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Abstract
We analyze the time-dependent solutions of the pseudo-differential Lévy–
Schrödinger wave equation in the free case, and compare them with the
associated Lévy processes. We list the principal laws used to describe the
time evolutions of both the Lévy process densities and the Lévy–Schrödinger
wave packets. To have self-adjoint generators and unitary evolutions we will
consider only absolutely continuous, infinitely divisible Lévy noises with laws
symmetric under change of sign of the independent variable. We then show
several examples of the characteristic behavior of the Lévy–Schrödinger wave
packets, and in particular of the multimodality arising in their evolutions:
a feature at variance with the typical diffusive unimodality of both the
corresponding Lévy process densities and usual Schrödinger wavefunctions.

PACS numbers: 02.50.Ey, 03.65.Ta, 05.40.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction and notations

In a recent paper [1], it was shown how to extend the well-known relation between the Wiener
process and the Schrödinger equation [2–5] to other suitable Lévy processes. This idea—
discussed elsewhere only in the stable case [6, 7]—leads to a LS (Lévy–Schrödinger) equation
containing additional integral terms, which take into account the possible jumping part of the
background noise and has been presented in the framework of stochastic mechanics [2, 5]
as a model for systems more general than just the usual quantum mechanics: namely a true
dynamical theory of Lévy processes that can be applied to several physical problems [8]. The
aim of this paper is to show a number of explicit examples of wave packet solutions of these
LS equations in the free case.

In recent years, we have witnessed a considerable growth of interest in non-Gaussian
stochastic processes—and in particular into Lévy processes—in domains ranging from
statistical mechanics to mathematical finance. In the physical field, however, the research
scope is presently rather confined to the stable processes and corresponding fractional calculus
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[6, 7, 9], while in the financial domain a vastly more general type of process is at present in
use. Here, we suggest that a Lévy stochastic mechanics should be considered as a dynamical
theory of the entire gamut of the infinitely divisible processes with time reversal invariance,
and that the horizon of its applications should be widened even to cases different from the
quantum systems.

This approach has several advantages: first of all the use of general infinitely divisible
processes lends the possibility of having realistic, finite variances, a situation ruled out for
non-Gaussian stable processes. Second, the presence of a Gaussian component and the wide
spectrum of decay velocities of the increment densities will give the possibility of having
models with differences from the usual Brownian (and quantum mechanical, Schrödinger)
case as small as we want. Last but not least, there are examples of non-stable Lévy processes
which are connected with the simplest form of the quantum, relativistic Schrödinger equation:
a link with important physical applications that was missing in the original Nelson model [10,
11]. This final remark, on the other hand, shows that this inquiry is not only justified by the
desire for formal generalization but is also required by the need to attain physically meaningful
cases that otherwise would not be contemplated in the narrower precinct of the stable laws.

In this paper, we will show practical examples for the behavior of the evolving wave
packet solutions of particular kinds of (non-Wiener) LS equations, and we will put in evidence
their characteristics: in particular the multimodality arising in many of these evolutions which
has a correspondence neither in the associated process diffusions nor in the usual Schrödinger
evolutions with the same initial wavefunctions: an effect which has already been observed
only in confined Lévy flights [12]. As we will discuss in section 5, this seems to be coherent
with the usual stochastic mechanics scheme, insofar as in this theory the Schrödinger equation
is recovered by introducing a dynamics modeled by means of a quantum potential [2, 5]. In
the following exposition, laws and processes will always be one dimensional. An extensive
analysis of the topics discussed in this first section is available in the two monographs [13]
and [14], while a short introduction can be found in [15].

In this paper, the law of a rv (random variable) X with law F is characterized either by
its pdf (probability density function) f , when—as it is generally supposed—the law is ac
(absolutely continuous) or by its chf (characteristic function) ϕ with the usual reciprocity
relations

ϕ(u) =
∫ +∞

−∞
f (x) eiux dx, f (x) = 1

2π

∫ +∞

−∞
ϕ(x) e−iux du. (1)

In order to have background noises with generators self-adjoint in L2—an essential requirement
for our purposes—we will consider only symmetric laws, namely we will require f (−x) =
f (x) and ϕ(−u) = ϕ(u) so that the chf ϕ will also be real. This also means that, when it exists,
the expectation vanishes (E [X] = 0), namely the law is also centered. For our purposes it will
also be expedient to introduce a dimensional scale parameter a > 0 which, to fix the ideas,
will be supposed to be a length. If a rv X with law F is dimensionless, then Xa = aX will be
a length and will follow a law Fa with

fa(x)dx = f
(x

a

) dx

a
, ϕa(u) = ϕ(au).

We could now think to Fa as the parametric family of the rescaled rvs aX: these parametric
families spanned just by one scale parameter a are here entire types of laws. A type of laws
[16] is a family of laws that only differ among themselves by a centering and a rescaling:
in other words, if ϕ(u) is the chf of a law, all the laws of the same type have chfs eibuϕ(au)

with a centering parameter b ∈ R and a scaling parameter a > 0. Since here we only deal
with centered laws, our types are indeed spanned by means of the scale parameter a only.
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In this paper, however, we will also consider other parametric families of laws with some
dimensionless parameter λ which is not in general coincident with the scale parameter a. We
could then have two-parameter families Fa(λ), and in general we are interested in finding
which families are closed under convolution (namely under addition of the corresponding
independent rvs). When a type of laws is closed under convolution (as in the normal case)
its laws are said to be stable: the convolution would produce another law of the same type,
namely a law with only a different scale parameter (in our notation: same λ, but different
a). If instead the convolution produces a law of the same family, but not of the same type
(different λ), then the family is closed under convolution, but its laws are not stable.

