
ARTICLE IN PRESS
0168-9002/$ - se

doi:10.1016/j.ni

�Correspond
E-mail addr
Nuclear Instruments and Methods in Physics Research A 561 (2006) 237–243

www.elsevier.com/locate/nima
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Abstract

We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the

stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of

introducing the generalized Student laws, namely non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will analyze

this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model

is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student

distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the

Lévy–Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in

intense beams.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The charged particle beams dynamics and their possible
halos are described in this paper in terms of stochastic
processes. To have time reversal invariance a dynamics
must be added; but since the position QðtÞ of our process is
Markovian and not derivable, we are obliged to drop the
momentum equation and to work in a configuration space.
Consequently the dynamics is introduced by means of a
stochastic variational principle. This scheme, the stochastic
mechanics (SM), is known for its application to classical
stochastic models for quantum mechanics [1,2], but is
suitable for a large number of other systems [3,4]. This
leads to a linearized theory summarized in a Schrödinger-
like (S-‘) equation as the basis for a model of beam
dynamics [5]. The space charge effects have been intro-
duced in more recent papers [6] by coupling this S-
‘ equation with the Maxwell equations.

A new role in the beam dynamics can be played by non-
Gaussian Lévy distributions [7]. Their today’s popularity is
e front matter r 2006 Elsevier B.V. All rights reserved.
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mainly confined to the stable laws [3,8]. We introduce
instead a family of non-Gaussian Lévy laws which are
infinitely divisible but not stable [9]: the generalized Student
laws. This has two advantages: first, at variance with stable
non-Gaussian laws, the Student laws can have finite

variances; second, the Student laws can incrementally
approximate the Gaussian laws. On the other hand an
i.d. law is all that is required to build the Lévy processes

used to represent the evolution of our particle beam. The
Student laws will be used here in two ways:
�
 in the framework of the traditional SM, with random-
ness supplied by a Gaussian Wiener noise, we study the
self-consistent potentials which can produce a Student

distribution as stationary transverse distribution of a
particle beam, and we focus our attention on the
increase of the probability of finding the particles far
away from the beam core.

�
 we define a Lévy–Student process, and we show that
these processes can help to explain how a particle can be
expelled from the bunch by means of some kind of hard
collision. In fact the trajectories of our Lévy–Student
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process show the typical jumps of the non-Gaussian Lévy

processes: a feature that we propose to use as a model
for the halo formation.

2. Stochastic beam dynamics

The position QðtÞ of a representative particle in the beam
is a process ruled by the Itô stochastic differential equation
(SDE)

dQðtÞ ¼ vðþÞðQðtÞ; tÞdtþ
ffiffiffiffi
D
p

dWðtÞ, (1)

where vðþÞðr; tÞ is the forward velocity, dWðtÞ is the
increment process of a standard Wiener noise, the diffusion
coefficient D is constant, and the action a ¼ 2mD will be
later connected to the emittance of the beam. To add a
dynamics we introduce a stochastic least action principle
and we get a Nelson process [2]. If rðr; tÞ is the pdf of QðtÞ,
and we define the backward, current and osmotic velocities

vð�Þ ¼ vðþÞ � 2D
rr
r

v ¼
vðþÞ þ vð�Þ

2
; u ¼

vðþÞ � vð�Þ

2

from the stochastic least action principle we get that the
current velocity is irrotational

mvðr; tÞ ¼ rSðr; tÞ (2)

and the Lagrange equations of motion for r and S are

qtr ¼ �
1

m
r � ðrrSÞ, (3)

qtS ¼ �
1

2m
rS2 þ 2mD2 r

2 ffiffiffi
r
pffiffiffi
r
p � V , (4)

where V is an external potential. This system is time-
reversal invariant; in fact the forward velocity vðþÞðr; tÞ is
not given a priori, but it is dynamically determined by the
evolution equation (4). With the representation

Cðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rðr; tÞ

p
eiSðr;tÞ=a; a ¼ 2mD (5)

the coupled equations (3) and (4) become a single linear
equation of the form of the Schrödinger equation, with the
Planck action constant replaced by a:

ia@tC ¼ �
a2

2m
r2cþ VC. (6)

We analyzed in several papers [10] both the stationary and
the non-stationary behavior of this S-‘ equation.

