same form of the Hamilton—Jacobi—[8]' ithas been shown that given a pair of functigr(g, s)

' - . . andv.(&,s) (density and forward velocijywhich satisfy
Madelung(HJM) equation, originally introduced in the hy- (F):° . ; :
drodynamic description of quantum mechanics by Madelun 16) or equivalently(14), the equation(15) with the given

[12]. It can also be shown that the continuity equatib#) is unctions allows one to compute a control potqu@l Re-
equivalent to the standard Fokker—Planck equation mark thatp(¢,s) andv)(¢,s) can also be an entire class of
functions of a given form.

9p=—V.[v YEV2), 16 Let us take for instance the soluti@{é,s) of a Fokker—
s Veye] P (16) Planck equatior{16) with a givenv,)(¢,s) and a constant

by simple substitution fron{10). The time-reversal invari- diffusion coefficienté, define the functiotV(¢,s) from

ance is assured by the fact that the forward drift velocity _

V(+)(r,s) is not a field givera priori, as usual for diffusion Mo (+)(£,5) =0 W(E,S), (19

processes of the Langevin type; instead it is dynamicallyynq remind from(10) and (13) that the relation

determined at any instant of time, starting by initial condi-

tions, thr_ough the HIM evolutlon equatignb). . _ Mo ()= (S+E Inp) (20)
Equations(14) and (15) describe the collective behavior

of the bunch at each instant of time through the evolution of;, ;st hold wher is the adimensional functiofargument
both the particle density and the velocity fl_eld of the bunch.,¢ 5 logarithm obtained from the probability density by
In particular we can calculate the expectati@$|(s)] and  means of a suitable and arbitrary multiplicative constant with

E[v(a(s),s)], which supply the coordinates and the velocity ihe dimensions of. Hence from(19) and(20) we obtain for
components of the center of the bunch profile at tsnehile ¢ phase function

the variancesV[q;(s)]=VE[q’(s)]—EZ[qi(s)] represent
the spreading of the bunch density along each space S(&,5)=W(&,5)—méE Inp(&,8)— 6(s), (21)
direction.
It is finally worth noticing that, introducing the trivial which allows one to determing from p andv ;) up to an
representatiofl2] additive arbitrary function of timé(s). The functionsp and
S satisfying our kinematical relatior(46), are a solution of
P(r,8)=1p(r,s) e'S(r:s)2me, (17)  our dynamical problem if they also satisfy the HIM equation
(15). Since S and p are now fixed, this equation must be
the coupled equationd4) and(15) are equivalent to a single considered as #&constrain} relation defining a controlling
linear equation of the form of the Sclfioger equation in  potential V. which, after straightforward calculations, turns
the functiony, with the Planck action constant replaced by out to be of the form:
the emittance:

Ve(£,5)=mE2 a2 Inp+méE(dsnp+v(1)dInp)
i2mEdg=—2mEV2y+ V. (18) )
Mo (+)
In this formulation the “wave function”ys carries the infor- 2
mation on both the dynamics of the bunch dengityand of
the velocity field of the bunch, where the velocity field is When the density interpolates between an initial and a final
determined through Eq13) by the phase functios(r,s). distribution, then the controlling potenti¥l. interpolates be-
This shows, as previously claimed, that our procedure, startween the corresponding initial and final potential. It is worth

— JWH 6(s). (22)
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noticing that for a class of velocities . (i.e., the nonsin- We have considered here a time-dependent frequéuanyg-
gular, time-independent velocities, but also particular in-metric oscillatoy in order to also describe the effects due to
stances of time-dependent velociliekhe Fokker—Planck strong focusing1]. Note that here we have a potential mea-
equation (16) alone would drive the density towards an sured in units of mass, consistent with the choice of measure
asymptotic solution which does not depend on the initialunits made in Sec. Il. Our aim is now to exploit the hydro-
condition (for details see Refd.8] and[13]): this kind of = dynamic equation§l4) and(15) as control equations for the
evolution is not controlled by an external potential. In thebeam dynamics. In particular, we will show how to compute
time-independent case the asymptotic solution is also a sta controlling, time-dependent potential which allows one to
tionary one. On the other hand, when the Fokker—Planckirive a bunch prepared in a state with a certain degree of
equation(16) is coupled with the dynamical HIM equation collimation towards a final state with better focusing.