Since we will restrict our analysis to background noises driven by Lévy processes, we
will be interested almost exclusively in id (infinitely divisible) laws. We remember that a law
ϕ is id if for every n there exists a chf ϕn such that ϕ = ϕn

n , while it is stable when for every
c > 0 it is always possible to find a > 0 and b ∈ R such that eibuϕ(au) = [ϕ(u)]c. It is
possible to show that every stable law is also id [13–15]. The lch (logarithmic characteristic)
of the id laws η = ln ϕ, with ϕ = eη, satisfy the Lévy–Khintchin formula [13, 14]

η(u) = iαu − 1

2
β2u2 +

∫
y �=0

[eiuy − 1 − iuy ID(y)] �(y) dy, (2)

where D = {y : |y| < 1} and is then specified by a Lévy triplet L = (α, β, �). The measure
ν(dy) = �(y) dy is also called the Lévy measure. In particular, when the law is symmetric
we have α = 0 and �(−x) = �(x), so that the Lévy–Khintchin formula will be reduced to the
symmetric real expression

η(u) = −1

2
β2u2 +

∫
y �=0

(cos uy − 1) �(y) dy (3)

and hence the chf ϕ will not only be real but also non-negative: ϕ(u) � 0.
The Markov processes dealt with in this paper are stationary, independent increments

processes and are then defined by means of the chf ϕ
t/τ of their 
t-increments, where τ is
a dimensional, time scale parameter. Here too we can introduce a dimensionless formulation
through a coordinate s = t/τ , but to simplify the notation we can continue to use the
same symbol t for this dimensionless time. In this case, the stationary chf is ϕ
t , and the
dimensional formulation will be recovered by simple substitution of t/τ to t. A stochastically
continuous process with stationary and independent increments is called a Lévy process when
X(0) = 0, P-a.s., but this paper will mostly be about the same kind of processes for arbitrary
initial conditions X(0) = X0, P-a.s. with law f0(x) and ϕ0(u) = eη0(u). All these processes,
independently from their initial conditions, will share both the same evolution equations and
the same transition pdfs

fX(t) (x|X(s) = y) = p(x, t |y, s).

To avoid confusion we will then adopt different notations for their respective marginal pdfs:
for a Lévy process (namely with initial condition X0 = 0) we will write

fX(t)(x) = q(x, t), ϕX(t)(u) = χ(u, t)

with q(x, 0) = δ(x) and χ(x, 0) = 1, while for the general stationary and independent
increments process (with arbitrary initial condition X0) we will write

fX(t)(x) = p(x, t), ϕX(t)(u) = φ(u, t)

with p(x, 0) = f0(x) and φ(x, 0) = ϕ0(x). It is also easy to show that

p(x, t |y, s) = q(x − y, t − s). (4)
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The infinitesimal generator A = η(∂) (here ∂ stands for the derivation with respect to the
variable of a test function v) of the semigroup of a Lévy process will be a pseudo-differential
operator with symbol η [1, 14], namely from (2)

[Av](x) = [η(∂)v](x) = 1√
2π

∫ +∞

−∞
eiuxη(u)v̂(u) du

= α ∂xv(x) +
β2

2
∂2
x v(x) +

∫
y �=0

[v(x + y) − v(x) − yID(y) ∂xv(x)] �(y) dy, (5)

where v̂ denotes the FT (Fourier transform) of the test function v according to

v̂(u) = 1√
2π

∫ +∞

−∞
v(x) e−iuxdx, v(x) = 1√

2π

∫ +∞

−∞
v̂(u) eiux du.

The generator A will be self-adjoint in L2(R, dx) when the law is symmetric, and in this case
(5) reduces to

[Av](x) = β2

2
∂2
x v(x) +

∫
y �=0

[v(x + y) − v(x)] �(y) dy (6)

so that it is determined only by two elements of our Lévy triplet: β and �. Given the process
stationarity, in a dimensionless formulation the transition law degenerate in x = 0 at t = 0
will have as chf χ = ϕt = etη and as pdf

q(x, t) = 1

2π

∫ +∞

−∞
χ(u, t) e−iux du = 1

2π

∫ +∞

−∞
ϕ(u)t e−iux du. (7)

This transition law plays an important role in the evolution of an arbitrary initial law f0, ϕ0:
the process chf will indeed now be φ(u, t) = χ(u, t)ϕ0(u), and the corresponding pdf will be
calculated as

p(x, t) = [q(t) ∗ f0](x) = 1

2π

∫ +∞

−∞
φ(u, t) e−iux du.

This pdf will also be a solution of the evolution pseudo-differential equation [1, 14]

∂tp = η(∂)p, p(x, 0) = f0(x) (8)

which—for a centered, symmetric noise—from (6) takes the form

∂tp(x, t) = η(∂x)p(x, t)

= β2

2
∂2
xp(x, t) +

∫
y �=0

[p(x + y, t) − p(x, t)] �(y) dy. (9)

We finally remember that since (8) and (9) are given in terms of process pdfs, these equations
are supposed to hold only for ac processes. It is then advisable to recall that [13–15] any
non-degenerate, sd (self-decomposable) distribution is ac. We remember that a law ϕ(u) is sd
when for every a ∈ (0, 1) we can always find another chf ϕa(u) such that ϕ(u) = ϕ(au)ϕa(u).
Every stable law is also sd; every sd law is also id. Such a property moreover holds for
the corresponding processes for every t [13] and hence we can always explicitly write down
the evolution equations (9) in terms of the process pdfs at least for the sd case. We remark,
however, that there are also non-sd processes which are ac: the ac compound Poisson processes
of appendix A are an example in point.

