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Abstract
We analyse the Lévy processes produced by means of two interconnected
classes of nonstable, infinitely divisible distribution: the variance gamma
and the Student laws. While the variance gamma family is closed under
convolution, the Student one is not: this makes its time evolution more
complicated. We prove that—at least for one particular type of Student
processes suggested by recent empirical results, and for integral times—the
distribution of the process is a mixture of other types of Student distributions,
randomized by means of a new probability distribution. The mixture is such
that along the time the asymptotic behaviour of the probability density functions
always coincide with that of the generating Student law. We put forward the
conjecture that this can be a general feature of the Student processes. We finally
analyse the Ornstein-Uhlenbeck process driven by our Lévy noises and show a
few simulations of it.
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1. Introduction

Recently the Lévy processes have enjoyed considerable popularity in several different fields
of research from statistical physics to mathematical finance (Paul and Baschnagel (1999),
Mantegna and Stanley (2001), Barndorff-Nielsen et al (2001) and Cont and Tankov (2004)
are just a few examples of books reviewing the large body of literature on this subject). In the
former field, however, the interest has been generally confined to α-stable processes which are
an important particular sub-class of Lévy processes (Bouchaud and Georges 1990, Metzler and
Klafter 2000, Paul and Baschnagel 1999, Woyczyński 2001), while studies about nonstable,
infinitely divisible Lévy processes abound mainly in the latter field (see for example Cont
and Tankov 2004 and references quoted therein). The appeal of the α-stable distributions
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is justified by the properties of scaling and self-similarity displayed by the corresponding
processes, but it must also be remarked that these distributions show a few features that partly
impair their usefulness as empirical models. First of all the non-Gaussian stable laws always
have infinite variance. This makes them rather suspect as a realistic tool and prompts the
introduction of truncated stable distributions which, however, are no longer stable. Then the
range of the x decay rates of the probability density functions cannot exceed x−3, and this
too introduces a particular rigidity in these models. On the other hand the more general Lévy
processes are generated by infinitely divisible laws and do not necessarily have these problems,
but they can be more difficult to analyse and to simulate. Beside the fact that they do not have
natural scaling properties, the laws of their increments could be explicitly known only at one
time scale. In fact their time evolution is always given in terms of characteristic functions, but
the marginal densities may not be calculable. This is a feature, however, that they share with
most stable processes, since the probability density functions of the non-Gaussian stable laws
are explicitly known only in precious few cases.

The need to go beyond the processes generated by stable distributions stems also from other
recent advances in the field of the fractional differential equations. The evolution equations
of the Lévy processes can be put in terms of pseudo-differential operators whose symbols are
just the characteristic exponents of the processes (Jacob and Schilling 2001, Cont and Tankov
2004). The most popular form taken by these equations is that of the fractional differential
equations, and this generalization of the diffusion equations can be put in connection with
Lévy noises with non-Gaussian stable distributions (Gorenflo and Mainardi 1998a, 1998b,
Metzler and Klafter 2000). It has been put in evidence in a few papers (Chechkin et al 2003,
2004), however, that in the case of Lévy flights confined by symmetric quartic potentials
the stationary probability density functions show two unexpected properties: in fact not only
they are bimodal, but they also have a finite variance, differently from what happens to the
non-Gaussian, stable law of the system noise. This suggests that, under particular dynamical
conditions, the stochastic evolutions produced by stable Lévy noises end up in nonstable
distributions, and hence hints to a new physical interest beyond the pale of the stable laws.

Some new applications for the Lévy, infinitely divisible but not stable processes begin also
to emerge in other physical domains (Cufaro Petroni et al 2005, 2006, Vivoli et al 2006): as we
will see in the following the statistical characteristics of some recent model of the collective
motion in the charged particle accelerator beams seem to point exactly in the direction of some
kind of Student infinitely divisible process. At the present stage of our inquiry the proposed
model for the particle beams is only phenomenological and it lacks a complete, underlying,
physical mechanism producing the noise. This however brings to the fore the problem of the
dynamical description of complex systems. The infinitely divisible Lévy processes with a
jump component are indeed interesting also in the light of the connection established between
Markov processes and quantum phenomena by the stochastic mechanics. This latter is a
model universally known for its original application to the problem of building a classical
stochastic model for quantum mechanics (Nelson 1967, 1985, Guerra 1981, Morato 1982,
Guerra and Morato 1983), but in fact it is a very general model which is suitable for a large
number of stochastic dynamical systems (Albeverio et al 1983, Paul and Baschnagel 1999,
Cufaro Petroni et al 1999, 2000, 2003, 2004). As recently proposed, a stochastic mechanics
with jumps driven by a non-Gaussian Lévy process could find applications in the physical and
technological domain (Cufaro Petroni et al 2005, 2006). The presence of jumps could for
instance be instrumental in building reasonable models for the formation of halos in beams
of charged particles in accelerators. On the other hand this would not be the first time that
Lévy processes find applications in quantum theory since they have already been used to build
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models for spinning particles (De Angelis and Jona-Lasinio 1982), for relativistic quantum
mechanics (De Angelis 1990), and in stochastic quantization (Albeverio et al 2001).

The standard way to build a stochastic dynamical system is to modify the phase space
dynamics by adding a Wiener noise B(t) to the momentum equation only, so that the usual
relations between position and velocity are preserved:

m dQ(t) = P(t) dt, dP(t) = F(t) dt + β dB(t).

In this way we get a derivable, but non-Markovian position process Q(t). An example of
this approach is that of a Brownian motion in a fluid described by an Ornstein-Uhlenbeck
system of stochastic differential equations. Alternatively we can add a Wiener noise W(t)

with diffusion coefficient D directly to the position equation:

dQ(t) = v(+)(Q(t), t) dt +
√

D dW(t)

and get a Markovian, but not derivable Q(t). In this way the stochastic system is reduced to
a single stochastic differential equation since we are obliged to drop the second (momentum)
equation. The standard example of this reduction is the Smoluchowski approximation of the
Ornstein-Uhlenbeck process in the overdamped case. As a consequence we will now work
only in a configuration, and not in a phase space; but this does not prevent us from introducing
a dynamics either by generalizing the Newton equations (Nelson 1967, 1985, Guerra 1981),
or by means of a stochastic variational principle (Guerra and Morato 1983). From this
stochastic dynamics, which now notably enjoys a measure of time-reversal invariance, two
coupled equations can be derived which are equivalent to a Schrödinger equation, prompting
the idea of a stochastic foundation of quantum mechanics. In fact the stochastic mechanics
can be used to describe more general stochastic dynamical systems satisfying fairly general
conditions: it is known since longtime (Morato 1982), for example, that for any given diffusion
there is a correspondence between diffusion processes and solutions of this kind of Schrödinger
equations where the Hamiltonians come from suitable vector potentials. The usual Schrödinger
equation, and hence true quantum mechanics, is recovered when the diffusion coefficient
coincides with h̄/2m, namely is connected to the Planck constant. However we are interested
here not only in a stochastic model of quantum mechanics, but also to the general description
of complex systems as a particle beams, and to this end it would be very interesting—as
already remarked—to be able to generalize the stochastic mechanical scheme to the case of
non-Gaussian Lévy noises. The road to this end, however, is fraught with technical difficulties,
so that a better understanding of the possible underlying Lévy noises should be considered as
a first, unavoidable step.

In this light the aim of this paper is to study a few examples of nonstable, infinitely
divisible processes, and in particular we will focus our attention on the Student processes.
Since the Student family of laws is infinitely divisible but nonclosed under convolution the
process distribution will not be Student at every time. We will show however that, at least in
particular cases, the process transition law is a mixture of a finite number of Student laws, and
it is suggested that this could be a general feature of the Student processes. On the other hand
it can also be seen that for every finite time the spatial asymptotic behaviour always is the
same as that of the Student distribution at the characteristic time scale; and this turns out to be
exactly the behaviour put in evidence by Vivoli et al (2006) in the solutions of the complex
dynamical system used to study the behaviour of beams of charged particles in accelerators.