(15 we have a way to control the evolution and the right We consider a Gaussian shape for the initial density pro-
potential has the forni22) which depends on the velocity file of a bunch in each transverse direction, with constant
v(+). This method can in principle be applied to very com-dispersion, and with the center of the profile which performs
plicated systems: for instance in the beam dynamics wea classical harmonic motion with the same frequency associ-
could keep the beam coherent even in the presence of abated to the initial potentia{23). The motion of the center
rations. However, this problem is nonexplicitly solvable in models the betatron oscillations of the bunch. In our quan-
closed form and requires some approximate treatment. Aumlike approach, the state of the bunch is thus formally
present we consider only the more simple, but still nontrivial represented by a coherent state. As anticipated at the end of
case of the quadrupole approximation to the beam-field inthe previous section, we will now consider an instance of
teraction. In this case we can exactly compute controllingcontrolled evolution that does not require an extra smoothing
guadratic potentials which drive the bunch to a final statgprocedure for the driving velocity field, i.e., the transition
with better focusing. Moreover, we can avoid a technicalbetween pairs of Gaussian densities. In particular we will
difficulty present in the more general situation. Actually thedescribe transitions from a coherent oscillating packet to an-
general procedure often implies an initial singular behavioother Gaussian state with a better collimatiemaller dis-

in the phase function. In fact, when we suddenly impose tgersion. It is worth noticing that we can also implement a
the initial state the forward drift associated to the final stateprocedure that allows one to vary independently the disper-
the new phase turns out to be “wrong” with respect to thesion (collimation) of the bunch density and the motion of the
initial density. Hence a “kick” in the potential is needed in center of the density profilécharacteristics of the betatron
order to produce such a sudden change in the phase. This fazscillations.

shows that to be physically meaningful our procedure re- To this end we will recal[14] that if the velocity field of
quires some smoothing. In Rd#8], however, it was noted a Fokker—Planck equatigii6) with constant diffusion coef-
that, at least for a Gaussian choice of the initial and finaficient £ (the transverse emittancénas the linear form
densities, it is particularly simple to implement transitionsv ,(§,s) =A(s)+B(s)¢, with A(s) and B(s) continuous
which do not need any smoothing procedure. We can adogtinctions of s, then there are always Gaussian solutions
this especially simple solution exactly in the case of beamV(u(s),v(s)), whereu(s) (the displacement of the center
dynamics in the quadrupol&@armonic potentialapproxima-  of the Gaussian distributiorand v(s) (the variance of the

tion. Gaussian distributionare solutions of the differential equa-
tions
V. CONTROLLED BEAM DYNAMICS IN THE
QUADRUPOLE APPROXIMATION n'(s)—B(s)u(s)=A(s); v'(s)—2B(s)v(s)= 25,( )
24

We now move on to construct explicit examples of con-
tro.IIed beam dynamics. In considering an apce!eratmg M&ith suitable initial conditions, and where the prime denotes
chine we assume, as usual, that thg longitudinal 'and thglg derivative with respect ts. As previously stated, all
transverse dynamics can be deemed independent with a high,, the time evolution our states keep a Gaussian shape for
degree of approximation. We W'". work in the frqmev_v_ork _Of the density, and the center of the density profile performs an
the quadrupole approximation, with the further simplification

f idering d led \uti | h dial di arbitrarily assigned motion. Then, if we adopt the concise
of considering decoupled evolutions along the radia IreC'quantumlike representation of the bunch stél&) it is
tion x and the vertical directiory in the local reference

frame straightforward to show that the general form for the wave

Under these conditions, we can split the original, two-paCket will be
dimensional diffusion process into two independent, one-
dimensional processes, respectively, alon@nd y, each W(E,5)=
ruled by a harmonic potential. The configurational variable '
of the previous section can here indifferently be either y
depending on the considered transverse direction. The poten- o
tial in each transverse direction will have the general form: 2mé

i) 1/4 B (g_M)Z
2Ty ex 4v

V/

i
(m,u’§+ mo— (= p)*+ 0

, (29

V(&,5)=imw?(s)&2—mf(s)é+muU(s). (23)  while the forward velocity field reads
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V/