We list in table 1 the properties of a few basic, symmetric, dimensionless laws: degenerate
(Dirac) D, normal (Gauss) N, Cauchy C, Laplace L, uniform U, and doubly degenerate in
+1,−1 (symmetric Bernoulli) D1. Here �(x) is the Heaviside function. These laws are also
relevant to particular cases of the families that we will introduce in section 2. We remark that
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Table 1. List of the properties of a few basic, dimensionless laws discussed in this paper: degenerate
(Dirac) D, normal (Gauss) N, Cauchy C, Laplace L, uniform U, and doubly degenerate in +1, −1
(symmetric Bernoulli) D1. � is the Heaviside function.

law f ϕ β � E V

D δ(x) 1 0 0 0 0

N e−x2/2√
2π

e−u2/2 1 0 0 1

C 1
π

1
1+x2 e−|u| 0 1

πx2 – +∞
L e−|x|

2
1

1+u2 0 e−|x|
|x| 0 2

U
�(x+1)−�(x−1)

2
sin u

u
– – 0 1

3

D1
δ1(x)+δ−1(x)

2 cos u – – 0 1

Table 2. Families of sd, dimensionless laws: the stable S(λ), the variance-Gamma VG(λ), the
Student T(λ) and the relativistic qm (quantum mechanics) R(λ).

law f ϕ β � 0 < λ

S(λ)

Hλ(|x|)
1
π

1
1+x2

e−x2/2√
2π

e−|u|λ/λ

e−|u|

e−u2/2

0

0

1

|x|−1−λ

−2λ�(−λ) cos(λπ/2)

1
πx2

0

λ � 2

λ = 1

λ = 2

VG(λ)

|x|λ−1/2Kλ−1/2(|x|)
2λ−1�(λ)

√
2π

e−|x|
2

(
1

1+u2

)λ

1
1+u2

0

0

λe−|x|
|x|

e−|x|
|x|

0 < λ

λ = 1

T(λ)

1
B( 1

2 , λ
2 )

(
1

1+x2

) λ+1
2

1
π

1
1+x2

2|u|λ/2Kλ/2(|u|)
2λ/2�(λ/2)

e−|u|

0

0

. . .

1
πx2

0 < λ

λ = 1

R(λ)
λeλK1

(√
λ2+x2

)
π

√
λ2+x2 e λ(1−

√
1+u2) 0 λK1(|x|)

π |x| 0 < λ

in table 1 there is no value for the expectation of C because it does not exist (C is centered
on the median), and no values for the Lévy triplet of U and D1 since these are not id laws.
Moreover, in general our laws are not necessarily standard (their variance V is not forcibly 1).

The paper is organized as follows: in section 2 we recall the essential properties of the law
families of our interest; then, in section 3, the LS equation is introduced with its connections
to the Lévy processes. In section 4, our examples are elaborated, and finally in sections 5 and
6 the results are discussed. Further technical details are collected in the appendices in order
to avoid excessively burdening the text.

2. Families of id laws

We will introduce here the principal families of id laws considered in this paper. For a graphical
synthesis of the relations among them see figure 1. We limit ourselves here to dimensionless
laws in order to have one-parameter families that can be easily represented. We then list in
table 2 the properties of the principal families of dimensionless, sd laws that will be discussed.
Kν , B and � respectively are the modified Bessel functions of the second kind, and the Euler
Beta and Gamma functions, while Hλ stands for the Fox H-functions representing the pdf
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( )

( )

( )

i.d.
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( )

Figure 1. Graphical synthesis of the relations among the families of laws discussed in section 2.
The uniform U is our unique example beyond the pale of the id laws, while the laws of the (simple)
Poisson family P(λ) are id but not sd. Notable cases (N, L, C) within the sd families are put in
evidence; the Cauchy C law lies at the intersection of the stable S(λ) and Student T(λ) families.

of stable laws [17]. From tables 1 and 2, we can on the other hand immediately see that
S(1) = T(1) = C, S(2) = N and VG(1) = L, as also evidenced in figure 1.

2.1. The stable laws S(λ)

This is the more widely studied family of id laws, even if among them only the normal
S(2) = N enjoys a finite variance. But for the N, the C and precious few other cases the pdfs
of the stable laws exist only in the form of Fox H-functions. To see why these laws are stable,
take the family Sa(λ) with two parameters, 0 < λ � 2, a > 0, and

ϕ(u) = e−aλ|u|λ/λ.

For a given fixed λ, the family Sa(λ) is closed under convolution, and since Sa(λ) for a given
λ is a type of laws, its laws are stable. This has far reaching consequences. In particular, it is
at the root of the well-known fact that the stable Lévy processes are self-similar: a property
not extended to other, non-stable Lévy processes [15]. The generators of the stable Lévy
processes are for 0 < λ < 2 and λ �= 1:

[Av](x) = −1

2λ�(−λ) cos λπ
2

∫
y �=0

v(x + y) − v(x)

|y|1+λ
dy,

while for λ = 1 (C law) and λ = 2 (N law) we respectively have

[Av](x) =
∫

y �=0

v(x + y) − v(x)

πy2
dy [Av](x) = 1

2
∂2
x v(x).

2.2. The variance-Gamma laws VG(λ)

It is apparent from table 2 that the family of the variance-Gamma laws VG(λ) is closed under
convolution in the sense that VG(λ1) ∗ VG(λ2) = VG(λ1 + λ2). That notwithstanding,
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however, the variance-Gamma laws are not stable: take indeed the two-parameter family
VGa(λ)

ϕ(u) =
(

1

1 + a2u2

)λ

.