We will limit our considerations to one-dimensional models without going into the
problem of the dependence structure of a multivariate process (see for example Cont and
Tankov 2004), and we will not pretend any completeness or generality: our aim is rather to
present the features of a few selected processes to gain a deeper insight into their possible
general behaviour. The paper is organized as follows: in section 2 we recall a few, well-known
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facts about the Lévy processes and in particular the connection between the transition function
p(x, t |y, s) and a triplet of functions A(y, s), B(y, s) and W(x|y, s) characteristic of a Lévy
process. We also propose a different simplified, heuristic procedure to find the explicit form of
A,B and W : a procedure not completely general, but which works well enough for the rather
regular transition functions discussed in this paper. In the section 3 we analyse the behaviour
of two families of laws (the variance gamma, and the Student laws) which are particular limit
cases of a larger class of infinitely divisible laws: that of the generalized hyperbolic laws which
received considerable attention in recent years (Raible (2000), Eberlein and Raible (2000),
Eberlein (2001), Cont and Tankov (2004), and references quoted therein). Our two families are
in a certain sense conjugate to each other since the roles of their probability density functions
and characteristic functions are interchanged. Let us remark here that all the laws that we take
in consideration in this paper are infinitely divisible, but—with a few notable exceptions—not
stable. We then pass in section 4 to study the Lévy process produced by the variance gamma
distributions: since this class is closed under convolution, it will be easy enough to find both
the characteristic triplet, and the laws of the increments for every value of the time interval.
Apparent similarities notwithstanding the case of the Student processes discussed in section 5
are rather different from the previous one. In fact the Student family is not even closed under
convolution so that we do not have explicit expressions for the transition laws at every time
scale. As a consequence we will restrict our attention to a subclass of Student processes by
choosing particular (but not trivial) values for the parameters, and we will get results about (a)
the spatial asymptotic behaviour of the transition functions at every time, (b) the explicit form
of the transition functions at time intervals which are integral multiples of a characteristic
time constant and (c) the form of the Lévy triplet of functions. In particular we will find
that, at discrete times, the process law turns out to be a mixture of a finite number of Student
distributions by means of a new kind of time-dependent discrete probability distribution. We
finally discuss in section 6 some pathwise properties of our nonstable processes by showing
also a few simulations of the Ornstein-Uhlenbeck processes driven by our Lévy noises, and
conclude with some remark about the perspectives of future research.

2. Lévy processes generated by id laws

A Lévy process X(t) is a stationary, stochastically continuous, independent increment Markov
process. It is well known that the simplest way to produce its transition laws is to start with
a type of infinitely divisible (id) distributions (see, Gnedenko and Kolmogorov (1968), Loève
(1978), (1987) and Sato (1999) for a more recent monograph): if we focus our attention on
centred laws, a type of these generating laws can be given by the family of their characteristic
functions (chf ) ϕ(au) with a spatial scale parameter a > 0. The chf of the transition law of
our stationary process in the time interval [s, t] will then be

�(au, t − s) = [ϕ(au)](t−s)/T , (1)

where T is a suitable constant playing the role of a time scale parameter, while the transition
probability density function (pdf ) with initial condition X(s) = y, P-q.o. will be recovered
by an inverse Fourier transform

p(x, t |y, s) = 1

2π
lim

M→+∞

∫ M

−M

�(au, t − s) e−i(x−y)u du

= 1

2π
lim

M→+∞

∫ M

−M

[ϕ(au)](t−s)/T e−i(x−y)u du (2)

and—because of stationarity—will only depend on the differences x − y and t − s.
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The parameters a and T play a role in the scale invariance properties of the process.
When the generating family of id laws is closed under convolution the transition laws remain
within this same family all along the evolution, and the changes are summarized just in a
time dependence of some parameter of the pdf. But in the case of stable laws there is more.
If for instance—as in the Wiener process—the generating type of law is the normal, centred
N (0, a) it is well known that the transition law (with y = 0 and s = 0 for simplicity)
is just N (0, a

√
t/T ), namely it is always normal, but with a time-dependent parameter:

the variance, changing linearly with the time as Dt , where D = a2/T is the diffusion
coefficient. This means that the overall behaviour of the process is ruled only by D, and
not by a and T separately. As a consequence the particular values of a and T, namely the
particular units of measurement, are immaterial and we have the scale invariance. This gives
to the Wiener process its property of self-similarity: no matter at what space-time scale
(namely irrespectively to the values you give to a and T, provided that D = a2/T keeps
the same value) you choose to observe the process, the trajectories always will look the
same.

These properties of the Wiener process are shared by all the other Lévy processes generated
by stable—even non-normal—laws, but not in general by the processes generated by other,
nonstable id laws. It must be remarked, however, that all the non-Gaussian stable laws do
not have a finite variance, and show a rather restricted range of possible decays for large x:
features that partly impair a realistic use of them in empirical situations. On the other hand
families of nonstable, id laws can still be closed under convolution, as it is for instance the
case of the compound Poisson laws P(λ, a;χ) with chf ϕ(au) = eλ[χ(au)−1], where χ(u) is
the chf of the jump distribution. This means again that the evolution of the transition law
of a compound Poisson process can always be summarized in the time dependence of the
Poisson parameter as P(λt/T , a;χ), but with respect to the Wiener case there are important
differences: while all the transition laws of a Wiener process belong to the same (normal) type,
Poisson transition laws with different parameters do not. The normal laws are indeed stable,
while the Poisson laws are only id, and Poisson laws with different values of λ do not belong
to the same type. Moreover, while a change in the T value can always be compensated by a
corresponding change of λ so that λ/T remains the same, the roles of a and T in a compound
Poisson process, at variance with the Wiener case, remain completely separated and we do not
have the same kind of self-similarity.

The less simple case of processes is finally that generated by families of id laws which
are not even closed under convolution, since in this event the transition distributions do not
remain within the same family, and the overall evolution cannot be summarized just in the
time dependence of some parameter. As we will see in the following this is far to be an
uncommon situation and this paper is mainly devoted to the analysis of particular processes of
this kind. It must be kept in mind that in this last case the role of the scale parameters becomes
relevant since a change in their values can no longer be compensated by reciprocal changes
in other parameters. This means that, to a certain extent, a change in these scale constants
produces different processes, so that for instance we are no longer free to look at the process
at different time scales by presuming to see the same features. We should remark, on the other
hand, that—at variance with the stable, non-Gaussian case—the pdf’s of the id distributions
can have both a wide range of decay laws for |x| → +∞, and a finite variance σ 2. For these
Lévy processes generated by id laws with finite variance σ 2 it is finally easy to see that—due
to the fact that the process has independent increments—the variance always is finite and
grows linearly with the time as σ 2t/T : a feature typical of the ordinary (non-anomalous)
diffusions.



2232 N Cufaro Petroni

2.1. The decomposition of a Lévy process

The evolution equations of a process driven by a Lévy noise can be given either as partial
integro-differential equations (PIDE) for the transition functions of the process (Loève 1978,
Gardiner 1997), or as stochastic differential equations (SDE) for its trajectories (Applebaum
2004, Øksendal and Sulem 2005, Protter 2005). In both cases the structure of the evolution is
given in terms of some characteristic triplet of functions. For simple Lévy process of course
this triplet will give rise just to its Lévy decomposition in a drift, a Brownian and a jump term.
In this paper we will choose to follow the description in terms of PIDE, and it is important to
recall how this characteristic triplet is related to the transition functions. We will not attempt
to give here a complete and rigorous survey of the argument, but we will limit ourselves to fix
the notation in a rather simplified form (see for example, Gardiner (1997), but also for a more
rigorous approach Léandre (1987), Ishikawa (1994), Sato (1999), Barndorff-Nielsen (2000)
and Rüschendorf and Woerner (2002)) suitable for the cases that we will analyse. In particular
we suppose to consider only processes endowed with well behaved pdf’s, so that (apart from
an initial distribution) the process is completely defined by its transition pdf p(x, t |y, s). If
then we define the triplet of functions