3. Self-consistent equations

In this SM scheme jCðr; tÞj2 is the pdf of a Nelson
process; hence when the N-particles are a pure ensemble,
NjCðr; tÞj2 d3r is the number of particles in a small
neighborhood of r. Our N particles, however, are not a
pure ensemble due to their mutual e.m. interaction: we
should take into account the space charge effects by
coupling the S-‘ equation with the Maxwell equations [6].
The space charge and current densities are

rscðr; tÞ ¼ Nq0jCðr; tÞj
2, (7)

jscðr; tÞ ¼ Nq0

a
m

IfC�ðr; tÞ=Cðr; tÞg. (8)

so that he e.m. potentials ðAsc;FscÞ and C obey the
following system of wave equations and gauge conditions:

0 ¼ r � Ascðr; tÞ þ
1

c2
qtFscðr; tÞ,

m0jscðr; tÞ ¼ r
2Ascðr; tÞ �

1

c2
q2tAscðr; tÞ,

rscðr; tÞ
�0
¼ r2Fscðr; tÞ �

1

c2
q2tFscðr; tÞ,

i
a
2m

qtC ¼ iar �
q0

c
ðAsc þ AeÞ

h i2
C

þ q0ðFsc þ FeÞC.

For stationary wave functions

Cðr; tÞ ¼ cðrÞe�iEt=a (9)

with potential energies V eðrÞ ¼ q0FeðrÞ; V scðrÞ ¼ q0FscðrÞ,
for cylindrical symmetry with constant pz and beam length
L

cðrÞ ¼ wðr;jÞ
eipzz=affiffiffiffi

L
p ; pz ¼

2kpa
L

; k ¼ 0;�1; . . .

for N ¼ N=L, ET ¼ E � p2
z=2m, wðr;jÞ ¼ uðrÞFðjÞ, zero

angular momentum, and dimensionless quantities (Z; l are
dimensional constants)

s ¼
r

l
; b ¼

ET

Z
; x ¼

Nq2
0

2p�0Z
ðperveanceÞ

wðsÞ ¼ luðlsÞ; vðsÞ ¼
V scðlsÞ

Z
; veðsÞ ¼

V eðlsÞ

Z

we get the radial, stationary, cylindrical, dimensionless
equations

sw00ðsÞ þ w0ðsÞ ¼ ½veðsÞ þ vðsÞ � b�swðsÞ, (10)

sv00ðsÞ þ v0ðsÞ ¼ �xsw2ðsÞ. (11)

We can look at these equations in two different ways:
�
 ve is a given external potential and we solve the system
for w and v: no simple analytical solution—playing the
role of the Kapchinskij–Vladimirskij distribution—is
available.

�
 w is a given radial distribution and we solve the system
for ve and v: analytical solutions are available.

We adopted the first in previous papers [6] where we
numerically solved Eqs. (10) and (11); here we will instead
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elaborate a few ideas from the second standpoint. In fact
the Poisson equation (11) with vð0þÞ ¼ v 0ð0þÞ ¼ 0 gives the
space charge potential

vðsÞ ¼ �x
Z s

0

dy

y

Z y

0

xw2ðxÞdx (12)

and the first equation (10) gives the external potential

veðsÞ ¼ v0ðsÞ þ x
Z s

0

dy

y

Z y

0

xw2ðxÞdx, (13)

v0ðsÞ ¼
w00ðsÞ

wðsÞ
þ

1

s

w0ðsÞ

wðsÞ
þ b, (14)

where v0ðsÞ is the zero perveance potential (x ¼ 0) that we
would get without space charge.

4. Self–consistent potentials

First take as stationary distribution the radial ground
state of a harmonic oscillator: for zero perveance

u0ðrÞ ¼
e�r2=4s2

s
; ET ¼ ao, (15)

V eðrÞ ¼
mo2

2
r2 ¼

a2

8ms4
r2; s2 ¼

a
2mo

(16)

and in dimensionless notation (Z ¼ ao=2; l ¼ s
ffiffiffi
2
p

):

wðsÞ ¼
ffiffiffi
2
p

e�s2=2; b ¼ 2; veðsÞ ¼ s2. (17)

Then, by taking into account the space charge, the poten-
tials that produce (17) as stationary wave function are (see
Fig. 1)

vðsÞ ¼ �
x
2
½logðs2Þ þ C� Eið�s2Þ�, (18)

v0ðsÞ ¼ s2, (19)

veðsÞ ¼ s2 þ
x
2
½logðs2Þ þ C� Eið�s2Þ�, (20)

where C � 0:577 is the Euler constant and

EiðxÞ ¼

Z x

�1

et

t
dt; xo0
2 4 6 8 10
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Fig. 1. The dimensionless potentials vðsÞ (thin line), v0ðsÞ ¼ s2 (dashed