Every sub-family with a given, fixed a is closed under convolution, but at variance with the
stable case the parameter describing the sub-family is λ, rather than a. As a consequence,
the closed subfamilies do not constitute types of laws and hence the laws are not stable. The
pdfs of the variance-Gamma laws can also be given as finite combinations of elementary
functions but only in particular instances. All our dimensionless VG(λ) laws are endowed
with expectations (which vanish by symmetry) and finite variances 2λ. The generator of the
corresponding Lévy process is

[Av](x) = λ

∫
y �=0

v(x + y) − v(x)

|y| e−|y| dy, λ > 0

which coincides with that of L for λ = 1.

2.3. The Student laws T(λ)

But for the Cauchy C case, the laws of the Student family are not stable, and T(λ) itself is not
closed under convolution: convolutions of Student laws are not Student laws. As can be seen
from table 2, the variance-Gamma and the Student families enjoy a sort of duality since their
pdfs and chfs are essentially exchanged. This has been discussed at length in a few recent
papers [18–20]. We remark that to evidence this correspondence, we have chosen the Student
laws of T(λ) without introducing the usual parametric scaling x2/λ of its variable that would
have put equal to λ/(λ − 2) all their variances for λ > 2. In particular, this means that for
λ → +∞ we will not get a standard N law, as also shown in figure 1. The following remarks
are however virtually untouched by this choice. While the pdfs and chfs of the Student laws
are known, differently from the variance-Gamma laws, their Lévy measures and generators do
not have a known general expression and can be explicitly given only in particular instances
[18]. Of course T(1) = C is the well-known Cauchy law (see section 2.1 on the stable laws),
while T(3) given in (B.5) will play in the following the role of a possible initial law. The
existence of the moments of the T(λ) laws depends on the value of the parameter λ: the nth
moment exists if n < λ. In particular the expectation exists (and vanishes) for λ > 1, while
the variance exists finite for λ > 2 and its value is (λ − 2)−1.

2.4. The compound Poisson laws Nσ ∗ P(λ,H)

Within the notations of appendix A, take the compound Poisson laws Nσ ∗ P(λ,H) with the
Lévy triplet L = (0, σ, λ h) and generator

[Av](x) = σ 2

2
∂2
x v(x) + λ

∫
y �=0

[v(x + y) − v(x)]h(y) dy.

When in particular H = Na , then the Lévy triplet of Nσ ∗ P(λ,Na) is

L =
(

0, σ, λ
e−x2/2a2

√
2πa2

)

and we obtain a law with the following pdf and lch:

f (x) = e−λ

∞∑
k=0

λk

k!

e−x2/2(ka2+σ 2)√
2π(ka2 + σ 2)

, η(u) = λ(e−a2u2/2 − 1) − σ 2u2

2
,
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namely a Poisson mixture of centered normal laws N(0, ka2 +σ 2). The self-adjoint generator
then is

[Av](x) = σ 2

2
∂2
x v(x) + λ

∫ +∞

−∞
[v(x + y) − v(x)]

e−y2/2a2

√
2πa2

dy,

and we could look at it as to a Poisson correction of a Wiener generator.
If instead we suppose, as another example, that H = Da the Lévy triplet of Nσ ∗P(λ,Da)

will now be

L =
(

0, σ, λ
δ1(x/a) + δ−1(x/a)

2a

)
,

while pdf and lch become

f (x) = e−λ

∞∑
k=0

λk

k!

1

2k

k∑
j=0

(
k

j

)
e−[x−(k−2j)a]2/2σ 2

√
2πσ 2

η(u) = λ(cos au − 1) − σ 2u2

2
.

Here the law is again a mixture of normal laws N(na, σ 2), n = 0,±1, . . ., but with a non-zero
expectation which is an integer multiple of a. The generator finally is

[Av](x) = σ 2

2
∂2
x v(x) + λ

v(x + a) − 2v(x) + v(x − a)

2

because the integral jump term reduces itself to a finite difference term.

2.5. The relativistic qm laws R(λ)

The family of the relativistic qm (quantum mechanics) laws on the other hand is a particular
case of the well-known (centered and symmetric) generalized-hyperbolic family GH(δ, α, λ)

[18]: in fact we have R(λ) = GH
(− 1

2 , 1, λ
)
, as can be seen by direct inspection of their pdfs

and chfs. This family owes its name to the fact that (for λ = mc2τ/h̄ and a = h̄/mc, in terms
of the time scale τ , the particle mass m, the velocity of light c and the Planck constant h̄) its
pseudo-differential generator

A = η(∂x) = τ

h̄

(
mc2 −

√
m2c4 − c2h̄2∂2

x

)
(10)

essentially coincides with the Hamiltonian operator of the simplest form of a free relativistic
Schrödinger equation [1, 10, 14] (see section 3). R(λ) is closed under convolution, as can be
seen from the form of the chfs, but the laws are not stable for the same reasons as the variance-
Gamma: the parameter λ is not a scale parameter. The pdfs and chfs are explicitly known (see
table 2), and all their moments exist: the odd moments (in particular the expectation) vanish
by symmetry, while the even moments are always finite and its variance is λ. Since the Lévy
measure is explicitly known (see table 2) the Lévy dimensionless generator has the integral
form

[Av](x) = λ

∫
y �=0

[v(x + y) − v(x)]
K1(|y|)
π |y| dy,

where Kα is a modified Bessel function.

8
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3. The Lévy–Schrödinger equation

It has been shown in [1] that the evolution equation (9) of a centered, symmetric Lévy process
can be formally turned into a LS equation: in fact the pseudo-differential generator η(∂)

of our processes is a self-adjoint operator in L2 and hence can correctly play the role of a
Hamiltonian. We summarize in the following the formal steps leading to the LS equation; this
will also establish the notation for the subsequent sections.

