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Stochastic collective dynamics of charged-particle beams in the stability regime
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We introduce a description of the collective transverse dynamics of charged~proton! beams in the stability
regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described
by time-reversal invariant diffusion processes deduced by stochastic variational principles~Nelson processes!.
By general arguments, we show that the diffusion coefficient, expressed in units of length, is given bylcAN,
whereN is the number of particles in the beam andlc the Compton wavelength of a single constituent. This
diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the
stochastic dynamics can be easily recast in the form of a Schro¨dinger equation, with the unit of emittance
replacing the Planck action constant. This fact provides a natural connection to the so-called ‘‘quantum-like
approaches’’ to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to
model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the
quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the
beam, either together or independently.
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I. INTRODUCTION

Most of the studies on the dynamics of charged beam
particle accelerators are concerned with classical phenom
of nonlinear resonances as isolated sources of unstable
haviors. Following this line of thought, a general understa
ing of classical dynamical processes in particle accelera
has been reached in recent years@1#. However, the transvers
coherent oscillations of the beam density and profile requ
to be explained, some mechanism of local correlation
loss of statistical independence. This implies the need to t
all the interactions as a whole, and to introduce an effec
collective dynamics. Moreover, the overall interactions b
tween charged particles and machine elements are re
nonclassical in the sense that out of the many source
noise that are present, almost all are mediated by fundam
tal quantum processes of emission and absorption of p
tons. Therefore the collective effective descriptions of th
processes could contain, in principle, some quant
signature@2#.

Starting from the above considerations, different a
proaches to the collective dynamics of charged beams h
been developed. Some of them, relying on the Fokk
Planck equation and the statistical effects on the dynamic
colliding beams, have become an established referenc
treating the sources of noise and dissipation in particle ac
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erators by standard classical probabilistic techniques@3#.
Other, more recent, approaches are instead based on su
coarse grainings of the constitutive kinetic equations, a
yield Schrödinger-like equations, with a thermal unit of emi
tance replacing the Planck action constant~‘‘quantumlike ap-
proaches’’ to beam dynamics! @4#.

In this paper we first of all exploit~classical! mechanical
criteria of stability in order to establish a connection with t
statistical fluctuations affecting the beam dynamics. In p
ticular we deduce a phenomenological expression of
characteristic unit of action~emittance! which quantifies the
amount of these fluctuations and which is ultimately rela
to the microscopic scales and to the number of partic
Explicitly, the resulting expression for the diffusion coeffi
cient E in units of length~i.e., the transverse unit of emit
tance! turns out to depend both on the fundamental Comp
wavelengthlc and on the numberN of particles constituting
the beam through the simple, but nontrivial, formulaE
5lcAN. Thus motivated, we model the collective beam d
namics by introducing suitable stochastic processes w
long-range coherent correlations.

This kind of analysis considers the regime of stability
our dynamical systems. In this framework we study the
termediate, but physically relevant, regime of beam dyna
ics in which a balance is realized, on the average, betw
the energy dissipation and the external rf energy pump
Therefore our approach differs crucially from the previo
ones, based only on the Fokker–Planck equation, sinc
this regime the overall classical beam dynamics can be c
sidered at the same time stochastic and time-reversal inv
ant.

This scenario hints to very interesting perspectives for
following reasons. First of all, classical stochastic dynami
systems with time-reversal invariance have been introdu
©2000 The American Physical Society01-1
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and extensively studied in the context of Nelson stocha
mechanics@5#. They are by now a well-understood subje
both from the physical and mathematical point of view. F
instance, among the possible physical applications of
modeling it is worth noticing the recovering of the Titius
Bode law for planet orbits in the solar system obtained
Ref. @6#. The study of these dynamical systems is based
an extension of the variational principles of classical m
chanics to include the case of a diffusive kinematics rep
ing the deterministic one@7#. This is remarkable since varia
tional principles are a very powerful tool in the descripti
of physical systems. In the present case the stochastic v
tional principle yields two coupled hydrodynamic equation
respectively for the density and for the forward veloc
field, which provide an effective description of the transve
oscillations of the beam density in the regime of stability

On the other hand it is also interesting to remark that
two nonlinear coupled hydrodynamic equations of the s
chastic mechanics are equivalent to one linear equatio
the form of a Schro¨dinger equation, with the Planck actio
constant replaced by the diffusion coefficient of the rand
kinematics. This fact connects our approach to the quant
like approaches to beam dynamics. Moreover, since this
scription involves not only a Fokker–Planck equation b
also a dynamical prescription connected with an external
tential, it allows one to implement the powerful techniqu
of active control for the dynamics of the beam. This is
variance with the case of a purely dissipative Fokker–Pla
dynamics which only describes a passive~irreversible! evo-
lution of the state, and where you have no control what
ever on the velocity field.

In fact, on the basis of the description of the beam coll
tive dynamics in terms of the hydrodynamic equations
Nelson stochastic mechanics with the proper diffusion co
ficient, we will show how we can implement techniques
control already developed in the general context of stocha
dynamical systems@8#. These techniques exploit the trans
tion probabilities, a fundamental object in the theory of d
fusion processes, in order to drive the beam toward a sp
fied and controlled evolution. In particular in ou
quantumlike approach we construct time-dependent po
tials which drive the system toward final states characteri
by an improved collimation. At the same time, and indep
dently, also the transverse betatron oscillations can be
trolled and varied.