—-2& £
ven(&8)=p'+ — — (). (26) ©1=5 (28)

Here thes-dependent functiong.(s) and »(s) describe, re- The relation(28) means that our initial potential is purely
spectively, the motion of the center of the density profile ancharmonic with frequencyw,. By comparing(27) with the
the spreading of the bunch density in the chosen transvergequired Gaussian density, i.e., imposing that
direction; on the other hané(s) plays the role of an arbi- 5
trary integration constant as can be seen ft@i. Of course 9 _ e (EruEI2s)
a suitable potential must also be tailored from E2p) in |41(€,9)] —P(&S)—Tv(s) (29)
order to keep the evolution of the wave functi@b) on the
right track: we will show that in fact this control potential we get the initial identification
has the form suggested {23).

Equation (25) represents the most general Gaussian
packet, with a given generic motign(s) of its center and ) v(s)=vry, (s<7).
with a given dispersion(s), associated to a linear form of (30)
the forward velocity in the Fokker—Planck equati¢t6).
This also allows us to keep independent the initial and théAs for the initial phase function, by inspection of E¢87)
final motion of the center of the packet from the dispersionand (17), and by taking(28) into account, we immediately
As a first example let us now consider the transitions beget
tween two states of the forr25) with constant dispersion
and with a harmonic motion of the center of the profile. If
initially (namely fors<7, where from now orr is the tran-
sition instant we start with v(s)=v; and wu(s) (31
=a, COos (;S), we will have an initial Gaussian density pro-
file with spreadingv, and with a harmonic betatron oscilla-
tion of frequencyw,=&/v,. We now want to drive the sys-
tem towards a finaffor s> 7) state of the forn{25), but with

&s
m(s)=a; cosw;S=a; cos(

2
a
S(&,5)= mw1< lein 2wiS—Es—aésinw;s|, (s<7).

First of all we want to describe thesmooth transition of
our initial wave function to a final one of the same form but
characterized by a new set of parameters:

a spreadingr,< v, (better collimation and a new betatron £ e
oscillation u,(s). To this end we only need to put in the a,—a,, Vi—Vy, W =——wy=—. (32
solution V(. (s), v(s)) two functionsu(s), »(s) which inter- Y1 v2

polate between the corresponding initial and final functionsl_he choice(32) means that also the final potential is stil
of the motion of the center, and of the spreading, respec-

tively. Moreover, with a suitable choice of tieindependent pur(_aly harmonic, but .W'th a new frequenay,. In qrder 0
part of the phase function i(25), the forward velocity field achieve that we consider, for example, the function

will also smoothly interpolate between the initial and the

final velocity fields[8]. The control potential which drives rs)=————
the solution toward the required end is finally obtained by 1+e (770
Eq. (22 with p given by the interpolating solution
N(u(s),»(s)), and withv,, given by the associated for-

ward velocity. Of course there is a large number of possibl Zourse herer andy are completely free parameters: A suit-
choices for the interpolating functions(s), v(s): this will able choice of them will allow one to fine tune the timing

allow us to single out the forms that better realize specific . o . L
requirements. For example, it is possible to choose a charagpd the velocity of the transition. Now the required transition

teristic transition timdthe time needed to go from the initial Is implemented by choosing

(33

which smoothly goes from @for s<7) to 1 (for s> 7) with
a flex point ins= 7 and a transition velocity equal toL/ Of

to the final statgby inserting exponential relaxation terms in &s s
the interpolating functions. u(s)y=a; cos{ —) (1-T'(s))+a, cos{ —) I'(s),
We will now supply a few explicit examples of transi- Y1 V2
tions. Our initial (< 7) Gaussian, coherent, oscillating wave (34)

function has the form v(s)=v1(1-T(s))+w,I'(s),

which realizes(32) and hence interpolates between the two

1/4 (e 2
1//1(5,3)2(—) ex;{ (6721 C0Sw1S) initial and final Gaussian, coherent, oscillating states.
2 4vy The phase function can now be calculated fr¢a8) and
i 4a1§ Sinwls—ai Sin 2w18+41/1w15 we haVe
—1 ,