line) and veðsÞ (thick line) for x ¼ 20. The self-consistent wave function

coincides with that of a harmonic oscillator for zero perveance (17).
is the exponential–integral function. On the other hand, if a
halo is produced by large deviations from the beam axis,
we alternatively suppose that the stationary transverse
distributions are non-Gaussian: consider the family of
univariate, two-parameters probability laws Sðn; a2Þ with
pdfs

f ðxÞ ¼
Gðnþ 1=2Þ

Gð1=2ÞGðn=2Þ
an

ðx2 þ a2Þ
nþ1=2

; n40 (21)

with mode and median in x ¼ 0; a is a scale parameter,
while n rules the power decay of the tails: for large x the
tails go as x�ðnþ1Þ. Comparison with a Gauss law Nð0;s2Þ
is given in Fig. 2: when n grows the difference between the
pdfs becomes smaller. Since Sðn; nÞ with n ¼ 1; 2; . . . are the
classical t-Student laws, we call Sðn; a2Þ generalized Student
laws. They have finite variance

s2 ¼
a2

n� 2
. (22)

only when n42. The circularly symmetric, bivariate
Student laws S2ðn; a2Þ are

f ðx; yÞ ¼
n
2p

an

ðx2 þ y2 þ a2Þ
nþ2=2

. (23)

They have non-correlated, (but not independent), margin-
als Sðn; a2Þ. The radial transverse beam distribution with
finite variance s2 (n42) is then

rðrÞ ¼ r
n

2pL

½ðn� 2Þs2�n=2

½r2 þ ðn� 2Þs2�nþ2=2

and in dimensionless form

w2ðsÞ ¼
2n

n� 2

1

ð1þ z2Þnþ2=2
; z ¼

s
ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffi
n� 2
p , (24)

with dimensional constants Z ¼ a2=4ms2 and l ¼ s
ffiffiffi
2
p

.
Then, with b ¼ 2þ 8=ðn� 2Þ, the potentials are

vðsÞ ¼ �
x
2

2z�n

n 2F1

n
2
;
n
2
;
nþ 2

2
;�

1

z2

� ��

þ log z2 þ Cþ c
n
2

� ��
, ð25Þ
-4 -2 2 4

0.1

0.2

0.3

0.4

x

Fig. 2. The Gauss pdf Nð0; 1Þ (dashed line) compared with the Sð2; 2Þ
(thick line) and the Sð10; 12Þ (thin line). The flexes of the three curves

coincide.
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Fig. 5. The total external potential veðsÞ (27) that should be applied to get

a stationary Student transverse distribution S2ð22; 20s2Þ (solid line),

compared with that (20) needed for a Gauss distribution (dashed line).
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v0ðsÞ ¼
nþ 2

n� 2

z2ð4z2 þ nþ 10Þ

2ð1þ z2Þ2
, (26)

veðsÞ ¼ v0ðsÞ � vðsÞ, (27)

where 2F1ða; b; c;wÞ is a hypergeometric function and
cðwÞ ¼ G0ðwÞ=GðwÞ is the logarithmic derivative of the
Euler Gamma function (digamma function). Comparing
them with the potentials of a Gaussian distribution we see
that the space charge potentials vðsÞ (Fig. 3) are similar:
both behave as �x log s for s!þ1. On the other hand
the zero perveance potentials v0ðsÞ (Fig. 4) look different
for large s, but the difference fades away for large n: in the
Gauss case v0ðsÞ diverges as s2, while in the Student case it
goes to b as s�2. The total external potentials veðsÞ ¼

v0ðsÞ � vðsÞ are plotted in Fig. 5. Hence, even if the
potential near the beam axis is harmonic, deviations from
this behavior in a region removed form the core can
produce a deformation of the distribution from the
Gaussian to the Student. We can finally calculate the
probability PðcÞ of being beyond a distance cs from the
beam axis: in the Gauss case we get

PðcÞ ¼ e�c2=2; Pð10Þ ’ 1:9� 10�22
1 2 3 4 5

-40
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s

Fig. 3. The space charge potentials vðsÞ respectively for a Student (solid

line) distribution S2ð22; 20s2Þ, and for a Gauss (dashed line) distribution.