The paper is organized as follows: In Sec. II we expl
some basic criteria of mechanical stability in order to sup
a phenomenological support for our fluctuative approach
collective dynamics of beams in particle accelerators. In p
ticular these criteria will allow one to connect the~trans-
verse! emittance to the characteristic microscopic scale
to the total number of the particles in a bunch. In Sec. III
introduce a time-reversal invariant, stochastic description
the collective dynamics of the beam in the stability regim
The ~hydrodynamic! equations of motion for the density an
the profile of a bunch are here derived from a stocha
variational principle. In Sec. IV we sketch the general str
ture of controlled dynamics for quantum and quantuml
systems. In Sec. V we explicitly construct, as mention
01650
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above, some examples of controlled beam evolution in
quadrupole approximation to the beam-field interaction.
nally in Sec. VI conclusions follow.

II. COLLECTIVE BEHAVIOR OF DYNAMICAL SYSTEMS
IN THE STABILITY REGIME

Effective wave equations of the Schro¨dinger form, but
associated to a nonfundamental unit of action~that is, differ-
ent from the Planck constant!, have been introduced to de
scribe the collective dynamics for classical physical syste
with many degrees of freedom, including optical fibers@9#
and charged particle beams in accelerators@4#. The basic
feature common to all these systems is their high degre
coherence, which allows one to introduce an effective
scription in terms of collective degrees of freedom. The
represent the cooperative dynamical behavior of the m
constituents of the system. This collective motion is summ
rized by the effective equations for the configurational~or
phase-space! density and for the velocity fields.

Here we specialize for the dynamics of charged beam
general scheme previously introduced for the study of
dimensions of stability for macroscopic and mesoscopic s
tems@10#. The ultimate goal of the analysis of stability is t
single out a~minimal! unit of action in terms of the charac
teristic constants, of the form of the interaction, and of t
linear dimensions of the considered system. This anal
will allow us to relate the parameters associated to the
lective degrees of freedom with the characteristics of
microscopic constituents. In the Appendix we summarize
procedure, while here we will just quickly quote the resul

We introduce a unit of actiona ~which will turn out to be
minimal! defined by

a5mṽ2t, ~1!

whereṽ denotes the characteristic mean velocity per part
in the system, whilet is a characteristic microscopic tim
whose size must be determined self-consistently. Impos
suitable criteria of stability, we obtain as a first result@10#
that the order of magnitude of this small timet in ~1! must
be given by

t>
T

AN
, ~2!

whereT is the macroscopic time scale associated to the en
system, and defined through the relationṽ5R/T, whereR
denotes the global length scale of the system. ThereforT
has the meaning of a characteristic traveling time for a p
ticle inside the system. Moreover, we obtain for the~mini-
mal! unit of actiona the general expression

a>m1/2R3/2AF~R!, ~3!

whereF(R) denotes the value of the force ruling the syste
computed on a distance scale of the order of magnitude
the global scale of the system@10#.
1-2
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It must be noted that the relation~2! has been originally
conjectured by F. Calogero@11# in a different context. It is
remarkable that, when tested in the range of all known sta
macroscopic and mesoscopic aggregates of particles, th
lation ~3! always yields the order of magnitude of the Plan
action constant@10#. This is the reason why we identifya as
a minimal unit of action. It was not obviously trivial tha
from a purely mechanical criteria of stability the fundame
tal microscopic scale of action could emerge. Moreover t
fact, together with the observation that we have se
consistently obtained the expression~2! for the microscopic
time t, strongly hints to two further conclusions.

First, the factor 1/AN in the scaling relation~2! typically
hints to the presence of collective fluctuations, whose ch
acteristic scale of time is given byt. This is not a surprising
fact due to the large number of constituents in the syst
Second, the universal coincidence of the minimal unit
action with the Planck action constant strongly points to
fact that these collective fluctuations are ultimately co
nected with the fundamental microscopic scales. It is wo
noting that, as we will show later, this fact is not connec
to complicated or mysterious effects of direct quantum o
gin, but it simply takes into account the constraint given
the characteristic spatial extension of the microscopic c
stituents.

In the specific instance of charged beams we first ve
the numerical coincidence ofa with the Planck action con
stant. We then single out the expression of the~transverse!
emittance in terms of the microscopic minimal length sc
and of the number of elementary constituents. This sec
step of our analysis is performed in the particular instance
proton beams since it would be impossible to find a class
characteristic length extension for the electron.

In the first step we consider a representative proton~elec-
tron!, in the reference frame comoving with the bunch. Co
finement and stability for the transverse motion of the bun
arise from the many interactions both among its constitue
and between the same constituents and the external focu
electromagnetic fields. It is well-known that the net effe
can be, in the first quadrupole approximation, summari
by a harmonic force of modulusF(r )>Kr , whereK is the
effective phenomenological elastic constant associated to
transverse dynamics. Then Eq.~3! yields

a>m1/2R2K1/2. ~4!

We can now estimatea by introducing, besides the proton o
the electron mass, the experimental values for the transv
linear dimensionR and for the effective elastic constantK.
We have @1# K>10212 N m21 ~transverse oscillations o
protons at Hera! and K>10211 N m21 ~transverse oscilla-
tions of electrons in linear colliders!, while R>1027 m in
both experimental situations. As a consequence, in b
cases Eq.~4! yields a>h. We have therefore reached o
first goal.

We now move to the second step to single out the par
eter associated with the stability of the system at the me
copic scale in the case of charged beams. This paramet
given in terms of a characteristic unit of~transverse! emit-
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tance. The emittance is a scale of action that measures
spread of the bunch in phase space. It can also be define
a unit of equivalent temperature or, in configuration space
a unit of length. It is clear that this quantity must depend
the characteristic scales and on the total number of the
ementary components in the system. In the framework of
scheme we are able to provide, at least in order of mag
tude, a quantitative estimate of this dependence.