Take as background noise a centered, symmetric, id law with f, ϕ = eη, L = (0, β, �)

so that (3) holds, and then define the (dimensionless) transition chf χ(u, t) = ϕt (u) and the
reduced transition pdf

q(x, t) = 1

2π

∫ +∞

−∞
ϕt (u) e−iux du

of the corresponding Lévy process. With an initial law f 0, ϕ0 = eη0 the chf and the pdf of the
process will then be

φ(u, t) = χ(u, t)ϕ0(u)

p(x, t) = [q(t) ∗ f0](x) =
∫ +∞

−∞
q(x − y, t)f0(y) dy

= 1

2π

∫ +∞

−∞
φ(u, t) e−iux du. (11)

The pdf p(x, t) must also be a solution of the evolution equation (9) and in principle we could
find p also by directly solving this equation.

We pass then to the LS propagators by means of the formal substitution t → it :

γ (u, t) = χ(u, it) = ϕit (u) = eitη(u), g(x, t) = q(x, it)

so that g and γ will still verify the same reciprocity relations (7) of q and χ

g(x, t) = q(x, it) = 1

2π

∫ +∞

−∞
χ(u, it) e−iuxdu = 1

2π

∫ +∞

−∞
γ (u, t) e−iux du.

We remark that if the law of the background noise is centered, symmetric and id then η is
real, symmetric and positive and hence we always have |γ | = 1. This implies first that γ is
not normalizable in L2, and hence that also g is not normalizable in L2. This is not surprising
since, as is well known, the propagators are not supposed to be normalizable wfs. On the other
hand, as we will see soon, this also entails that an initial normalized wf will stay normalized
all along its evolution. We choose now an initial LS wf: to compare the evolutions of the wfs
with that of the process pdfs, we will take—whenever we can—a law f 0, ϕ0 = eη0 and a wf
ψ0 such that |ψ0|2 = f0. By choosing f 0 and ϕ0 centered and symmetric we will have (for
vanishing initial phases) real ϕ0 and ψ0, with

ψ0(x) =
√

f0(x) ϕ0 = ψ̂0 ∗ ψ̂0 (12)

where ψ̂0 is the FT of ψ0. Now the LS wfs will obey the following evolution scheme:

ψ̂(u, t) = γ (u, t)ψ̂0(u)

ψ(x, t) = [g(t) ∗ ψ0](x) =
∫ +∞

−∞
g(x − y, t)ψ0(y) dy

= 1√
2π

∫ +∞

−∞
ψ̂(u, t) eiux du. (13)

Here, we can see the relevance of having |γ |2 = 1 (namely of having a centered,
symmetric background Lévy noise, and hence a self-adjoint generator): we have indeed
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that |ψ̂(t)|2 = |γ |2|ψ0|2 = |ψ0|2, so that if ‖ψ0‖2 = 1 then also ‖ψ̂(t)‖2 = 1, and as a
consequence (by Parseval and Plancherel theorems) ‖ψ(t)‖2 = 1 at every t. In other words,
we can say that the non-normalizability of the propagator is the counterpart of the unitarity of
the LS evolution. Finally it is easy to see that the wfs ψ(x, t) introduced in the previous steps
must satisfy the free LS equation

i∂tψ(x, t) = −η(∂x)ψ(x, t)

= −β2

2
∂2
xψ(x, t) −

∫
y �=0

[ψ(x + y, t) − ψ(x, t)] �(y) dy. (14)

As already remarked in section 2.5, when in particular the background noise follows an
R(λ) law, the generator η(∂x) takes the form (10) and (by restoring the dimensional constants,
and by taking out of the wf an unessential phase factor eimc2t/h̄) the LS equation (14) becomes

i∂tψ(x, t) =
√

m2c4 − c2h̄2∂2
x ψ(x, t)

= mc2

[
ψ(x, t) −

∫
y �=0

ψ(x + y, t) − ψ(x, t)

π |y| K1

(
mc|y|

h̄

)
dy

]
, (15)

which coincides with the well-known relativistic Schrödinger equation [1, 10, 14]. This
represents then an important example, because it shows first of all that the broadening of
the scope of our inquiry to the entire gamut of the id laws is not suggested just by a desire
of generalization. In fact, by confining ourselves to just the stable processes, we would
have precluded the possibility of obtaining (15). On the other hand, its connection to a
probabilistic, pathwise model as the stochastic mechanics inevitably raises many questions
about the possibility of associating trajectories with quantum mechanics. In the case of the
relativistic Schrödinger equation, moreover, this problem is compounded with that of coming
to terms with the paradoxes due to the non-local effects that seem to be associated with the
quantum mechanics: effects that should be in sheer contrast with the existence of a limiting
velocity supposed in a relativistic model. This, of course, is not the place to thoroughly
discuss this time honored problem by tapping into an already huge literature: we will limit
ourselves to remarking that the non-locality implied either by the EPR correlations or rate
of propagation of the probability flows fails in fact to materialize in observable, measurable
superluminal effects actually violating either relativity or causality. On the other hand, the
quoted phenomena are essential ingredients of a relativistic quantum theory independently
from its possible interpretation in terms of trajectories. This is not, of course, to pretend that
this problem simply does not exist, but only to suggest that at present—our aim here is not
to give a convincing explanation of these paradoxes—we can confidently live with it without
feeling obliged to abandon other essential principles we are comfortable with.