81, S(¢,s)=mla(8)E*+B(S)E+H(S)+O(s)], (39

(27) ’ ’ r, 2
:V_ — '_ﬂ H ):VM (36)

where we must also remember that a(s) 4y’ BS)=p 2v’ (s 4y -
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s G(s)

T
\ wg

a(s)

FIG. 1. The functiorx(s) is the coefficient of th&? term in the FIG. 3. The functionG(s) represents the square of the time-
phase functior{35). Notice that it goes quickly to zero, as required, dependent frequency of the harmonic, controlling poten®a).
outside the transition region of widthh arounds= 7. lts negative = Reminding Eq(32) and thatv,<v, we havew,> w;.
values are due to the choice of monotonically decreasing dispersion

v (better collimatio. The functionsa(s), B(s), G(s), F(s), andW(s), which
determine the potential, can now be explicitly calculated for
our example from Eqs34). Their analytic expressions are
by far too long(albeit elementary however, their graphical
behavior is very simple and can be easily plotted. In particu-
lar see Figs. 1-5 for a few typical diagrams displaying the
principal characteristics of these parameters which com-
pletely define the transition. First of all the functiomsand 8

Since a, B, and H are now fixed by(34), a comparison
between (35 and (31), and in particular between the
asymptotic 6— *) expressions of thé-independent term
of the phase, will suggest the following form for the arbitrary
0(s) function:

2 2
6(s)= &sin §> - E (1-T(s)) show the behavior of the phase function: remark that it is not
4vy V1 V1 necessary to produce a plot for thendependent part of the
£a2 285\ £2s phase since the relatiqi37) by definition imposes the right
+| i _> ——|I'(s)—H(s). (37 asymptotic behavior. Figure 1 shows thgts) has a smooth
4v, V2 V2 extremal value around the transition af while it also

quickly goes to zero fois<7 and s>7. hence no terms

depending or¢? remain asymptotically in the phase as re-

quired by the form(27). On the other hand Fig. 2 shows that
, (38) B(s) asymptotically has a sinusoidal behavior with different

amplitudes and frequencies in the two zoresr and s

> 7. this also is in good agreement with the required form of

Finally the potential will have the form

Vc(§,s)=mEG(S)§2— F(s)é+W(s)

2 " 12 . . . .
e v r- o the phase. As for the control potential, Fig. 3 indicates that
Gls)= 2 2V+ 42’ F(S)=p"+uG, G(s), which represents the parameter of the harmonic part
(39)  (depending ong?) of V., smoothly goes fromw? to w3
Gu? w'? &2 along the transition and sticks to these two constant values
W(s)=———— - —0'(s), outside the transition zone. From Figs. 4 and 5 we finally see

that F(s) andW(s), which are, respectively, the coefficient
where now all the terms are given by the previous relations®f the linear part and of thé-independent term in the control
As already remarked this potential has exactly the f28).

"I
Tinn i p—

FIG. 4. The functionF(s) represents the time-dependent coef-
FIG. 2. The functionB(s) is the coefficient of the term in the  ficient of the& term in the harmonic, control potenti@8). The fact
phase function(35). Outside the transition region it oscillates, as that it quickly goes to zero outside the transition region is a conse-
required, with stable frequencies; for s<7, and w, for s>r. quence of the relation,=&/v, and of the choicg37) for the
The faster oscillation fos> 7 is due to the fact thab,> w;. function 6(s).