We proceed as follows: in the regime of stability and
thermal equilibrium, that we explicitly consider, the em
tance can be expressed as a unit of equivalent thermal ac
We denote byT the equivalent unit of equivalent temperatu
of the system~namely the unit of energy divided by th
Boltzmann constantkB), and we define the characterist
thermal unit of action associated to the system askBTT, the
product of the unit of thermal energy and of the characteri
global time. In our scheme, whena>\, the time t con-
nected to the microscopic scales can also be identified w
the usual scale of time associated to a microscopic syste
the equilibrium temperatureT; hence

t>
h

kBT
. ~5!

Using relation~2! we finally obtain the equivalent therma
unit of action, the transverse emittancee, in terms of the
minimal action\ and of the total number of particleN:

e[
kBTT
2p

>\AN. ~6!

Up to now our results hold both for protons and electro
However, the previous relation allows a more direct chec
written in terms of characteristic units of length. We kno
however, that electrons do not possess a finite character
length extension, while for protons we know that such
linear extension coincides, in order of magnitude, with t
Compton wavelength. Thus, specializing to protons, we
show that, at least in order of magnitude, the numerical va
of the transverse dimension of the bunch is

e

mc
>lcAN, ~7!

where the Compton wavelengthlc5\/mc (m is the proton
mass andc is the velocity of light!.

We can now interpret Eq.~7! in the following, simple
way: The~transverse! mean dimension of the beam at equ
librium is connected to the characteristic length scalelc of
its microscopic constituents through the scaling factorAN.
This last peculiar form, in turn, suggests a fluctuation mec
nism which stabilizes the system. As previously anticipat
the microscopic scales influence the system only through
minimal length scale, i.e., the length extension of the
ementary constituents, without direct connections to m
involved quantum effects.

Inserting in Eq.~7! the numerical data of the proton wave
length and of the number of protons in typical accelerat
@1#, we obtain the experimental order of magnitude of t
1-3
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transverse dimension of the bunch 1027–1028 m @10#. On
the basis of our phenomenological scheme, we introduc
the next section a quantitative stochastic description of be
dynamics in the stability regime. In the following, consiste
with the analysis carried out so far, we take as diffus
coefficient, expressed in unit of length, for the stochas
kinematics the quantity~transverse emittance!

E[
e

2mc
>

lc

2
AN, ~8!

where the factor 2, which does not affect the order of m
nitude, is introduced for later computational convenience

III. STOCHASTIC COLLECTIVE DYNAMICS
IN THE STABILITY REGIME

In this section we model the spatial fluctuations@associ-
ated to the diffusion coefficient~8!# via the random kinemat
ics performed by a representative particle that oscillates,
reference frame comoving with the bunch, around the clo
ideal orbit. This representative particle is identified with t
collective degree of freedom by letting the associated pr
ability density coincide with the real density of particles
the bunch. This last step is achieved by suitably rescaling
normalization of the total number of particles. Before pr
ceeding, we establish the notations according to the stan
conventions.

We denoter[(x,y) a point in the transverse section o
thogonal to the beam direction. We then measure the tim
unit of length through the arclengths along the design orbi
~curvilinear coordinate!. We now consider the~two-
dimensional! diffusion processq(s) which describes the mo
tion of the representative particle and whose probability d
sity coincides with the particle density of the bunch in t
transverse direction. The evolution in the ‘‘time’’s of the
processq is described by the Itoˆ stochastic differential equa
tion

dq~s!5v(1)„q~s!,s…ds1AEdw~s!, ~9!

wherev(1) is the ~forward! drift, dw(s)[w(s1ds)2w(s)
is the d-correlated time increment of the standard Wien
noise, and, as already anticipated, the diffusion coefficien
the characteristic transverse emittance. Equation~9! defines
the random kinematics performed by the collective degre
freedom.

In the stability regime the energy lost by photonic em
sions is regained in the rf cavities, and on average the
namics is time-reversal invariant. We are thus in a situat
in which there are both a random kinematics and time rev
sal invariance. Therefore the dynamics must be indep
dently added to the kinematics~at variance with the purely
dissipative Fokker–Planck case! by introducing a suitable
stochastic least action principle@7#. The latter is obtained a
a generalization of the variational principle of classical m
chanics, by replacing the classical deterministic kinemat
dqc(s)5vc(s)ds, with the random diffusive kinematics o
Eq. ~9!. The equations of motion thus obtained take the fo
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of two coupled hydrodynamic equations describing the e
lution in time of the beam density and of the velocity field
the beam profile. In the following we give a brief sketch
the stochastic variational method and we introduce
coupled hydrodynamic equations, referring the reader for
tails to Ref.@7#.

Given the stochastic differential equation~9!, one can as-
sociate to the diffusion processq(s) a probability density
r(r ,s), where r[(x,y) denotes the transverse coordinat
~the radial coordinate and the vertical coordinate!. Besides
the forward drift v(1)(r ,s), we can define a backwar
drift v(2)(r ,s)5v(1)(r ,s)22E(¹r)(r ,s)/r(r ,s), with ¹
[(]x ,]y). It is useful to introduce two new variables,v(r ,s)
andu(r ,s), respectively, the current and the osmotic veloc
fields, defined as

v5
v(1)1v(2)

2
; u5

v(1)2v(2)

2
5E¹r

r
. ~10!

The velocities in Eq.~10! have a transparent physical mea
ing: the current velocityv represents the global velocity o
the density profile, being the stochastic generalization of
velocity field of a classical perfect fluid. On the other ha
the osmotic velocityu is clearly of intrinsic stochastic na
ture, for it is a measure of the nondifferentiability of th
stochastic trajectories, and it is related to the spatial va
tions of the density.