4. Processes and wave packets

We will give now several examples of LS wfs compared with the corresponding purely Lévy
evolutions. We classify these examples first by choosing the laws of the background noises:
this will be done by picking up the id laws that allow a reasonable knowledge both of the Lévy
process transition pdfand of the LS propagator. Besides the usual Wiener case (that will be
considered just to show the way), this will indeed allow us to calculate the evolutions by means
of integrations, without being obliged to solve pseudo-differential equations. These equations
will be used instead—when it is possible—as a check on the solutions found from transition
pdfs and propagators. We will compare then the typical evolutions of the Lévy process pdfs
and of the wfs solutions of a free LS equation: for details, notations and formulas about both

10
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the initial laws and wfs, and the transition pdfs and propagators, we will make due references
to appendix B and to appendix C. Remark also that in the following we will reintroduce the
dimensional parameters a, b and τ .

4.1. Gauss

Take a Wiener process with transition law (C.1). For a normal initial law (B.1) N b we have

φ(u, t) = χ(u, t)ϕ0(u) = e−(2Dt+b2)u2/2

so that the evolution is always Gaussian N(2Dt + b2): it starts with a non-degenerate normal
distribution of variance b2 and then widens as the usual diffusions do with variance 2Dt + b2.
The LS evolution of the wfs on the other hand is here the usual quantum mechanical one. Take
as initial wf the Gaussian (B.2): then from (C.2) we have as wave packets

ψ̂(u, t) = γ (u, t)ψ̂0(u) = 4

√
2b2

π
e−(b2+iDt)u2

ψ(x, t) = 1√
2π

∫ +∞

−∞
ψ̂(u, t) eiuxdu = 4

√
b2

2π

e−x2/4(b2+iDt)

√
b2 + iDt

.

It is well known that in this case, |ψ(x, t)|2 has a widening, Gaussian shape all along its
evolution. We neglect to display pictures of these well-known unimodal evolutions.

4.2. Cauchy and Student

The Cauchy process is one of the most studied non-Gaussian, Lévy processes [6], first because
it is stable, and then because the calculations are relatively accessible. For example, if the
initial law is a Cauchy C b with χ(u, t) = e−ct |u|, from (C.3) and (B.3) we immediately have
for the transition chf

φ(u, t) = e−(b+ct)|u|,

namely the process law remains a Cauchy C b+ct at every t with a typical broadening for
t → +∞ :

p(x, t) = 1

π

b + ct

(b + ct)2 + x2
. (16)

Of course this behavior (which is in common with the Gaussian Wiener process) comes out
from the fact that the Cauchy laws are stable, and we neglect to display the corresponding
figure. Even when the initial pdf is a Tb(3) with ϕ0(u) = (1+b|u|)e−b|u| calculations are easy:
now the transition law is again Cct , and the one-time process law Cct ∗ Tb(3) will have as chf

φ(u, t) = χ(u, t)ϕ0(u) = (1 + b|u|) e−(b+ct)|u|,

while the pdf is recovered by the chf inversion

p(x, t) = 1

2π

∫ +∞

−∞
φ(u, t) e−iux du = (b + ct)2(2b + ct) + vtx2

π [(b + ct)2 + x2]2
. (17)

It would be easy to check that this is again a normalized, unimodal, bell-shaped, broadening
pdf (see figure 2), with neither an expectation nor a finite variance for t > 0. For this example,
we can also show by direct calculation that the pdfs (16) and (17) are both solutions of the
pseudo-differential Cauchy equation (C.4).
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Figure 2. The pdf (17) for a Cauchy process with a Student Tb(3) initial distribution.
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Figure 3. The square modulus of the Cauchy–Schrödinger wf (18) for a Student Tb(3) initial
distribution.

The Cauchy–Schrödinger evolutions, on the other hand, show a more interesting structure.
The simplest case is found when we take as |ψ0|2 the Student Tb(3) law (B.6): from (C.5) we
indeed have

ψ̂(u, t) = γ (u, t)ψ̂0(u) =
√

b e−(b+ict)|u|

and hence

ψ(x, t) = 1√
2π

∫ +∞

−∞
ψ̂(u, t) eiux du =

√
2b

π

b + ict

(b + ict)2 + x2
. (18)

This wf (see figure 3) is correctly normalized in L2 but shows an apparent bimodality. In fact
|ψ |2 has now two well-defined maxima smoothly drifting away from the center as t → +∞.
It is also possible to show—by direct calculation—that our wf is a solution of the Cauchy–
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Figure 4. The square modulus of the Cauchy–Schrödinger wf (19) for a Cauchy Cb initial
distribution.

Schrödinger equation (C.6). Similar results are found in the case of a Cauchy C b initial wf
(B.4): from the propagator (C.5) we have

ψ̂(u, t) =
√

2b

π
K0(b|u|)e−ict |u|

and hence by inverting the FT

ψ(x, t) = 1√
2π

∫ +∞

−∞

√
2b

π
K0(b|u|) e−ict |u| eiux du

= 1

π
√

bπ

[
A

(
x + ct

b

)
+ A

(
x − ct

b

) ]
, (19)

where we defined

A(z) =
π
2 − i arcsinh z√

1 + z2
.

The wf (19) is normalized in L2 and shows (see figure 4) a behavior similar to that of (18): its
pdf |ψ |2 starts as a Cauchy C b distribution and then widens with two well-defined maxima
drifting away from the center. Here too, hence, we have bimodality: remark the difference
with the Cauchy process pdfs C b+ct and Cct ∗Tb(3) which instead broaden by remaining strictly
unimodal.

4.3. Laplace

This multimodality of the LS wave packets can also be found in other examples. Take first
the variance-Gamma process introduced in appendix C. At variance with the Cauchy process,
this is an example of a non-stable, sd process and hence has a certain interest as a non-typical
case. At present, we will limit our discussion to initial states of the same variance-Gamma
family of the background noise, and also always choose coincident scale parameters a = b

for the background noise and the initial states.
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Figure 5. The pdf (20) for a variance-Gamma process with Laplace VGb(1) = Lb initial
distribution.