A(y, s) = lim
ε→0+

lim

t→0

1


t

∫
|x−y|<ε

(x − y)p(x, s + 
t |y, s) dx (3)

B(y, s) = lim
ε→0+

lim

t→0

1


t

∫
|x−y|<ε

(x − y)2p(x, s + 
t |y, s) dx (4)

W(x|y, s) = lim

t→0

p(x, s + 
t |y, s)


t
, x �= y (5)

it can be seen that the pdf’s of the process satisfy the following (forward) PIDE

∂tp(x, t) = −∂x[A(x, t)p(x, t)] +
1

2
∂2
x [B(x, t)p(x, t)]

+ lim
ε→0+

∫
|x−z|�ε

[W(x|z, t)p(z, t) − W(z|x, t)p(x, t)] dz (6)

the transition pdf being the solution corresponding to the initial condition p(x, s+|y, s) =
δ(x − y). In the case of stationary processes (as our Lévy processes are) the transition pdf
p(x, t |y, s) depends on its variables only through their differences x − y and t − s. As a
consequence A and B are simply constants, while W(x|y, s) = W(x − y). It is also known
that A plays the role of a drift coefficient, while B is a diffusion coefficient connected to
the Brownian component of the process; finally W(x|y, s), defined only for x �= y, is the
density of the Lévy measure of the process. The knowledge of the characteristic triplet is also
instrumental to write down the PIDE (or alternatively the SDE) for other processes driven by
a Lévy noise.

In order to calculate the characteristic triplet of a Lévy process decomposition from (3),
(4) and (5) we are supposed to explicitly know its transition pdf. We will see in the following,
however, that given the chf’s of an id distribution it is very easy to write the chf (1) of the
process increments, but also that in general it is not a simple task to explicitly calculate the
transition pdf by the inverse Fourier transform (2). We then propose here a different procedure
to calculate A,B and W directly from the process chf which is surely a known quantity for a
Lévy process, by adding however that at the present stage its derivation is only heuristic. To
this end let us remark that from (1) and (2) the transition pdf will have the form

p(x, s + 
t |y, s) = 1

2π
lim

M→+∞

∫ M

−M

[ϕ(au)]
t/T e−iu(x−y) du
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so that, by supposing (which is fair for all the cases that we will consider in this paper)
ϕ(−∞) = ϕ(+∞) = 0, we get with an integration by parts

p(x, s + 
t |y, s)


t
= a

2π i(x − y)T
lim

M→+∞

∫ M

−M

[ϕ(au)]
t/T ϕ′(au)

ϕ(au)
e−iu(x−y) du.

If now we suppose that our functions are regular enough to allow both to exchange the two
limits for 
t → 0 and for M → +∞, and to perform the limit for 
t → 0 under the integral,
we immediately have

W(x|y, s) = W(x − y) = a

2π i(x − y)T
lim

M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)
e−iu(x−y) du

namely with z = x − y

W(z) = a

2π izT
lim

M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)
e−iuz du. (7)

Remark that in (7) the limit must be understood in the sense of the distributions, as can be
easily checked by applying the formula to some well-known case (either the Wiener, or the
Cauchy process). What is most interesting with respect to equation (5) is that now we can
calculate W(z) directly from ϕ(au), without explicitly knowing the transition pdf p(x, t |y, s).

In the same way for A with an integration by parts we have first of all that

1


t

∫
|x−y|<ε

(x − y)p(x, s + 
t |y, s) dx

= a

2π iT

∫
|x−y|<ε

[
lim

M→+∞

∫ M

−M

[ϕ(au)]
t/T ϕ′(au)

ϕ(au)
e−iu(x−y) du

]
dx

then, if again it is allowed to freely exchange limits and integrals, we have

lim

t→0

1


t

∫
|x−y|<ε

(x − y)p(x, s + 
t |y, s) dx

= a

2π iT

∫
|x−y|<ε

[
lim

M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)
e−iu(x−y) du

]
dx

= a

iπT
lim

M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)

sin uε

u
du

and finally

A(y, s) = A = a

iπT
lim
ε→0+

lim
M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)

sin uε

u
du. (8)

Here it is understood that the two limits (always in the sense of distributions) and the integration
must be performed in the order indicated since an exchange will produce a trivial—and
wrong—result. Remark that when ϕ(au) is an even function (as happens if the process
increments are symmetrically distributed around zero), then ϕ′(au)/ϕ(au) is an odd function,
and hence—since u−1 sin uε is even—we immediately get A = 0. This is coherent with the
fact that, when the increments are symmetrically distributed, then we do not expect to have a
drift in the process.

As for the coefficient B the usual integration by parts gives

1


t

∫
|x−y|<ε

(x − y)2p(x, s + 
t |y, s) dx

= a

2π iT

∫
|x−y|<ε

[
lim

M→+∞

∫ M

−M

[ϕ(au)]
t/T ϕ′(au)

ϕ(au)
(x − y) e−iu(x−y) du

]
dx
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so that by exchanging limits and integrals we get

lim

t→0

1


t

∫
|x−y|<ε

(x − y)2p(x, s + 
t |y, s) dx

= a

2π iT

∫
|x−y|<ε

[
lim

M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)
(x − y) e−iu(x−y) du

]
dx

= a

πT
lim

M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)

uε cos uε − sin uε

u2
du

and finally our coefficient is

B(y, s) = B = a

πT
lim
ε→0+

lim
M→+∞

∫ M

−M

ϕ′(au)

ϕ(au)

uε cos uε − sin uε

u2
du. (9)

Also in this case we see that for our stationary, independent increment process this coefficient
is a constant independent from the initial coordinates y and s.

The formulae (7), (8) and (9) can finally be checked on two well-known (stable) cases to
give the correct characteristic triplets: the Wiener process produced by a normal distribution
N (0, a) with

A = 0, B = a2

T
, W(z) = 0 (10)

and the Cauchy process produced by a Cauchy distribution C(a) with

A = 0, B = 0, W(z) = a

πT z2
. (11)

Remark as in these two stable cases the elements of the triplet do not depend separately on the
two (time and space) scale parameters, but only on a combination of them so that a change in
the time scale can always be compensated by an exchange in the space scale (and vice versa):
a point giving rise to the scale invariance which in general is not reproduced in nonstable
processes, as discussed at the beginning of this section.

3. A class of infinitely divisible distributions

The increment laws of the Lévy processes analysed in this paper are particular (limiting) cases
of a larger class of distributions, that of the generalized hyperbolic (GH) distributions (for their
general properties see for example, Raible (2000), Eberlein and Raible (2000), Eberlein (2001),
Cont and Tankov (2004), and references quoted therein). The GH distributions constitute a
five-parameter class of id, absolutely continuous laws with the following pdf’s (for x ∈ R)
and chf’s

f (x + µ) = eβx

α2λ−1δ2λ
√

2π

(δ
√

α2 − β2)λ

Kλ(δ
√

α2 − β2)
(α

√
δ2 + x2)λ− 1

2 Kλ− 1
2
(α

√
δ2 + x2)

ϕ(u) = eiµu (δ
√

α2 − β2)λ

Kλ(δ
√

α2 − β2)

Kλ(δ
√

α2 − (β + iu)2)

(δ
√

α2 − (β + iu)2)λ
,

where λ ∈ R, α > 0, β ∈ (−α, α), δ > 0, µ ∈ R, and Kν(z) are the modified Bessel functions
(Abramowitz and Stegun 1968). Apparently α and δ play the role of scale parameters, while
β is a skewness parameter: the pdf is symmetric when β = 0. On the other hand µ is just a
centring parameter: since in this paper our attention will be focused on the symmetric, centred
laws, we will always choose β = 0 and µ = 0 and we will consider the more restricted (but
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still large enough) class GH(λ, α, δ) of the centred, symmetric GH laws with the following
pdf’s and chf’s:

fGH(x) = α

(δα)λKλ(δα)
√

2π
(α

√
δ2 + x2)λ− 1

2 Kλ− 1
2
(α

√
δ2 + x2) (12)