Dimensionless perveance x ¼ 20.
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Fig. 4. The zero perveance potential v0ðsÞ of a Student S2ð22; 20s2Þ (solid
line) compared with that of a Gauss law (dashed line) with the same

behavior near the beam axis.
while in the Student case

PnðcÞ ¼ 1þ
c2

n� 2

� ��n=2 P10ð10Þ ’ 2:2� 10�6;

P22ð10Þ ’ 2:8� 10�9:

(

Hence, for N ¼ 1011 particle per meter of beam, we find
beyond 10s practically no particle in the Gaussian case, but
between 103 and 105 in the Student case. We got similar
numbers [6] in the numerical solutions for x ¼ 20.
5. Lévy–Student processes

The Student laws Sðn; a2Þ are a family of Lévy infinitely
divisible (i.d.) laws. Present interest about non-Gaussian
Lévy laws (from physics to finance) is mostly confined to
the stable laws: a sub-family of the i.d. laws. The i.d. laws
constitute both the more general form of possible limit laws
for the generalized central limit theorem, and the class of
all the laws of the increments for every stationary,
stochastically continuous, independent increments process
(Lévy process). Non-Gaussian Lévy process have trajec-
tories with moving discontinuities (e.g. compound Poisson
process): a possible model for the relatively rare escape of
particles from the beam core. In the following we will limit
ourselves to 1-DIM systems.
The relevant mathematical concepts used in this paper

are better discussed in the framework of the theory of the
addition of independent random variables (r.v.): for more
details see [11]. A law L with characteristic function
(ch.f.) j is i.d. when for every n there is a law Ln with
ch.f. jn such that j ¼ jn

n, i.e. when the r.v. X can always
be decomposed in the sum of n independent and identically
distributed r.v.’s. The laws Ln, however, are not in general
of the same type as L: two laws are said to be of the same
type when they differ by a centering and a rescaling,
namely eiakjðbkÞ for every a and b40. A law L is stable
when it is i.d. and the component laws are of the same type
as L; more precisely a law is stable if for every b; b040,
there exist a and c such that

jðckÞ ¼ eiakjðbkÞjðb0kÞ.
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Gauss and Cauchy laws are stable; Poisson laws are only
i.d. The Lévy–Khintchin formulas give the ch.f.s of i.d. and
stable laws. For stable laws these ch.f.s are explicitly
known in terms of elementary functions, while for i.d. laws
the ch.f.s are given through an integral containing a Lévy
function LðxÞ associated to every particular law. For most
i.d. laws the Lévy functions are not known.

Let us consider the sequence of r.v.s X n;k with n 2 N and
k ¼ 1; . . . ; n with X n;1; . . . ;X n;n independent for every n.
The modern formulation of the central limit problem asks
to find the more general laws which are limits of the laws of
the consecutive sums

Sn ¼
Xn

k¼1

X n;k. (28)

Under very general technical conditions the central limit
theorem now states that the family of all the limit laws of
the consecutive sums (28) coincides with the family of i.d.
laws. The stable laws come into play only when we
specialize the form of our consecutive sums: when we have

X n;k ¼
X k

an

�
bn

n
,

where an and bn are sequences of numbers, and X k are
independent r.v.s, the consecutive sums take the form of
the usual normed sums (centered and rescaled sums of
independent r.v.s)

Sn ¼
S�n
an

� bn; S�n ¼
Xn

k¼1

X k. (29)

Then, if the X k are also identically distributed, the family
of the limit laws of the normed sums (29) coincides with the
family of the stable laws. The classical (Gaussian) central
limit theorem is an example of convergence toward a stable
law; on the other hand the Poisson theorem (convergence
of Binomial laws toward Poisson laws) is an example of
convergence toward an i.d. law.

The general formulation of the central limit theorem is
strictly connected to the definition of the processes with
independent increments (decomposable processes). It is
apparent in fact that if the increments DX ðtÞ ¼ X ðtþ DtÞ �

X ðtÞ for non superposed intervals are independent, the
previous forms of the central limit theorem imply that the
laws of the increments must be i.d. laws. Moreover, since
the decomposable process are also Markov processes, the
laws of the increments are also all that is needed to
completely define them. If a decomposable processes X ðtÞ is
stationary (namely the law of X ðtþ sÞ � X ðsÞ does not
depend on s) and stochastically continuous (namely for
every t we have X ðtþ DtÞ � X ðtÞ ! 0 in probability when
Dt! 0) we will call it a Lévy process. Remark that its
trajectories can now have moving—as opposed to fixed—
discontinuities: for instance a Poisson process is a Lévy
process since, despite its discontinuities, it is stochastically
continuous. In fact these discontinuities do not impair the
stochastic continuity of the process because they are
moving (as opposed to fixed) discontinuities. On the other
hand it is possible to prove that only the Gaussian Lévy
processes (for example the Wiener, or the Ornstein–Uh-
lenbeck processes) are pathwise continuous, namely: almost
every sample path is everywhere continuous (there are not
even moving discontinuities).
If jðkÞ is i.d. and T is a time constant, then ½jðkÞ�Dt=T is

the ch.f. of DX ðtÞ of a Lévy process with stationary
transition pdf

pðx; tjy; sÞ ¼
1

2p
PV

Z þ1
�1

eikðx�yÞ½jðkÞ�t�s=T dk. (30)