For a variance-Gamma process with transition law (C.7) and initial pdf (B.8) we
immediately have

φ(u, t) = χ(u, t)ϕ0(u) =
(

1

1 + b2u2

)ν+ωt

and hence the process law simply is VGb(ν + ωt) with pdf

p(x, t) = 2

2ν�(ν)
√

2π b

( |x|
b

)ν+ωt− 1
2

Kν+ωt− 1
2

( |x|
b

)
, (20)

namely always a variance-Gamma but with a growing parameter ν + ωt . On the one hand,
this explains why it would be delusory to think of simplifying the example by starting, for
instance, with a simple Laplace Lb = VGb(1) initial law: in fact at every time t > 0 the
process law would in any case no longer be a Laplace law, but a more general variance-Gamma
with ν + ωt �= 1. On the other hand, this apparently explains why at every t the pdf will appear
as a broadening, unimodal distribution as shown in figures 5 and 6 respectively for ν = 1 and
ν = 2.

For a LS evolution, on the other hand, we have from (C.9) and (B.10)

ψ̂(u, t) =
√

b√
π

�(2ν)

�
(
2ν − 1

2

) (
1

1 + b2u2

)ν+iωt

so that the inverse FT will be

ψ(x, t) = 1

2π

∫ +∞

−∞
ψ̂(u, t)eiuxdu

=
√

b√
π

�(2ν)

�
(
2ν − 1

2

) 2

2ν+iωt�(ν + iωt)
√

2π

× 1

b

( |x|
b

)ν+iω+1/2

Kν+iω+1/2

( |x|
b

)
. (21)

Numerical calculations and plotting then show that the wf (21) always is normalized, and
that |ψ |2 has several maxima, with the first two more prominent symmetrically drifting away
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Figure 6. The pdf (20) for a variance-Gamma process with variance-Gamma VGb(2) initial
distribution.
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Figure 7. The square modulus of the variance-Gamma–Schrödinger wf (21) with a Laplace
VGb(1) = Lb initial wf.

from the center (see figure 7 for ν = 1 and figure 8 for ν = 2). The behavior in x = 0 is
indeed rapidly oscillating, but with infinitesimal amplitude as we approach x = 0: in fact the
singular behavior of the Bessel function is here competing with an infinitesimal |x|ν factor.
The distribution also shows a slowly decreasing, flat plateau (with micro-oscillations) in the
central region, while the diverging maxima can be rather dull as in figure 8.

4.4. Poisson

The following examples come from two ac, but not sd background noises: the compound
Wiener–Poisson processes introduced in appendix A. First take the process with the transition
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Figure 8. The square modulus of the variance-Gamma–Schrödinger wf (21) with a variance-
Gamma VGb(2) initial wf.

law N(2Dt) ∗ P (ωt,Na) in (C.11): with a normal initial law (B.1) the marginal law of the
process becomes N(2Dt + b2) ∗ P (ωt,Na) namely

p(x, t) = e−ωt

∞∑
k=0

(ωt)k

k!

e−x2/2(ka2+2Dt+b2)√
2π(ka2 + 2Dt + b2)

, (22)

which apparently is a Poisson mixture of centered, normal pdfs of different variances, and
hence has the usual bell-like, unimodal, diffusing shape that we will not bother to show. For the
other transition law N(2Dt) ∗ P (ωt,Da) in (C.15) with the same normal initial distribution
the marginal law instead is N(2Dt + b2) ∗ P (ωt,Da) namely

p(x, t) = e−ωt

∞∑
k=0

(ωt)k

k!

1

2k

k∑
j=0

(
k

j

)
e−[x−(k−2j) a]2/2(2Dt+b2)√

2π(2Dt + b2)
. (23)

In other words, we always have generalized Poisson mixtures, but of non-centered normal
pdfs. Even in this case, however, the shape of the overall pdf will be that of a bell-like,
unimodal, diffusing curve (see figure 9).

For the LS equation on the other hand, consider first the propagator N (2iDt)∗P (iωt,Na)

in (C.13) applied to an initial Gaussian wf (B.2); we then have

ψ̂(u, t) = e
iωt

(
e−a2u2/2−1

)
4

√
2b2

π
e−(b2+iDt)u2

and, by inverting the FT and taking into account the properties of the Gaussian integrals, the
wf will be

ψ(x, t) = eiωt

∞∑
k=0

(iωt)k

k!
4
√

8πb2
e−x2/2(ka2+2b2+2iDt)√

2π(ka2 + 2b2 + 2iDt)
, (24)

namely a time-dependent, complex, Poisson superposition of centered Gaussian wfs. The
same is true for the second example with propagator N (2iDt) ∗ P (iωt,Da) in (C.16) with
an initial Gaussian wf (B.2): the wf FT in fact now is

ψ̂(u, t) = eiωt(cos au−1) 4

√
2b2

π
e−(b2+iDt)u2
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Figure 9. The pdf (23) of a normal-Poisson process N(2Dt) ∗ P(ωt,Da) with a Gaussian initial
law.
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Figure 10. The square modulus of the normal-Poisson–Schrödinger wf (25) with a Gaussian initial
wf.

so that the wf itself will be

ψ(x, t) = eiωt

∞∑
k=0

(iωt)k

k!

4
√

8πb2

2k

k∑
j=0

(
k

j

)
e−[x−(k−2j)a]2/4(b2+iDt)√

4π(b2 + iDt)
. (25)

In conclusion, while the plots of p(x,t) in (22) and (23) simply display the too familiar story
of a diffusing, unimodal, bell-shaped curve—and the same is of course true for |ψ(x, t)|2 in
(24)—for |ψ(x, t)|2 in (25) we instead have again a separation of the wave packet in two
symmetrical sub-packets drifting away from the center where in any case a decreasing, rump
maximum is left behind (see figure 10): we then have here a trimodal evolution.
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Figure 11. The pdf (27) of a Lévy process with a relativistic qm background noise and an initial
law of the same family.