ϕGH(u) = (δα)λ

Kλ(δα)

Kλ(δ
√

α2 + u2)

(δ
√

α2 + u2)λ
(13)

with λ ∈ R, α > 0, and δ > 0.
The GH class contains many relevant particular cases, also for limit values of the

parameters, and its name comes from the fact that it contains as sub-class with λ = 1
that of the hyperbolic distributions called in this way because the logarithm of their pdf is
a hyperbola. The GH distributions are not always endowed with finite momenta: this fact
depends on the parameter values and must be explicitly assessed for every particular case. On
the other hand they are all id, and hence they are good starting points to build Lévy processes.
In general, however, they are not stable laws, and in fact they are not even closed under
convolution: the sum of two GH random variables (rv) is not a GH rv. This means not only
that the corresponding processes will not be self-similar, but also that often it is not easy to
find out what the pdf of the process looks like even if it is well known at one time. Remark
that the GH class is rich enough to contain also as a limit case the sub-class of the normal laws
N (µ, σ ). Indeed it can be shown that (in distribution)

lim
δ→+∞

lim
λ→−∞

lim
α→0+

GH(λ, α, δ) = N (0, σ )

provided that δ2/|λ| → 2σ 2. In the following we will study the behaviour of the
processes produced by two other particular limit sub-classes that, at variance with the normal
distributions, are not stable besides a few exceptions.

3.1. The variance gamma distributions

The variance gamma (VG) laws (Madan and Seneta 1987, 1990, Madan and Milne 1991,
Madan et al 1998) are obtained from GH(λ, α, δ) in the limit for δ → 0+. More precisely,
since in general

Kν(z) = K−ν(z) ∼




1
2�(ν)(2/z)ν, for ν > 0,

−log z, for ν = 0,
1
2�(|ν|)(2/z)|ν|, for ν < 0,

z → 0 (14)

we have for λ > 0 that

lim
δ→0+

(δα)λKλ(δα) = 2λ−1�(λ)

and hence the pdf’s of the centred, symmetric VG laws—which constitute the two parameters
family VG(λ, α)—are

fVG(x) = 2α

2λ�(λ)
√

2π
(α|x|)λ− 1

2 Kλ− 1
2
(α|x|). (15)

with λ > 0 and α > 0. As for the corresponding chf’s of VG(λ, α) it is readily seen from (13)
and (14) that they simply reduce to

ϕVG(u) =
(

α2

α2 + u2

)λ

. (16)
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It is apparent that α plays the role of a scale parameter, while λ classifies the different types
of VG laws. For λ = 1 the pdf’s and chf’s of the VG(1, α) laws are

f (x) = α

2
e−α|x|, ϕ(u) = α2

α2 + u2

so that VG(1, α) is nothing but the class of the Laplace (double exponential) laws L(α). The
pdf (15) has an elementary form only when λ = n + 1 is an integer with n = 0, 1, . . . . In fact
from

Kn+ 1
2
(z) =

√
π

2z
e−z

n∑
j=0

(n + j)!

j !(n − j)!

1

(2z)j
(17)

it is easy to see that (with � = n − j ) we have

fVG(x) = α

22n+1
e−α|x|

n∑
�=0

(
2n − �

n

)
(2α|x|)�

�!
, λ = n + 1 = 1, 2, . . .

For λ → 0 equation (16) shows also that our VG laws converge in law to a distribution
degenerate in x = 0. From the asymptotic behaviour of the Bessel functions

Kν(z) ∼
√

π

2z
e−z, |z| → +∞ (18)

we immediately see that the asymptotic behaviour of the pdf (15) is (α|x|)λ e−α|x|, and hence
the momenta always exist for every λ ∈ R. Of course this corresponds to the fact that the chf
(16) is always derivable in u = 0. Since our laws are centred and symmetric the odd momenta
vanish; as for the even momenta we have by direct calculation

mVG(2k) = 2k(2k − 1)!!

α2k

�(λ + k)

�(λ)
, k = 0, 1, 2, . . .

so that the expectation is always zero, and the variance

σ 2
VG = 2λ

α2
.

Then it is easy to see that for a given σ > 0 the laws VG(λ,
√

2λ/σ) have all the same variance
σ 2 for every value of λ, and that for λ → +∞ they converge in distribution to the normal law
N (0, σ ). From the chf (16) we immediately see that the VG distributions are id but not stable.
It is easy to see, however, that, the sub-families VG(λ, α) with a fixed value of α are closed
under convolution: in fact the sum of two independent rv’s respectively with laws VG(λ1, α)

and VG(λ2, α) is a rv with law VG(λ1 + λ2, α), as can easily be seen from (16). This of course
does not amount to stability since laws VG(λ, α) and VG(λ′, α) with λ �= λ′ are not of the
same type. For the sake of simplicity in the following we will take α = 1 and we will use the
shorthand notation VG(λ) = VG(λ, 1).

3.2. The Student distributions

The class of the centred, symmetric Student laws (see Heyde and Leonenko (2005) for a recent
review) can be considered as conjugate to that of the centred, symmetric VG laws in the sense
that here the roles of the pdf and chf are interchanged. They are the limit for α → 0+ of the
GH(λ, α, δ) laws with λ < 0. By taking the new parameter ν = −2λ > 0, and recalling that
Kν(z) = K−ν(z), the pdf and chf of the GH(λ, α, δ) laws become

fGH(x) = α√
2π

(δα)
ν
2

Kν
2
(δα)

Kν+1
2

(α
√

δ2 + x2)

(α
√

δ2 + x2)
ν+1

2
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ϕGH(u) = (δ
√

α2 + u2)
ν
2 Kν

2
(δ

√
α2 + u2)

(δα)
ν
2 Kν

2
(δα)

so that from equation (14) in the limit for α → 0+ we get the pdf and chf of the centred,
symmetric Student laws T (ν, δ)

fST(x) = 1

δB
(

1
2 , ν

2

) (
δ2

δ2 + x2

) ν+1
2

(19)

ϕST(u) = 2
(δ|u|) ν

2 Kν
2
(δ|u|)

2
ν
2 �

(
ν
2

) , (20)

where ν > 0, δ > 0 and B(z,w) is the Beta function (Abramowitz and Stegun 1968). Here δ

is the scale parameter, while ν classifies the different law types. It is also easy to see that for
|x| → +∞ the Student pdf goes to zero as |x|−ν−1, so that for a given ν the moments mST(n)

exist only if n < ν. When they exist, the odd momenta are zero for symmetry, while the even
momenta are

mST(2k) = δ2k
B

(
1
2 + k, ν

2 − k
)

B
(

1
2 , ν

2

) , k = 0, 1, 2, . . . , 2k < ν.

In particular the expectation exists (and vanishes) for ν > 1, while the variance exists finite
for ν > 2 and its value is

σ 2
ST = δ2

ν − 2
. (21)

As a consequence, for ν > 2 and for a given σ > 0, the laws T (ν, σ
√

ν − 2) have all the
same variance σ 2, and it is easy to show that for ν → +∞ they converge in distribution to the
normal law N (0, σ ). It can be proved that the Student distributions are id (this is not trivial at
all; see Grosswald (1976a, 1976b), Ismail (1977), Bondesson (1979, 1992), Pitman and Yor
(1981)), but that they are not stable, with one notable exception: the ν = 1 case, that of the
Cauchy laws T (1, δ) = C(δ) which constitute one of the better known classes of stable laws
with pdf and chf

f (x) = 1

δπ

δ2

δ2 + x2
, ϕ(u) = e−δ|u|.

Besides this case—and at variance with the VG—the Student laws are not even closed under
convolution: this makes the study of the time evolution of a Student process a more complicated
and interesting business which constitutes a relevant part of this paper. For the sake of
simplicity in the following we will take δ = 1 and we will use the shorthand notation
T (ν) = T (ν, 1).