F(s)
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MWy
B/ LN VY

FIG. 5. The functionW(s) represents the coefficient of the FIG. 6. This behavior of the functioR(s), different from that
&-independent term in the harmonic, control poten@®8). Here too  of Fig. 4, is due to the fact that the relatian,= &/ v, is no longer
the fact that it quickly goes to zero outside the transition region is asatisfied and the choic@l3) is taken for the functiord(s). The
consequence of the relatiasy, = £/ v, and of the choicé37) for the nonvanishing oscillations oF(s) in the asymptotic regiors>
function 6(s). allow one to reduce the otherwise naturally enhanced betatron os-
cillations.
potential, are different from zero only around the transition
at s=r, while they are everywhere zero far away fram vyhile we get a new determination for the arbitrags) func-
Also as a consequence the potentiglhas the required time tion:
behavior since it is a simple harmonic potential $s¢ 7 and
s> 7 (albeit with two different frequenci¢sand shows some
extra terms only in a limited interval around the transition.
Of course this does not constitute the only potential we can
obtain by this way. For example, the functigrfs), instead,
could be chosen in such a way that the oscillation of the
center of the profile can be slower than the initial one, de-
spite the fact that the better collimation requires a final po-The functions defining the time evolution of both the phase
tential associated to a frequenay,=&/v, larger than the and the potential can now be calculated once more and we
initial one and then to a faster betatron oscillation with thefind that the functions(s) and5(s) keep a form very simi-
same amplitude. This can be achieved by keeping a suitabl@r to the previous one. Instead the n&s) displays an
forcing partF(s) different from zero also fos>r: namely ~ opposite behavior with respect to Fig. 3. In this case the final
in this case the final potential does not reduces itself to &€quencyw, is smaller than the initial frequency, and
simple harmonic one. It is easy to show that if the finalthus the betatron oscillations are suppressed. On the other
oscillation has the generalized form hand the shape is still of the form of a sigmoid. As for the
functionsF(s) and W(s) they show a different asymptotic
b behavior as can be seen from Figs. 6 and 7. In particular we
u(s)=acogws)+ P sin(ws), (400 see that, as predicteB(s) andW(s) no longer disappear for
s>, so that asymptotically we do not have a purely har-
monic potential since now if23) both the linear term and
that constant irf will be present for everg> r. However, it
is clear that other choices are always possible: for example,
the arbitrary functiond(s) could be defined so that i88)

W(s) F(s)

0(s)=

ga? [2&s\ €%
( ) (1-T(s))

—SIinf —
4V1

V1 V1

wg5
T Sln(ZwZS) - 5(1)25

+ I'(s)—H(s). (43

with @ not coincident with&/v, the final forcing function
F(s) calculated from(38) will correspondingly be

, &7 b
F(s)=m| o*— — || acosws+ —sinws|. (41
V2 m 1T 5
In this case the potentials are more complicated but can still
be suitably explored by means of our method. As an example
we consider the case where the final state is characterized by
two independent parameteis; for the frequency ana, for
the packet spreading. Now a relation similar(28) will no
longer be satisfied. As a consequence the ch@dewill be
changed in
W)
&s . .
u(s)=a;co§ —|(1—-TI'(s))+a,codw,s)I'(s), FIG. 7. Here too, as for the functida(s), the new behavior of
Y1 the functionW(s), different from that of Fig. 5, is due to the fact
(42)  that the relationw,= &/ v, is no more satisfied and the choiek) is
v(s)=v1(1-T(s))+wvoI'(s), taken for the functiord(s).
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ing partF(s) is needed to retain the oscillatory moti¢f0)

for s> 7. In conclusions Figs. 8 and 9 show teevolution

of the density of the bunch. Both describe a squeezing of the
beam, but Fig. 8 reproduces the case where the frequency of
the betatron oscillation is enhanced, while Fig. 9 is related to

the case where these oscillations are reduced.

VI. CONCLUSIONS

|
S
\\\\\\\\\‘e In the first part of this paper we have applied to the col-

\ lective dynamics of beams in particle accelerators a stability
analysis already developed for general particle systems. This
analysis has allowed us to single out scaling factors relating
the parameters ruling the collective dynamics in the beams
with the microscopic scales.

In the second part of the paper we have considered the
stability regime of a beam, in which the energy loss due to
the radiation damping is on average compensated by the ex-
ternal rf energy pumping. The collective beam dynamics in
S%—. . . . . _ . . . .
this regime is described by time-reversal invariant diffusion
processegNelson processgsvhich are obtained by a sto-

. ) ) . chastic extension of the least action principle of classical
the é-independent ternw(s) of the potentl_a'Vc be identi-  echanics. The choice of the diffusion coefficient is dictated
cally zero. Of course there would be a price to pay for thaty,, the unit of emittance determined in the first part of the
in fact now in the phase functiof the ¢-independent term 3 her The collective dynamics of beams is then described
will no longer follow an asymptotic behavior of the ty(#1)  },y two nonlinearly coupled hydrodynamic equations. It has
since the relatioit43) will no longer be satisfied. In the most 4j55 heen observed that the linearization of these equations
general case of transitions between states with nonconstagbnnects this approach to a Sotiirger-like (quantumlike

dispersion(strong focusingit is clear that the procedure can gffective description of the beam dynamics previously devel-
also be suitably extended. In fact it is sufficient to exploit, foroped through different approaches.