In order to establish the stochastic generalization of
least action principle, one introduces a mean classical ac
in strict analogy to the classical deterministic action. T
main difficulty in the stochastic case is due to the nondiff
entiable character of the sample paths of a diffusion proc
which does not allow one to define the time derivativeq̇ of
the process. Such a definition is possible only in an aver
sense trough a suitable limit on expectations. The stocha
action is then defined as@7#

A„s0 ,s1 ;q~• !…5E
s0

s1
lim

Ds→01

EFm

2 S Dq

DsD
2

2V~q!Gds,

~11!

whereE(•)5*dr(•)r(r ,s) denotes the expectation of func
tions of the process with respect to the probability densityV
denotes an external potential, andDq(s)5q(s1Ds)
2q(s). It can be shown that the mean action~11! associated
to the diffusive kinematics~9! can be recast in the following
particularly appealing Eulerian hydrodynamic form@5#:

A~s0 ,s1 ;v,r!5E
s0

s1
dsE dr Fm

2
~v22u2!2V~r !Gr~r ,s!,

~12!

wherev and u are defined in equation~10!. The stochastic
variational principle now follows by imposing the stationa
ity of the stochastic action (dA50) under smooth and inde
pendent variationsdr of the density, anddv of the current
velocity, with vanishing boundary conditions at the initi
and final times.
1-4
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As a first consequence we get that the current velocity
a gradient form:

mv~r ,s!5¹S~r ,s!, ~13!

while the nonlinearly coupled Lagrange equations of mot
for the densityr, and for a current velocityv of the form
~13! are the continuity equation typically associated to ev
diffusion process

]sr52“•~rv!, ~14!

and a dynamical equation

]sS1
m

2
v222mE 2

¹2Ar

Ar
1V~r ,s!50, ~15!

which characterizes the particular class of time-reversal
variant diffusion processes~Nelson processes!. The last
equation has the same form of the Hamilton–Jaco
Madelung~HJM! equation, originally introduced in the hy
drodynamic description of quantum mechanics by Madelu
@12#. It can also be shown that the continuity equation~14! is
equivalent to the standard Fokker–Planck equation

]sr52“•@v(1)r#1E ¹2r, ~16!

by simple substitution from~10!. The time-reversal invari-
ance is assured by the fact that the forward drift veloc
v(1)(r ,s) is not a field givena priori, as usual for diffusion
processes of the Langevin type; instead it is dynamic
determined at any instant of time, starting by initial con
tions, through the HJM evolution equation~15!.

Equations~14! and ~15! describe the collective behavio
of the bunch at each instant of time through the evolution
both the particle density and the velocity field of the bun
In particular we can calculate the expectationsE@q(s)# and
E@v(q(s),s)#, which supply the coordinates and the veloc
components of the center of the bunch profile at times, while
the variancesV@qi(s)#[AE@qi

2(s)#2E2@qi(s)# represent
the spreading of the bunch density along each sp
direction.

It is finally worth noticing that, introducing the trivia
representation@12#

c~r ,s!5Ar~r ,s! eiS(r ,s)/2mE, ~17!

the coupled equations~14! and~15! are equivalent to a single
linear equation of the form of the Schro¨dinger equation in
the functionc, with the Planck action constant replaced
the emittanceE:

i2mE]sc522mE 2¹2c1Vc. ~18!

In this formulation the ‘‘wave function’’c carries the infor-
mation on both the dynamics of the bunch densityr, and of
the velocity field of the bunch, where the velocity field
determined through Eq.~13! by the phase functionS(r ,s).
This shows, as previously claimed, that our procedure, s
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ing from a different point of view, leads to a descriptio
formally analogous to that of the quantumlike approaches
beam dynamics@4#.

IV. CONSTRUCTION OF CONTROLLED STATES
FOR QUANTUM AND QUANTUMLIKE SYSTEMS

In the previous section we have introduced two coup
equations that describe the dynamical behavior of the be
the first is the Itoˆ equation~9!, or equivalently the Fokker–
Planck equation~16!; the second is the HJM equation~15!.
Here, we briefly sum up~with the present notations! a gen-
eral procedure exploited in Ref.@8# to control the dynamics
of quantum and quantumlike systems, while in the next s
tion we will give an explicit application of the method to th
transverse beam dynamics. From now on we will consi
one-dimensional processes denoting byj a one-dimensiona
space variable, in suitable units. In the next section the v
ablej will be one of the transverse space coordinates. In R
@8#, it has been shown that given a pair of functionsr(j,s)
and v (1)(j,s) ~density and forward velocity! which satisfy
~16! or equivalently~14!, the equation~15! with the given
functions allows one to compute a control potentialVc . Re-
mark thatr(j,s) andv (1)(j,s) can also be an entire class o
functions of a given form.

Let us take for instance the solutionr(j,s) of a Fokker–
Planck equation~16! with a givenv (1)(j,s) and a constant
diffusion coefficientE, define the functionW(j,s) from

mv (1)~j,s!5]jW~j,s!, ~19!

and remind from~10! and ~13! that the relation

mv (1)5]j~S1E ln r̃ ! ~20!

must hold, wherer̃ is the adimensional function~argument
of a logarithm! obtained from the probability densityr by
means of a suitable and arbitrary multiplicative constant w
the dimensions ofj. Hence from~19! and~20! we obtain for
the phase function

S~j,s!5W~j,s!2mE ln r̃~j,s!2u~s!, ~21!

which allows one to determineS from r andv (1) up to an
additive arbitrary function of timeu(s). The functionsr and
S, satisfying our kinematical relations~16!, are a solution of
our dynamical problem if they also satisfy the HJM equati
~15!. Since S and r are now fixed, this equation must b
considered as a~constraint! relation defining a controlling
potentialVc which, after straightforward calculations, turn
out to be of the form:

Vc~j,s!5mE 2 ]j
2 ln r̃1mE~]s ln r̃1v (1)]j ln r̃ !