4. The VG process

Lévy processes produced by means of VG distributions are simple enough because of their
closure under convolution. In fact it is easy to see from (16) that (taking α = 1 and T = 1
to simplify the notations) for a VG(λ) law the transition chf of the process (with initial time
s = 0 and position y = 0) is

�(u, t |λ) = [ϕVG(u)]t =
(

1

1 + u2

)λt

(22)
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so that the law of the increment in [0, t] always is a VG law with the parameter evolving in
time; namely, at every t, we have X(t) ∼ VG(λt), and hence the corresponding pdf is explicitly
known at every time and is

p(x, t |λ) = 2

2λt�(λt)
√

2π
|x|λt− 1

2 Kλt− 1
2
(|x|). (23)

Apparently—as in the Poisson case—the laws of the process belong to the VG family all along
the evolution, but this does not mean that the process is stable since the laws of the VG family
are not of the same type. In fact, with increasing values of t, the distributions of a VG process
go throughout all the gamut of the VG family: what changes with λ is just the instant when the
distribution is simply a bilateral exponential. As remarked in the section 3.1 the pdf (23) has
an elementary form only for t = 1

λ
, 2

λ
, . . . but a great deal of information is available also in

the general, nonelementary form. In particular from (14) and (18) we can study the behaviour
of the pdf both near the origin and in the asymptotic region. For small x we find

p(x, t |λ) ∼




|x|2λt−1, for 0 < t < 1
2λ

,

−log|x|, for t = 1
2λ

,

1
2π

�(λt− 1
2 )

�(λt)
, for 1

2λ
< t ,

x → 0

namely near the origin the pdf has an integrable singularity for 0 < t � 1
2λ

, and thereafter it
takes finite values for t > 1

2λ
. As for the asymptotic behaviour we have

p(x, t |λ) ∼ |x|λt−1 e−|x|, |x| → +∞
namely it is a negative exponential times a power. It is apparent then that this asymptotic
behaviour changes with time since the power depends on t; it is however always dominated by
the exponential so that all the moments exist at every time. From equation (23) we can also
explicitly calculate the characteristic triplet:

A = 0, B = 0, W(z) = λ
e−|z|

|z| (24)

so that the dimensionless PIDE for the VG process takes the form

∂tp(x, t) = lim
ε→0+

∫
|z|�ε

λ e−|z| p(x + z, t) − p(x, t)

|z| dz.

A validation of (24) comes then from the Lévy–Khinchin formula (Loève 1987) which here
reads

log ϕ(u) = lim
ε→0+

∫
|x|�ε

(
eiux − 1 − iux

1 + x2

)
W(x) dx (25)

and which from (16) and (24) easily reduces itself to

−log(1 + u2) = 2
∫ +∞

0
(cos ux − 1)

e−x

x
dx

a relation which is immediately verified by direct calculation.

5. The Student process

Despite their apparent symmetry and analogy with the VG family, the processes produced by
the Student laws are not so straightforward to analyse (for recent results about the Student
process see Heyde and Leonenko (2005)). The problem is that the Student family T (ν, δ) is
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not even closed under convolution, so that it is not easy to figure out the general behaviour of
a Student process with arbitrary ν. As a consequence we will limit ourselves here to study the
particular case of the ν = 3 process whose features can be fairly understood: this will also
give us an insight on the possible general behaviour of these Lévy processes. It is important
to remark, moreover, that this particular Student process with ν = 3 is the present candidate
to describe the increments in the velocity process for particles in an accelerator beam (Vivoli
et al 2006), and hence its analysis has not a purely academic interest. Let us introduce now
the following notation for the T (ν, δ) laws and the corresponding processes: for ν > 0 and
δ > 0

f (x|ν, δ) = fST(x) = 1

δB
(

1
2 , ν

2

) (
δ2

δ2 + x2

) ν+1
2

(26)

f (x|ν) = f (x|ν, 1) = 1

B
(

1
2 , ν

2

) (
1

1 + x2

) ν+1
2

(27)

so that f (x|ν) from now on will be the pdf of the Student law T (ν) = T (ν, 1) for δ = 1. In
the same way we can introduce the reduced form of the chf

ϕ(u|ν, δ) = ϕST(u) = 2
|δu| ν

2 Kν
2
(|δu|)

2
ν
2 �

(
ν
2

)
ϕ(u|ν) = ϕ(u|ν, 1) = 2

|u| ν
2 Kν

2
(|u|)

2
ν
2 �

(
ν
2

) .

Then, by taking T = 1, the transition chf of the Student process for the law T (ν) (with initial
time s = 0 and position y = 0) is explicitly known and is

�(u, t |ν) = [ϕ(u|ν)]t

and the corresponding transition pdf is

p(x, t |ν) = 1

2π

∫ +∞

−∞
e−iux�(u, t |ν) du = 1

2π

∫ +∞

−∞
e−iux[ϕ(u|ν)]t du.

If we denote as T (ν, δ)-process the Student process such that its law at t = T is exactly
T (ν, δ) then p(x, t |ν) will be the pdf of a T (ν)-process. In the following we will perform
our calculations on the reduced, dimensionless quantities only: we can always revert to the
dimensional variables by means of simple transformations. It is easy to realize from the form
of �(u, t |ν) that for t → 0+ the process approaches a law degenerate in x = 0, and that along
the evolution of a Student process the marginal p(x, t |ν) no longer are simple Student pdf’s:
after all we know that the Student family is neither stable, nor closed under convolution. The
main problem is then to find an explicit form for the transition pdf which by symmetry can be
explicitly written as

p(x, t |ν) = 1

π

∫ +∞

0
cos(ux)

[
2
|u| ν

2 Kν
2
(|u|)

2
ν
2 �

(
ν
2

)
]t

du. (28)

5.1. The Student processes of odd integer index: the ν = 3 case

Since the integration in (28) cannot be performed in general we will limit ourselves to particular
cases. To do that let us remark that the Student chf’s have an elementary form for odd integer
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Table 1. Examples of odd integer order (ν = 2n + 1), dimensionless and reduced Student laws.

ν n f (x|2n + 1) ϕ(u|2n + 1)

1 0 1
π

(1 + x2)−1 e−|u|

3 1 2
π

(1 + x2)−2 e−|u|(1 + |u|)
5 2 8

3π
(1 + x2)−3 e−|u|(1 + |u| + 1

3 |u|2)
7 3 16

5π
(1 + x2)−4 e−|u|(1 + |u| + 2

5 |u|2 + 1
15 |u|3)

values of the parameter ν. In fact from equation (17) we have for ν = 2n+ 1 with n = 0, 1, . . .

and with � = n − j

f (x|2n + 1) = �(n + 1)√
π�

(
n + 1

2

) (
1

1 + x2

)n+1

= (2n)!!

π(2n − 1)!!

(
1

1 + x2

)n+1

ϕ(u|2n + 1) = 2
|u|n+ 1

2 Kn+ 1
2
(|u|)

2n+ 1
2 �

(
n + 1

2

) = e−|u|
n∑

�=0

n!

(2n)!

(2n − �)!

(n − �)!

(2|u|)�
�!

so that the chf is just an exponential times a polynomial in |u| (see table 1 for a few explicit
examples). The first case n = 0, ν = 1 is just the stable, reduced Cauchy law C(1) which
produces the well-known Cauchy process. We can then look at the explicit time evolution of
the first nonstable case by taking the n = 1, ν = 3 law, namely the T (3)-process with pdf

p(x, t |3) = 1

π

∫ +∞

0
cos(ux) e−tu(1 + u)t du

= Re

{
1

π

∫ +∞

0
e−(t+ix)u(1 + u)t du

}
.

By taking then

Q(a, z) = 1

π

∫ +∞

0
e−zu(1 + u)a−1 du = 1

π

ez

za
�(a, z)

�(a, z) =
∫ +∞

z

e−wwa−1 dw, �(a, 0) = �(a),

where �(a, z) is the incomplete Gamma function (Abramowitz and Stegun 1968), we can also
write

p(x, t |3) = Re{Q(t + 1, t + ix)} = Re

{
et+ix�(t + 1, t + ix)

π(t + ix)t+1

}
. (29)

This new closed form (29) of the increment laws of the Student process with ν = 3 is now
explicitly given for every time t > 0: in the following sections we will try to analyse its
properties.