instan_ce, fthe expressioﬁﬁ4)_ fp_r the inte_rpolat_ing dis_persion, In the last part of the paper we have shown that the tran-
but with time dependent initial and final dispersiong(s)  gijtion probabilities of Nelson processes can be exploited to
andw(s). The general forni38) of the controlling potential  ¢ontrol the collimation and the oscillations of the beam in the
is thus calculated, but with a new expression #¢t). Fi-  guadrupole approximation, both in the weak focusing and in
nally, also the initial and final laws of motion of the profile {he strong focusing regimes. In this framework we have ex-
center, u1(s) and u,(s), can always be chosen as in the yjicitly computed the controlling potentials that realize some
previously discussed example. However, in this case, a forGglevant controlled evolutions. The controlling potentials can
be engineered by suitable tuning of the external rf and mag-
netic fields. We have considered evolutions that drive the
beam from a less collimated to a better collimated state. We
have furthermore shown that this goal can also be achieved
without increasing the frequency of the betatron oscillations
which can in fact be independently controlled during the
evolution. In the forthcoming papers we will study the ex-
tension of these control techniques beyond the quadrupole
approximation and address in detail applications to existing

FIG. 8. The density29) of the bunch as a function afand &.
Here the squeezing is performed with the constr&8® between
the parameters and v, and hence without control on the betatron
oscillations. Hence these oscillations are enhanced as a con
quence of the squeezing.
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o , machines, problems related to dynamical instabilities and

topics about the halo formation, a problem which has re-
cently been addressed in the framework of a quantumlike
approacH15].
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APPENDIX: MINIMAL ACTION AND SCALING
FACTORS FOR STABLE SYSTEMS

FIG. 9. At variance with Fig. 8, here the densit29) is We consider a generic stable system confined in a region
squeezed with no constrains of the ty{82) between the param- Of space of linear dimensidR, constituted by a large number
etersw andv. As a consequence we were also able to slow down alN of identical particles of mass, and ruled by an attractive
the same time the betatron oscillations. classical(possibly effective law of force F(r). We intro-
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duce a unit of actiorw (which will turn out to be minimal
by the following relation:

We then define the macroscopic time sc@lassociated to

the entire system, through the obvious relatiorr R/'7
(therefore7 has the meaning of a characteristic traveling
time for a particle inside the systenWe insert into Eq(A1)
both the latter expression and the expressi), obtaining
the following form for the(minimal) unit of action:

a=mo?r. (A1)

In this equationv denotes the characteristic mean velocity
per particle in the system, while is a characteristic micro-
scopic time whose size must be self-consistently determined
(for details see Ref.10]). In order to obtain an explicit ex-
pression fore, we then impose the following criteria of sta-
bility. First, we require that the characteristic potential en-

ergy of each particle be on average equal to its characteristic ) ) )
kinetic energy(virial theoren: We now introduce a second requirement for the mechanical

stability, namely that due to the large number of particles,
the unit of actiona not be sensibly dependent &h As a
natural consequence, we are led to impose a relation between
where/ is the work performed in mean by the entire systemthe microscopic characteristic time and the macroscopic

on a single constituent. Then, if the system extends on theharacteristic traveling timé& of the form

characteristic length scalR we have, in order of magnitude

,
a=ymF(R)R*N?~.

(A5)

L=mv2, (A2)

L=NF(R)R, (A3)
(A6)
whereF (R) is the force evaluated on a distance of the order

of magnitude of the linear global dimension of the system.

Relations(A2) and(A3) are now summarized by the follow-
ing expression of the characteristic velocity

NF(R)R
\/—m .

1=

(Ad)

Finally, by inserting(A6) into Eq.(A5) we finally obtain the
(minimal) unit of action

= m1/2R3/2 E ( R) )

(A7)
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