2
mv (1)

2

2
2]sW1 u̇~s!. ~22!

When the densityr interpolates between an initial and a fin
distribution, then the controlling potentialVc interpolates be-
tween the corresponding initial and final potential. It is wor
1-5
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noticing that for a class of velocitiesv (1) ~i.e., the nonsin-
gular, time-independent velocities, but also particular
stances of time-dependent velocities! the Fokker–Planck
equation ~16! alone would drive the density towards a
asymptotic solution which does not depend on the ini
condition ~for details see Refs.@8# and @13#!: this kind of
evolution is not controlled by an external potential. In t
time-independent case the asymptotic solution is also a
tionary one. On the other hand, when the Fokker–Pla
equation~16! is coupled with the dynamical HJM equatio
~15! we have a way to control the evolution and the rig
potential has the form~22! which depends on the velocit
v (1) . This method can in principle be applied to very com
plicated systems: for instance in the beam dynamics
could keep the beam coherent even in the presence of a
rations. However, this problem is nonexplicitly solvable
closed form and requires some approximate treatment
present we consider only the more simple, but still nontriv
case of the quadrupole approximation to the beam-field
teraction. In this case we can exactly compute controlli
quadratic potentials which drive the bunch to a final st
with better focusing. Moreover, we can avoid a techni
difficulty present in the more general situation. Actually t
general procedure often implies an initial singular behav
in the phase function. In fact, when we suddenly impose
the initial state the forward drift associated to the final sta
the new phase turns out to be ‘‘wrong’’ with respect to t
initial density. Hence a ‘‘kick’’ in the potential is needed i
order to produce such a sudden change in the phase. This
shows that to be physically meaningful our procedure
quires some smoothing. In Ref.@8#, however, it was noted
that, at least for a Gaussian choice of the initial and fi
densities, it is particularly simple to implement transitio
which do not need any smoothing procedure. We can ad
this especially simple solution exactly in the case of be
dynamics in the quadrupole~harmonic potential! approxima-
tion.

V. CONTROLLED BEAM DYNAMICS IN THE
QUADRUPOLE APPROXIMATION

We now move on to construct explicit examples of co
trolled beam dynamics. In considering an accelerating m
chine we assume, as usual, that the longitudinal and
transverse dynamics can be deemed independent with a
degree of approximation. We will work in the framework
the quadrupole approximation, with the further simplificati
of considering decoupled evolutions along the radial dir
tion x and the vertical directiony in the local reference
frame.

Under these conditions, we can split the original, tw
dimensional diffusion process into two independent, o
dimensional processes, respectively, alongx and y, each
ruled by a harmonic potential. The configurational variablj
of the previous section can here indifferently be eitherx or y
depending on the considered transverse direction. The po
tial in each transverse direction will have the general for

V~j,s!5 1
2 mv2~s!j22m f~s!j1mU~s!. ~23!
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We have considered here a time-dependent frequency~para-
metric oscillator! in order to also describe the effects due
strong focusing@1#. Note that here we have a potential me
sured in units of mass, consistent with the choice of meas
units made in Sec. II. Our aim is now to exploit the hydr
dynamic equations~14! and~15! as control equations for the
beam dynamics. In particular, we will show how to compu
a controlling, time-dependent potential which allows one
drive a bunch prepared in a state with a certain degree
collimation towards a final state with better focusing.

We consider a Gaussian shape for the initial density p
file of a bunch in each transverse direction, with const
dispersion, and with the center of the profile which perfor
a classical harmonic motion with the same frequency ass
ated to the initial potential~23!. The motion of the center
models the betatron oscillations of the bunch. In our qu
tumlike approach, the state of the bunch is thus forma
represented by a coherent state. As anticipated at the en
the previous section, we will now consider an instance
controlled evolution that does not require an extra smooth
procedure for the driving velocity field, i.e., the transitio
between pairs of Gaussian densities. In particular we w
describe transitions from a coherent oscillating packet to
other Gaussian state with a better collimation~smaller dis-
persion!. It is worth noticing that we can also implement
procedure that allows one to vary independently the disp
sion ~collimation! of the bunch density and the motion of th
center of the density profile~characteristics of the betatro
oscillations!.

To this end we will recall@14# that if the velocity field of
a Fokker–Planck equation~16! with constant diffusion coef-
ficient E ~the transverse emittance! has the linear form
v (1)(j,s)5A(s)1B(s)j, with A(s) and B(s) continuous
functions of s, then there are always Gaussian solutio
N„m(s),n(s)…, wherem(s) ~the displacement of the cente
of the Gaussian distribution! and n(s) ~the variance of the
Gaussian distribution! are solutions of the differential equa
tions

m8~s!2B~s!m~s!5A~s!; n8~s!22B~s!n~s!52E,
~24!

with suitable initial conditions, and where the prime deno
the derivative with respect tos. As previously stated, al
along the time evolution our states keep a Gaussian shap
the density, and the center of the density profile performs
arbitrarily assigned motion. Then, if we adopt the conc
quantumlike representation of the bunch state~17! it is
straightforward to show that the general form for the wa
packet will be

c~j,s!5S 1

2pn D 1/4

expF2
~j2m!2

4n

1
i

2mE S mm8j1m
n8

4n
~j2m!21u D G , ~25!

while the forward velocity field reads
1-6
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v (1)~j,s!5m81
n822E

2n
~j2m!. ~26!