5.2. Asymptotic behaviour of the T (3)-process

Since the Student laws are not closed under convolution we know that p(x, t |3) coincides
with a Student law only for t = 1. A first question is then to check if, that notwithstanding,
some important property of the t = 1 distribution is preserved along the evolution. In fact we
will see in the following that for an arbitrary fixed, finite t > 0 the asymptotic behaviour of
p(x, t |3) for large x is always infinitesimal at the same order |x|−4 of the original T (3).
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Proposition 5.1. If p(x, t |3) is the pdf (29) of a Student T (3)-process, then

p(x, t |3) = 2t

πx4
+ o(|x|−4), |x| → +∞

for every given t > 0.

Proof. Let us remember first of all that by repeated integration by parts of the incomplete
Gamma function we get the following recurrence formula: for a given a > 0 and n = 1, 2, . . .

Q(a, z) = 1

π

ez

za
�(a, z) = 1

π

n−1∑
k=0

�(a)

�(a − k)

1

zk+1
+ Rn(a, z)

Rn(a, z) = 1

π

ez

za

�(a)

�(a − n)
�(a − n, z)

where, from a classical result about this asymptotical expansion (Gradshteyn and Ryzhik
1980), the remainder Rn(a, z) is an infinitesimal of order greater than n

|Rn(a, z)| = O(|z|−n−1), |z| → +∞.

Then, for a = t + 1 and z = t + ix with an arbitrary but fixed t > 0, we will have in the limit
|x| → +∞

|Re{Rn(t + 1, t + ix)}| � |Rn(t + 1, t + ix)| = O(|x|−n−1).

Now take n = 4: from the previous expansion and equation (29) we have for |x| → +∞
p(x, t |3) = Re{Q(t + 1, t + ix)}

= 1

π

3∑
k=0

�(t + 1)

�(t − k + 1)

Re{(t − ix)k+1}
(t2 + x2)k+1

+ o(|x|−4)

while from a direct calculation of the real parts we will find that the higher powers exactly
cancel away from the numerator so that the leading asymptotic term for |x| → +∞ is of the
order |x|−4; more precisely we have

3∑
k=0

�(t + 1)

�(t − k + 1)

Re{(t − ix)k+1}
(t2 + x2)k+1

= 2tx4 − 4t3(t2 − 5t + 3)x2 + 2t5(2t2 − 2t + 1)

(t2 + x2)4

= 2t

x4
+ o(|x|−4)

giving finally the statement in our proposition. �

It must be remarked that the previous result is true for an arbitrary finite, fixed time t. For
diverging t, however, the reduced law of the process approaches a Gaussian: let X(t) be our
T (3)-process with pdf p(x, t |3); then we know that

E[X(t)] = 0, Var[X(t)] = E[X2(t)] = t

so that t−1/2X(t) is a centred, reduced rv for every t. A simple look at the chf’s will then
shows that in distribution we have

X(t)√
t

d−→ N (0, 1), t → +∞

since for large values of t and arbitrary fixed u

[ϕ(u/
√

t |3)]t =
[

e−|u|/√t

(
1 +

|u|√
t

)]t

−→ e−u2/2, t → +∞.
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Figure 1. Mixture weights of the integer time (t = n) components for a Student process with
ν = 3.

5.3. The T (3)-process distribution at integer times t = n

To understand the time evolution of p(x, t |3) we can analyse the former of this pdf for
integral values of the time t = n = 1, 2, . . . since in this case the distributions have explicit
elementary expressions. Of course p(x, n|3) is nothing else than the distribution of the sum
of n independent T (3) rv’s, so that the following proposition can also be seen as a new result
about the nth convolution of the law T (3).

Proposition 5.2. For n = 1, 2, . . . we have (within the notations of the present section)

p(x, n|3) =
n∑

k=0

f (x|2k + 1, n)qn(k|3)

qn(k|3) = (−1)k

2k + 1

2k+1∑
j=0

(
n

j

)(
2k + 1

j

)(
j

k

)
(j + 1)!

(−1

2n

)j

where qn(k|3) is a discrete probability distribution taking (strictly) positive values only for
k = 1, 2, . . . , n (in particular qn(0|3) = 0 for every n) and such that

n∑
k=1

qn(k|3)

2k − 1
= 1

n

Proof 2. see appendix A �

The meaning of proposition 5.2 is then that (at least) at integral times t = n = 1, 2, . . . the
marginal one-dimensional pdf p(x, n|3) of the T (3)-Student process is a mixture (convex
combination) of Student pdf’s (26) f (x|ν, δ) with

• odd integer orders ν = 2k + 1 with k = 0, 1, . . . ,

• integer scaling factors δ = n,
• relative weights qn(k|3) such that qn(0|3) = 0, so that no Student distribution of order

smaller than ν = 3 appears in the mixture.

In other words they are mixtures of T (2k + 1, n) laws. The distributions qn(k|3) are a new
kind of discrete probability laws whose bar diagrams at different times t = n are displayed
in figure 1. They show how the weight of the higher order Student distributions grows with
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the time, but also that, this notwithstanding, the lowest order (ν = 3) distribution is always
present—albeit with dwindling importance—with a nonzero weight. We see at once that this
new result is coherent with proposition 5.1 and explicitly shows how the asymptotic behaviour
is kept |x|−4 all along the time evolution: in fact in the mixture representing p(x, n|3) the
lowest order Student distribution always is—albeit with dwindling weight—that with ν = 3
which asymptotically behaves as |x|−4; all the other components in the mixture are instead
faster infinitesimals. The importance of the higher orders, however, grows with the time. This
is exactly the behaviour recently observed in complex dynamical systems used to simulate the
behaviour of intense beams of charged particles in accelerators (Vivoli et al 2006). Due to
their mutual interactions these particles follow irregular paths, and a statistical analysis shows
that the distribution of the increments follows an almost Gaussian distribution in its central
part, and a Student T (3, δ) distribution on the tails with a |x|−4 decay rate. This suggests that
the beam particles follow a T (3, δ) Lévy process which is observed at a time scale (
t) large
when compared to some characteristic time T of the process, but finite and fixed so that the
increment distribution shows two different regimes (Gaussian and |x|−4) in the two regions.

The results presented in propositions 5.1 and 5.2 that the pdf of a Lévy–Student process
is a suitable finite mixture of other Student pdf’s of different types has been proved here only
in the particular conditions chosen for our demonstration. It suggests however a possible
generalization: it is fair in fact to put forward the conjecture that every Lévy–Student process
at every time will have a marginal one-dimensional pdf which is a mixture of other Student
pdf’s, but not necessarily (as in our particular case) of a finite number of odd integer indices
Student pdf’s. In other words, by keeping always the same notation, the pdf p(x, t |ν0) could
be a (possibly continuous) mixture of Student pdf’s f (x|ν, δ) through a (possibly continuous)
distribution qt (ν|ν0). Finally, in order to preserve the result of proposition 5.1, we could also
conjecture that qt (ν|ν0) gives probability zero in the mixture to every Student law with ν < ν0.
If some form of this conjecture shows up to be true this would determine some new family of
randomized Student distributions which is closed under convolution.

5.4. The Lévy triplet for a T (3)-process

We will finally calculate the elements of the Lévy triplet for a T (3)-process from the formulae
(7), (8) and (9). First of all, due to the T (3) law symmetry, we already know that A = 0; then
we must recall that the chf of the T (3) law is

ϕ(u|3) = e−|u|(1 + |u|) (30)

so that by a direct calculation we get an explicit expression of the Lévy triplet with T = 1 (for
details on the derivation see appendix B)

A = 0, B = 0, W(z) = 1 − |z| (sin|z|ci|z| − cos|z|si|z|)
πz2

, (31)

where the sine and the cosine integral functions are (Gradshteyn and Ryzhik 1980)

si x = −
∫ +∞

x

sin t

t
dt, ci x = −

∫ +∞

x

cos t

t
dt.