Almost all trajectories are continuous with the exception of
a countable set of moving jumps. If LtðxÞ is the
Lévy–Khintchin function of the i.d. law of the increment
X ðsþ tÞ � X ðsÞ, and ntðxÞ is the random number of the
jumps in ½s; sþ tÞ of height in absolute value larger than
x40, then jLtðxÞj ¼ EðntðxÞÞ, namely: the Lévy–Khintchin
function is a measure of the frequency and height of the
trajectory jumps.
The ch.f. of a Student law Sðn; a2Þ is

jðkÞ ¼ 2
jakjn=2Kn=2ðjakjÞ

2n=2Gðn=2Þ
, (31)

where KaðzÞ is a modified Bessel function. These laws are
i.d., but in general not stable. That notwithstanding we get
two advantages:
�
 all Student laws with n42 have a finite variance, while
every stable, non-Gaussian law has divergent variance;

�
 the stable, non-Gaussian laws decay as jxj�a�1 with
ao2, while the Student laws go as jxj�n�1 with n40; this
allows the Student laws to approximate the Gaussian
behavior as well as we want.

A Lévy process defined by the ch.f. (31) will be called in the
following a Lévy–Student process. Its transition pdf
pðx; tjy; sÞ is obtained from (30) and (31): its knowledge is
enough to calculate everything of our process, but in
practice the integral must be treated numerically. For t�

s ¼ T pðx; tjy; sÞ is a Student Sðn; a2Þ: we can then produce
sample trajectory simulations by taking T as the time step,
since the increments are exactly Student distributed when
observed at the (arbitrary) time scale T.
We produce a simplified model which compares the

simulated solutions of the following two SDEs:

dX ðtÞ ¼ vðX ðtÞÞdtþ dW ðtÞ, (32)

dY ðtÞ ¼ vðY ðtÞÞdtþ dSðtÞ, (33)

where W ðtÞ is a Wiener process, SðtÞ is a Lévy–Student
process, and vðxÞ ¼ �bxHðq� jxjÞ for given b40 and q40
with H the Heaviside function. This flux will attract the
trajectory toward the origin when jxjpq, and will allow the
movement to be completely free for jxj4q. In our
simulations DY ðtÞ of (33) is Student Sð4; 1Þ with s ¼ 0:71,
while DW ðtÞ of (32) is Gaussian with the same s. Their pdfs
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Fig. 9. Rare, but possible trajectory of a stationary, Student process: here

the particle definitely drifts away from the core (n ¼ 4).
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look not very different; but that notwithstanding the
process Y ðtÞ differs in several respects from X ðtÞ. For b ¼

0:35 and q ¼ 10 the Figs. 6–9 show the typical trajectories
of a 104 steps solution X ðtÞ and Y ðtÞ. In the Gaussian case
with s smaller than q the trajectories always stay inside the
beam core, and the process is essentially an Ornstein–Uh-
lenbeck position process. In the Student case the trajec-
tories: show a wider dispersion and a few larger spikes;
have the propensity to make occasional excursions far
away from the beam core; and finally seldom they also
definitely drift away from the core. In fact the trajectories
of a non-Gaussian Lévy process are only stochastically,
and not pathwise continuous and hence they contain
occasional jumps. This feature of a Lévy–Student process
suggests to adopt this model to describe the rare escape of
particles away from the beam core.
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-2

2

4

6

Fig. 6. Typical trajectory of a stationary, Gaussian (Ornstein–Uhlenbeck)

process. To compare it with the Student trajectory, the vertical scale has

been set equal to that of Fig. 7.
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Fig. 7. Typical trajectory of a stationary, Student process (n ¼ 4 and

a ¼ 1).
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Fig. 8. Occasional trajectory of a stationary, Student process with a

temporary excursion out of the core (n ¼ 4).
6. Conclusions

Several problems are open along this line of research.
First, we should find both the Lévy–Khintchin function of
the Student laws to fine tune the frequency and the size of
the jumps, and the increment laws of the Student process at
different time scales. Second, it is important to have the
integro-differential form of the Chapman–Kolmogorov
equation to analyze the time evolution of the process. Then
it is necessary to add a dynamics to have controlled
diffusions: namely to build a generalized SM for the
Lévy–Student processes. Finally, we must search for
empirical or numerical evidence to support the hypothesis
that the path increments of a beam are in fact distributed
according to a Student law. About this last problem it is
interesting to point out that a few numerical evidences
begin to emerge [12] which confirm our conjecture.
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