Here thes-dependent functionsm(s) andn(s) describe, re-
spectively, the motion of the center of the density profile a
the spreading of the bunch density in the chosen transv
direction; on the other handu(s) plays the role of an arbi-
trary integration constant as can be seen from~21!. Of course
a suitable potential must also be tailored from Eq.~22! in
order to keep the evolution of the wave function~25! on the
right track: we will show that in fact this control potentia
has the form suggested in~23!.

Equation ~25! represents the most general Gauss
packet, with a given generic motionm(s) of its center and
with a given dispersionn(s), associated to a linear form o
the forward velocity in the Fokker–Planck equation~16!.
This also allows us to keep independent the initial and
final motion of the center of the packet from the dispersi
As a first example let us now consider the transitions
tween two states of the form~25! with constant dispersion
and with a harmonic motion of the center of the profile.
initially ~namely fors!t, where from now ont is the tran-
sition instant! we start with n(s)5n1 and m(s)
5a1 cos (v1s), we will have an initial Gaussian density pro
file with spreadingn1 and with a harmonic betatron oscilla
tion of frequencyv15E/n1. We now want to drive the sys
tem towards a final~for s@t) state of the form~25!, but with
a spreadingn2,n1 ~better collimation! and a new betatron
oscillation m2(s). To this end we only need to put in th
solutionN„m(s),n(s)… two functionsm(s),n(s) which inter-
polate between the corresponding initial and final functio
of the motion of the center, and of the spreading, resp
tively. Moreover, with a suitable choice of thej-independent
part of the phase function in~25!, the forward velocity field
will also smoothly interpolate between the initial and t
final velocity fields@8#. The control potential which drives
the solution toward the required end is finally obtained
Eq. ~22! with r̃ given by the interpolating solution
N„m(s),n(s)…, and with v (1) given by the associated for
ward velocity. Of course there is a large number of poss
choices for the interpolating functionsm(s),n(s): this will
allow us to single out the forms that better realize spec
requirements. For example, it is possible to choose a cha
teristic transition time~the time needed to go from the initia
to the final state! by inserting exponential relaxation terms
the interpolating functions.

We will now supply a few explicit examples of trans
tions. Our initial (s!t) Gaussian, coherent, oscillating wav
function has the form

c1~j,s!5S 1

2pn1
D 1/4

expF2~j2a1 cosv1s!2

4n1

2 i
4a1j sinv1s2a1

2 sin 2v1s14n1v1s

8n1
G ,

~27!

where we must also remember that
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v15
E
n1

. ~28!

The relation~28! means that our initial potential is purel
harmonic with frequencyv1. By comparing~27! with the
required Gaussian density, i.e., imposing that

uc1~j,s!u25r~j,s!5
e2„j2m(s)…2/2n(s)

A2pn~s!
~29!

we get the initial identification

m~s!5a1 cosv1s5a1 cosS Es

n1
D , n~s!5n1 , ~s!t!.

~30!

As for the initial phase function, by inspection of Eqs.~27!
and ~17!, and by taking~28! into account, we immediately
get

S~j,s!5mv1S a1
2

4
sin 2v1s2Es2a1j sinv1sD , ~s!t!.

~31!

First of all we want to describe the~smooth! transition of
our initial wave function to a final one of the same form b
characterized by a new set of parameters:

a1→a2 , n1→n2 , v15
E
n1

→v25
E
n2

. ~32!

The choice~32! means that also the final potential is st
purely harmonic, but with a new frequencyv2. In order to
achieve that we consider, for example, the function

G~s!5
1

11e2(s2t)/g
~33!

which smoothly goes from 0~for s!t) to 1 ~for s@t) with
a flex point ins5t and a transition velocity equal to 1/g. Of
course heret andg are completely free parameters: A su
able choice of them will allow one to fine tune the timin
and the velocity of the transition. Now the required transiti
is implemented by choosing

m~s!5a1 cosS Es

n1
D „12G~s!…1a2 cosS Es

n2
DG~s!,

~34!
n~s!5n1„12G~s!…1n2G~s!,

which realizes~32! and hence interpolates between the tw
initial and final Gaussian, coherent, oscillating states.

The phase function can now be calculated from~25! and
we have

S~j,s!5m@a~s!j21b~s!j1H~s!1u~s!#, ~35!

a~s!5
n8

4n
, b~s!5m82

mn8

2n
, H~s!5

n8m2

4n
. ~36!
1-7
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Since a, b, and H are now fixed by~34!, a comparison
between ~35! and ~31!, and in particular between th
asymptotic (s→6`) expressions of thej-independent term
of the phase, will suggest the following form for the arbitra
u(s) function:

u~s!5FEa1
2

4n1
sinS 2Es

n1
D2

E 2s

n1
G„12G~s!…

1FEa2
2

4n2
sinS 2Es

n2
D2

E 2s

n2
GG~s!2H~s!. ~37!

Finally the potential will have the form

Vc~j,s!5mF1

2
G~s!j22F~s!j1W~s!G , ~38!

G~s!5
E 2

n2
2

n9

2n
1

n82

4n2
, F~s!5m91mG,

~39!

W~s!5
Gm2

2
2

m82

2
2

E 2

n
2u8~s!,

where now all the terms are given by the previous relatio
As already remarked this potential has exactly the form~23!.