A plot of W(z) is shown in figure 2 where it is also compared with the analogous density (24)
for a VG process. The behaviour of W(z) at the origin and at the infinity is

W(z) =
{
z−2 + o(z−2), z → 0+;
2z−4 + o(z−4), z → +∞.

In particular remark that near the origin it has the same behaviour of the Lévy density for
the Cauchy process in (11), while it asymptotically behaves exactly as the T (3) distribution.
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Figure 2. Plot of the (reduced and dimensionless) Lévy densities for a Student with ν = 3 (solid
line) and for a VG (dashed line) process.

We could then also conjecture here that the W(z) function of a generic T (ν, δ)-process will
always have a z−2 behaviour for z → 0+, and a |z|−ν−1 behaviour for |z| → +∞. From (31)
we also see that, always with T = 1, the PIDE (6) for a T (3)-process takes the particular form

∂tp(x, t) = lim
ε→0+

∫
|z|�ε

W(z)[p(x + z, t) − p(x, t)] dz

with W(z) given in (31). Finally, inspection into the Lévy–Khinchin formula (25) for the chf
(30) immediately gives as a byproduct a previously unknown way to calculate a nontrivial
integral:

2

π

∫ +∞

0

sin z ci z − cos z si z

z
(1 − cos uz) dz = log(1 + |u|). (32)

6. Pathwise properties and simulations

Both the classes of processes analysed in this paper do not have a Brownian component
(B = 0) in their Lévy decomposition which is in fact reduced to its jumping part and has the
form (Cont and Tankov 2004, Øksendal and Sulem 2005)

X(t) =
∫

|z|�1
zN(t, dz) + lim

ε→0+

∫
ε�|z|<1

zÑ(t, dz) Ñ(t, U) = N(t, U) − t

T
ν(U),

where U is a Borel set U ⊂ R, N(t, U) is the jump measure of the process, namely is the
number of the (nonzero) jumps of size in U occurring in [0, t], and ν(U) = E [N(1, U)] is
the Lévy measure of the process. In fact N(t, U) is a Poisson process of intensity ν(U) and
Ñ(t, U) is the corresponding compensated Poisson process. The function W(x) introduced
in the previous sections of this paper plays the role of a density for the Lévy measure in the
sense that ν(dx) = T W(x) dx, so that we have all the elements to characterize the Lévy
decompositions of our processes. In particular, due to the nature of the singularities of the
W(x) functions in x = 0, it is possible to see that both the VG and the T (3, δ) processes
(as well as the Cauchy process) have infinite activity, namely that ν(R) = +∞. In that event
we know (Cont and Tankov 2004) that the set of jump times of every trajectory is countably
infinite and dense in [0, +∞]. This property, together with the continuous distributions of the
jump sizes, accounts for the fact that at first sight the (simulated) samples of both a VG and a
T (3, δ) process do not look very different from that of a Wiener process, in particular when we
compare just the free trajectories of these processes. Then to better see the respective pathwise
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Table 2. The unit variance laws and pdf’s of the increments used in producing the samples of
figure 3.

(a) (b) (c)

N (0, 1) VG(1,
√

2) T (3, 1)

1√
2π

e−x2/2 1√
2

e−√
2|x| 2

π
1

(1+x2)2

characteristics it will be useful to introduce some Lévy diffusions, namely the solutions of
other SDE driven by a Lévy process X(t) (Protter 2004, Applebaum 2004, Øksendal and
Sulem 2005). If X(t) is a pure jump Lévy process, let us consider the Lévy diffusions Y (t)

solution of the SDE

dY (t) = α(t, Y (t)) dt + dX(t)

dX(t) =
∫

|z|�1
zN(dt, dz) + lim

ε→0+

∫
ε�|z|<1

zÑ(dt, dz)

which is nothing else than a deterministic dynamic system ẏ(t) = α(t, y(t)) perturbed by
a jump noise X(t). The simplest case is that of a linear force α(y) = −ky giving rise to
non-Gaussian Ornstein-Uhlenbeck (OU) processes (see for example Barndorff–Nielsen and
Shephard (2001), Cont and Tankov (2004))

dY (t) = −kY (t) dt + dX(t). (33)

The usual, Gaussian OU process, on the other hand, is the solution of a SDE where the noise
B(t) is completely Brownian with no jump component:

dY (t) = −kY (t) dt + dB(t). (34)

We can compare now the samples of OU-type processes driven either by a Brownian noise,
or by a pure jump noise as the VG and the T (3, δ) processes. To do that we will produce
samples of 5000 steps by using reduced and dimensionless versions of our distributions that
we will take of unit variance. In particular we will suppose that for time intervals 
t = T the
laws of the noise increments are that reproduced in table 2. Of course the choice of 
t = T

is instrumental because the VG and the Student laws have distributions of elementary form
only for 
t = nT with n integer (and particularly simple for n = 1), as we have seen in
the previous sections. It is not so easy, on the other hand, to produce our pure jump driven
trajectories at other time scales, in particular for time scales which are fractions of T. At first
sight we could think to overcome this difficulty by arbitrarily changing the value of T, but
we should remember from our previous discussion (section 2) that our pure jump processes
are not scale invariants, so that different values of T produce different processes. Examples
of simulated samples of these processes are produced by discretizing our SDE and are shown
in figure 3 as functions of the dimensionless time τ = t/T . The parts (a), (b) and (c) show
trajectories produced by our three different SDE’s: while (a) is a typical sample of an OU
process solution of the SDE (34) driven by a normal Brownian motion, the parts (b) and (c)
display typical trajectories produced by the SDE (33) driven by respectively a VG noise and
a Student noise. The plots are on the same spatial scale and we can see the jumping nature
of the non-Gaussian noises from the fact that, while trajectory (a) is rather strictly confined
inside the region determined by the restoring force −ky, the trajectory (b), and above all the
trajectory (c) show clearly random spikes going outside the confining region. These spikes
are produced by the jumps of the driving processes, and the fact that the Student (c) spikes are
larger than that of the VG (b) case depends on the fact that the VG distribution has exponential
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Figure 3. Samples of OU-type diffusions (τ = t/T ): (a) usual OU process driven by Gaussian
Brownian motion; (b) OU-type process driven by a VG Lévy noise; (c) OU-type process driven
by a Student Lévy noise; (d) OU-type process with Student noise and restoring force of limited
range.

tails which—albeit longer than the Gaussian tails—are much shorter than the power tails of
a Student distribution (see also the corresponding asymptotic behaviour of the Lévy densities
W(z) displayed in sections 4 and 5.4). The size of the spikes can also be put in evidence by
cutting the restoring force of the SDE’s to a finite length, namely by considering the solutions
of

dY (t) = α(Y (t)) dt + dX(t)

α(y) =
{−ky, for |y| � q;

0, for |y| > q;
q > 0.

In this case the restoring force acts only when the process lies in [−q, q], while the process
is completely free outside this region. Hence when the process jumps beyond the boundaries
in y = ±q it begins to diffuse freely drifting away from the bounding region. Occasionally,
however, it can also be recaptured by the binding force. All these features are represented in
part (d) of figure 3 which displays the trajectory of a Student driven OU-type process with
a limited range of the force. To compare it with the other two cases we must now look at
the different values of q that make an escape reasonably likely: while to let an OU Gaussian
process to escape is necessary to have a rather small value of q, evasions are likely in the VG
case for larger, and in the Student case even for much larger, q values.