FIG. 1. The functiona(s) is the coefficient of thej2 term in the
phase function~35!. Notice that it goes quickly to zero, as require
outside the transition region of widthg arounds5t. Its negative
values are due to the choice of monotonically decreasing disper
n ~better collimation!.

FIG. 2. The functionb(s) is the coefficient of thej term in the
phase function~35!. Outside the transition region it oscillates,
required, with stable frequencies:v1 for s!t, and v2 for s@t.
The faster oscillation fors@t is due to the fact thatv2.v1.
01650
s.

The functionsa(s), b(s), G(s), F(s), and W(s), which
determine the potential, can now be explicitly calculated
our example from Eqs.~34!. Their analytic expressions ar
by far too long~albeit elementary!, however, their graphica
behavior is very simple and can be easily plotted. In parti
lar see Figs. 1–5 for a few typical diagrams displaying t
principal characteristics of these parameters which co
pletely define the transition. First of all the functionsa andb
show the behavior of the phase function: remark that it is
necessary to produce a plot for thej-independent part of the
phase since the relation~37! by definition imposes the righ
asymptotic behavior. Figure 1 shows thata(s) has a smooth
extremal value around the transition att, while it also
quickly goes to zero fors!t and s@t: hence no terms
depending onj2 remain asymptotically in the phase as r
quired by the form~27!. On the other hand Fig. 2 shows th
b(s) asymptotically has a sinusoidal behavior with differe
amplitudes and frequencies in the two zoness!t and s
@t: this also is in good agreement with the required form
the phase. As for the control potential, Fig. 3 indicates t
G(s), which represents the parameter of the harmonic p
~depending onj2) of Vc , smoothly goes fromv1

2 to v2
2

along the transition and sticks to these two constant va
outside the transition zone. From Figs. 4 and 5 we finally
that F(s) andW(s), which are, respectively, the coefficien
of the linear part and of thej-independent term in the contro

on

FIG. 3. The functionG(s) represents the square of the tim
dependent frequency of the harmonic, controlling potential~38!.
Reminding Eq.~32! and thatn2,n1 we havev2.v1.

FIG. 4. The functionF(s) represents the time-dependent coe
ficient of thej term in the harmonic, control potential~38!. The fact
that it quickly goes to zero outside the transition region is a con
quence of the relationv25E/n2 and of the choice~37! for the
function u(s).
1-8
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potential, are different from zero only around the transiti
at s5t, while they are everywhere zero far away fromt.
Also as a consequence the potentialVc has the required time
behavior since it is a simple harmonic potential fors!t and
s@t ~albeit with two different frequencies!, and shows some
extra terms only in a limited interval around the transitio
Of course this does not constitute the only potential we
obtain by this way. For example, the functionm(s), instead,
could be chosen in such a way that the oscillation of
center of the profile can be slower than the initial one,
spite the fact that the better collimation requires a final
tential associated to a frequencyv25E/n2 larger than the
initial one and then to a faster betatron oscillation with t
same amplitude. This can be achieved by keeping a suit
forcing partF(s) different from zero also fors@t: namely
in this case the final potential does not reduces itself t
simple harmonic one. It is easy to show that if the fin
oscillation has the generalized form

m~s!5a cos~vs!1
b

m
sin~vs!, ~40!

with v not coincident withE/n, the final forcing function
F(s) calculated from~38! will correspondingly be

F~s!5mS v22
E 2

n2D S a cosvs1
b

m
sinvsD . ~41!

In this case the potentials are more complicated but can
be suitably explored by means of our method. As an exam
we consider the case where the final state is characterize
two independent parameters:v2 for the frequency andn2 for
the packet spreading. Now a relation similar to~28! will no
longer be satisfied. As a consequence the choice~34! will be
changed in

m~s!5a1 cosS Es

n1
D „12G~s!…1a2 cos~v2s!G~s!,

~42!
n~s!5n1„12G~s!…1n2G~s!,

FIG. 5. The functionW(s) represents the coefficient of th
j-independent term in the harmonic, control potential~38!. Here too
the fact that it quickly goes to zero outside the transition region
consequence of the relationv25E/n2 and of the choice~37! for the
function u(s).
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while we get a new determination for the arbitraryu(s) func-
tion:

u~s!5FEa1
2

4n1
sinS 2Es

n1
D2

E 2s

n1
G„12G~s!…

1Fv2a2
2

4
sin~2v2s!2Ev2sGG~s!2H~s!. ~43!

The functions defining the time evolution of both the pha
and the potential can now be calculated once more and
find that the functionsa(s) andb(s) keep a form very simi-
lar to the previous one. Instead the newG(s) displays an
opposite behavior with respect to Fig. 3. In this case the fi
frequencyv2 is smaller than the initial frequencyv1 and
thus the betatron oscillations are suppressed. On the o
hand the shape is still of the form of a sigmoid. As for t
functionsF(s) and W(s) they show a different asymptoti
behavior as can be seen from Figs. 6 and 7. In particular
see that, as predicted,F(s) andW(s) no longer disappear fo
s@t, so that asymptotically we do not have a purely h
monic potential since now in~23! both the linear term and
that constant inj will be present for everys.t. However, it
is clear that other choices are always possible: for exam
the arbitrary functionu(s) could be defined so that in~38!

a

FIG. 6. This behavior of the functionF(s), different from that
of Fig. 4, is due to the fact that the relationv25E/n2 is no longer
satisfied and the choice~43! is taken for the functionu(s). The
nonvanishing oscillations ofF(s) in the asymptotic regions@t
allow one to reduce the otherwise naturally enhanced betatron
cillations.