7. Conclusions

We have studied in this paper a few examples of nonstable, infinitely divisible processes,
and in particular we have explicitly written down their evolution equations and the laws of
the increments which are the germ of the corresponding markovian evolutions. In particular
we focused our attention on the Student processes and we presented a new explicit form
of their transition functions. Since the Student family of laws is infinitely divisible, but
nonclosed under convolution the distribution of the corresponding Lévy–Student process is a
Student distribution only at the one particular time. Along the evolution, instead, the process
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distribution is no longer a simple Student distribution. We have shown in the previous sections
that, this notwithstanding, at least in the case of a specific type of Student distribution (with
finite variance), and at least in an infinite sequence of equidistant time instants the process
transition law is a mixture of a finite number of Student laws given by means of a new kind
of discrete probability distribution. This prompts the conjecture that in fact while the Student
family is not closed under convolution, some family of mixtures of Student distributions can
possibly be closed. On the other hand, while it is easy to show that for large values of time
the reduced increment law tends to be normal (as it should be since we are dealing with
finite variance distributions), we have also emphasized that for a finite (albeit large) time the
asymptotic behaviour always is the same as that of the Student distribution at the unit time.
This behaviour has been put in evidence by Vivoli et al (2006) in their model for halo in
particle beams, and we have put forward the conjecture that this could also be a more general
behaviour of the Student processes. This last remark is interesting also in connection with
a possible generalization of the stochastic mechanics that we mentioned in the section 1 and
that will be the argument of forthcoming research.
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Appendix A. Proof of proposition 5.2

For a = n + 1 and n = 1, 2, . . . the incomplete Gamma functions have a finite elementary
expression (Gradshteyn and Ryzhik 1980) so that

Q(n + 1, z) = ez

zn+1
�(n + 1, z) =

n∑
j=0

n!

(n − j)!

1

zj+1

and hence we get

p(x, n|3) = 1

π
Re{Q(n + 1, n + ix)} = 1

π

n∑
j=0

n!

(n − j)!
Re

{
1

(n + ix)j+1

}

= 1

π

n∑
j=0

n!

(n − j)!

1

(n2 + x2)j+1
Re

{
j+1∑
m=0

(
j + 1

m

)
(−ix)mnj−m+1

}

= 1

π

n∑
j=0

n!

(n − j)!

1

(n2 + x2)j+1

j+1∑
2�=0

(
j + 1

2�

)
(−1)� x2�nj−2�+1,

where it is understood that the second sum is extended to all the integer values of � such that
0 � 2� � j + 1, namely: if j is even then � = 0, 1, . . . ,

j

2 ; if j is odd then � = 0, 1, . . . ,
j+1

2 .
A little manipulation and the use of equation (26) then give

p(x, n|3) = 1

π

n∑
j=0

(
n

j

)
j !

nj+1

(
n2

n2 + x2

)j+1 j+1∑
2�=0

(
j + 1

2�

)
(−1)�

(
x2

n2

)�

= 1

π

n∑
j=0

(
n

j

)
j !

nj

j+1∑
2�=0

(
j + 1

2�

) �∑
m=0

(
�

m

)
(−1)m

n

(
n2

n2 + x2

)j−m+1
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= 1

π

n∑
j=0

(
n

j

)
j !

nj

j+1∑
2�=0

(
j + 1

2�

) �∑
m=0

(−1)m
(

�

m

)

× B

(
1

2
, j − m +

1

2

)
f (x|2(j − m) + 1, n)

with f (x|ν) defined in (26). Now by exchanging the order of the last two sums (with the
previous conventions about the range of the indexes � and m) we have with k = j − m

p(x, n|3) = 1

π

n∑
j=0

(
n

j

)
j !

nj

j+1∑
2m=0

(−1)mf (x|2(j − m) + 1, n)

×B

(
1

2
, j − m +

1

2

) j+1∑
2�=2m

(
j + 1

2�

)(
�

m

)

= 1

π

n∑
j=0

(
n

j

)
j !

nj

j+1∑
2m=0

(−1)mf (x|2(j − m) + 1, n)

×B

(
1

2
, j − m +

1

2

)
2j−2m(j + 1)(j − m)!

m!(j − 2m + 1)!

=
n∑

j=0

(
n

j

)
1

(2n)j

j+1∑
2m=0

(−1)m(j + 1)!(2j − 2m)!

(j − m)!m!(j − 2m + 1)!
f (x|2(j − m) + 1, n)

=
n∑

j=0

(
n

j

)
1

(2n)j

2j∑
2k�j−1

(−1)j−k(j + 1)!(2k)!

k!(j − k)!(2k − j + 1)!
f (x|2k + 1, n),

where it is understood that the second sum extends over all the k values such that
j − 1 � 2k � 2j , namely: for odd j we have k = j−1

2 , . . . , j , while for even j we
have k = j

2 , . . . , j . Finally, by exchanging again the sums and by adopting the convention
that a binomial symbol

(
a

b

)
always is zero whenever the limitation b � a is not verified, we

have the results of proposition 5.2

p(x, n|3) =
n∑

k=0

f (x|2k + 1, n)qn(k|3)

qn(k|3) = (−1)k

2k + 1

2k+1∑
j=0

(
n

j

)(
2k + 1

j

)(
j

k

)
(j + 1)!

(−1

2n

)j

.

Since the distribution of our Student process is now represented as a linear combination of the
Student T (2k + 1, n) pdf’s, p(x, n|3) turns out to be a (randomized, Feller 1971) mixture, and
the coefficient qn(k|3) of this combination must satisfy

qn(k|3) � 0,

n∑
k=0

qn(k|3) = 1

with qn(0|3) = 0 for every n, as can be seen by direct calculation. Hence we have that qn(k|3)

is a discrete probability distribution taking nonzero values only for k = 1, 2, . . . , n. Finally
by remembering that our Student process has zero expectation and variance t = n, and taking
also into account the equation (21), we can write
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n =
∫ +∞

−∞
x2p(x, n|3) dx =

n∑
k=0

qn(k|3)

∫ +∞

−∞
x2f (x|2k + 1, n) dx

=
n∑

k=0

qn(k|3)
n2

2k − 1

so that we immediately get also the last result in our proposition.

Appendix B. Derivation of equation (31)

From (9) and (30) we have for a T (3)-process that

B = 1

π
lim
ε→0+

lim
M→+∞

∫ M

−M

−u

1 + |u|
uε cos uε − sin uε

u2
du

= 2

π
lim
ε→0+

∫ +∞

0

sin uε − uε cos uε

u(1 + u)
du

= 2

π
lim
ε→0+

[π

2
− (ci ε − ε si ε) sin ε + (ε ci ε + si ε) cos ε

]
= 0,

where the sine and the cosine integral functions are defined in the text: hence, as for the
Cauchy and the VG processes, the Brownian part is absent also in this Student process. As
for the Lévy density W(z), from (7) we get

W(z) = 1

2π iz
lim

M→+∞

∫ M

−M

−u

1 + |u| e−iuz du

= 1

π |z| lim
M→+∞

∫ M

0

u

1 + u
sin(u|z|) du

= 1 + |z|(cos|z|si|z| − sin|z|ci|z|)
πz2

so that for our T (3)-process we finally have (31).

References

Abramowitz M and Stegun I A 1968 Handbook of Mathematical Functions (New York: Dover Publications)
Albeverio S, Blanchard P and Høgh-Krohn R 1983 Expo. Math. 4 365
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Feller W 1971 An Introduction to Probability Theory and Its Applications vol II (New York: Wiley)
Gardiner C W 1997 Handbook of Stochastic Methods (Berlin: Springer)
Gnedenko B V and Kolmogorov A N 1968 Limit Distributions for Sums of Independent Random Variables (Reading:

Addison-Wesley)
Gorenflo R and Mainardi F 1998a Fract. Calc. Appl. An. 1 167 (reprinted at http://www.fracalmo.org/)
Gorenflo R and Mainardi F 1998b Arch. Mech. 50 377 (reprinted at http://www.fracalmo.org/)
Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (San Diego: Academic)
Grosswald E 1976a Ann. Prob. 4 680
Grosswald E 1976b Prob. Th. Rel. Fields 36 103
Guerra F 1981 Phys. Rep. 77 263
Guerra F and Morato L M 1983 Phys. Rev. D 27 1774
Heyde C C and Leonenko N N 2005 Adv. Appl. Prob. 37 342
Ishikawa Y 1994 Tohoku Math. J. 46 443
Ismail M E H 1977 Ann. Prob. 5 582
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