FIG. 7. Here too, as for the functionF(s), the new behavior of
the functionW(s), different from that of Fig. 5, is due to the fac
that the relationv25E/n2 is no more satisfied and the choice~43! is
taken for the functionu(s).
1-9
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the j-independent termW(s) of the potentialVc be identi-
cally zero. Of course there would be a price to pay for th
in fact now in the phase functionS the j-independent term
will no longer follow an asymptotic behavior of the type~31!
since the relation~43! will no longer be satisfied. In the mos
general case of transitions between states with noncon
dispersion~strong focusing! it is clear that the procedure ca
also be suitably extended. In fact it is sufficient to exploit,
instance, the expression~34! for the interpolating dispersion
but with time dependent initial and final dispersionsn1(s)
andn2(s). The general form~38! of the controlling potential
is thus calculated, but with a new expression forn(t). Fi-
nally, also the initial and final laws of motion of the profi
center,m1(s) and m2(s), can always be chosen as in th
previously discussed example. However, in this case, a f

FIG. 8. The density~29! of the bunch as a function ofs andj.
Here the squeezing is performed with the constrains~32! between
the parametersv andn, and hence without control on the betatro
oscillations. Hence these oscillations are enhanced as a co
quence of the squeezing.

FIG. 9. At variance with Fig. 8, here the density~29! is
squeezed with no constrains of the type~32! between the param
etersv andn. As a consequence we were also able to slow dow
the same time the betatron oscillations.
01650
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ing partF(s) is needed to retain the oscillatory motion~40!
for s@t. In conclusions Figs. 8 and 9 show thes-evolution
of the density of the bunch. Both describe a squeezing of
beam, but Fig. 8 reproduces the case where the frequenc
the betatron oscillation is enhanced, while Fig. 9 is related
the case where these oscillations are reduced.

VI. CONCLUSIONS

In the first part of this paper we have applied to the c
lective dynamics of beams in particle accelerators a stab
analysis already developed for general particle systems.
analysis has allowed us to single out scaling factors rela
the parameters ruling the collective dynamics in the bea
with the microscopic scales.

In the second part of the paper we have considered
stability regime of a beam, in which the energy loss due
the radiation damping is on average compensated by the
ternal rf energy pumping. The collective beam dynamics
this regime is described by time-reversal invariant diffusi
processes~Nelson processes! which are obtained by a sto
chastic extension of the least action principle of classi
mechanics. The choice of the diffusion coefficient is dicta
by the unit of emittance determined in the first part of t
paper. The collective dynamics of beams is then descri
by two nonlinearly coupled hydrodynamic equations. It h
also been observed that the linearization of these equat
connects this approach to a Schro¨dinger-like ~quantumlike!
effective description of the beam dynamics previously dev
oped through different approaches.

In the last part of the paper we have shown that the tr
sition probabilities of Nelson processes can be exploited
control the collimation and the oscillations of the beam in t
quadrupole approximation, both in the weak focusing and
the strong focusing regimes. In this framework we have
plicitly computed the controlling potentials that realize som
relevant controlled evolutions. The controlling potentials c
be engineered by suitable tuning of the external rf and m
netic fields. We have considered evolutions that drive
beam from a less collimated to a better collimated state.
have furthermore shown that this goal can also be achie
without increasing the frequency of the betatron oscillatio
which can in fact be independently controlled during t
evolution. In the forthcoming papers we will study the e
tension of these control techniques beyond the quadru
approximation and address in detail applications to exist
machines, problems related to dynamical instabilities a
topics about the halo formation, a problem which has
cently been addressed in the framework of a quantum
approach@15#.

APPENDIX: MINIMAL ACTION AND SCALING
FACTORS FOR STABLE SYSTEMS

We consider a generic stable system confined in a reg
of space of linear dimensionR, constituted by a large numbe
N of identical particles of massm, and ruled by an attractive
classical~possibly effective! law of force F(r ). We intro-

se-

t
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duce a unit of actiona ~which will turn out to be minimal!
by the following relation:

a5mṽ2t. ~A1!

In this equationṽ denotes the characteristic mean veloc
per particle in the system, whilet is a characteristic micro
scopic time whose size must be self-consistently determ
~for details see Ref.@10#!. In order to obtain an explicit ex
pression fora, we then impose the following criteria of sta
bility. First, we require that the characteristic potential e
ergy of each particle be on average equal to its character
kinetic energy~virial theorem!:

L>mṽ2, ~A2!

whereL is the work performed in mean by the entire syste
on a single constituent. Then, if the system extends on
characteristic length scaleR we have, in order of magnitud

L>NF~R!R, ~A3!

whereF(R) is the force evaluated on a distance of the or
of magnitude of the linear global dimension of the syste
Relations~A2! and~A3! are now summarized by the follow
ing expression of the characteristic velocityṽ:

ṽ>ANF~R!R

m
. ~A4!
i-

,
. I
or

ti,
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We then define the macroscopic time scaleT associated to
the entire system, through the obvious relationṽ5R/T
~thereforeT has the meaning of a characteristic traveli
time for a particle inside the system!. We insert into Eq.~A1!
both the latter expression and the expression~A4!, obtaining
the following form for the~minimal! unit of action:

a>AmF~R!R3/2N1/2
t

T . ~A5!

We now introduce a second requirement for the mechan
stability, namely that due to the large number of particl
the unit of actiona not be sensibly dependent onN. As a
natural consequence, we are led to impose a relation betw
the microscopic characteristic timet and the macroscopic
characteristic traveling timeT of the form

t>
T

AN
. ~A6!

Finally, by inserting~A6! into Eq.~A5! we finally obtain the
~minimal! unit of action

a>m1/2R3/2AF~R!. ~A7!
,
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