4.5. relativistic qm

In a way similar to that of the variance-Gamma, for a relativistic qm Lévy process with
transition law (C.17) and initial distribution (B.11), but with a = b, we immediately have

φ(u, t) = χ(u, t)ϕ0(u) = e(ν+ωt)(1−
√

1+a2u2) (26)

p(x, t) = (ν + ωt)eν+ωt

πa

K1(
√

(ν + ωt)2 + x2/a2)√
(ν + ωt)2 + x2/a2

(27)

and hence the process law simply is R(ν + ωt); namely, it will stay always in the same
relativistic qm family but with a time-dependent parameter. The pdf p(x, t) is shown in
figure 11 and has the usual bell-like, unimodal, diffusing form. For the corresponding LS
evolution on the other hand we have from (B.13) and (C.19) that the normalized wfs are

ψ̂(u, t) = γ (u, t)ψ̂0(u) =
√

a

2e2νK1(2ν)
e(ν+iωt)(1−

√
1+a2u2) (28)

ψ(x, t) = (ν + iωt) eiωt

√
aπK1(2ν)

K1(
√

(ν + iωt)2 + x2/a2)√
(ν + iωt)2 + x2/a2

. (29)

We show in figure 12 how this |ψ(x, t)|2 behaves, and in particular, at variance with the
previous Lévy pdf (27), we find here again a case of bimodality: the wf square modulus shows
two symmetric maxima drifting away from the center of the distribution.

5. Unimodality versus multimodality

The distributions of a process can undergo temporal changes of a qualitative nature, and the
changes in modality are among the most interesting ones. It is difficult at present to give
a complete analysis of this problem since many questions still remain unanswered, but an
exhaustive review of the most important results about the Lévy processes can be found in [21].
Essentially a Lévy process is called unimodal (independently from its initial distribution) when
the laws ϕt are unimodal for every t > 0. We learn first then that the sd processes always
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Figure 12. The square modulus of the relativistic qm wf (29) with an initial wf of the same family.

are unimodal all along their evolution: this is perfectly coherent with what we have found in
our inquiry because all our processes (with the exception of the compound Poisson processes)
are sd, and then they stay correctly unimodal for every t > 0. The case of the compound
Poisson process Nσ ∗P(λ,Na), on the other hand, is recovered according to another result: a
symmetric Lévy process (as all our processes are) is unimodal if and only if its Lévy measure
is unimodal in x = 0. As a consequence it is not surprising that all our examples consistently
were unimodal: what is new, in contrast, is that the evolutions associated with these Lévy
processes by the LS equation (14) display a multimodality (in particular a bimodality) which
manifests itself in time even when the initial distribution is unimodal.

As we have already mentioned, for (non-Schrödinger) Lévy processes, bimodality has
been shown to arise in the presence of confining potentials [12]. In fact, the stationary states of
nonlinear oscillators driven by particular Lévy noises display an apparent bimodality in given
ranges of the potential parameters. In these cases, the authors contend that ‘qualitatively the
occurrence of the bimodal structure can be understood as a trade-off between the relatively high
probability for large amplitude of the Lévy noise, and the sharp increase in the slope ∝ |x|4 of
the quartic potential relative to the harmonic case’. In other words, this qualitative behavior
is made contingent on the interplay between the jump length and the confining potential
strength. At first sight, this interpretation does not seem to be immediately extendable to our
LS examples because they are all instances of free evolutions, in the sense that we did not
add external potentials to our LS equations. However, it is also well known that, in the usual
Gaussian case, the Nelson stochastic mechanics [2, 5] achieves its breakthrough of getting the
Schrödinger equation only by introducing a dynamics either by means of modified Newton
equations or by means of stochastic variational principles: a dynamics which is otherwise
sometimes modeled by means of a so-called quantum potential. In the same sense then we
could conjecture that here, in our model of LS equations, we have introduced some kind of
hidden dynamics which—in association with the Lévy jumps of the background noise—can
account for the multimodality arising in the evolutions. Of course at present this is just an
analogy because we do not have an explicit dynamical theory of the Lévy processes in the
same sense in which the stochastic mechanics is a dynamical theory of Brownian motion. But
this apparently points to a path of research that we will tread in the future.

Let us finally remark that in the previous papers about bimodality and Lévy flights [12], the
discussion was typically confined only to the stable (in particular Cauchy) processes, the results
were mostly produced from numerical simulations and they pertained essentially to stationary
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states of confining potentials. In this context, these authors managed to find also the critical
values (both for the parameters and for the time evolution) beyond which the bimodality
arises. In this paper, we have instead found mostly analytical results about non-stationary
states both of the general (not only stable) Lévy processes and of their LS counterparts: this
substantially broadens the scope of the previous research in the field. Moreover, from the
explicit expressions of the LS wfs listed in section 4 we can find the values of the critical
bifurcation time t0 at which the bimodality shows up from the initial unimodality. It is apparent
indeed that—because of the symmetry of the system—t0 would be the solution of the equation[

∂2
x |ψ(x, t)|2]

x=0 = 0. (30)

Take for example the two Cauchy–Schrödinger wfs (18) and (19): it is easy then to see that in
these cases the solutions of (30) are respectively

t0 = b

c
, t0 = 1.081 42

b

c
,

where b/c is a constant with the dimensions of a time which depends on the characteristics of
both the background Lévy noise and the initial distribution, while the value of the coefficient
in the second formula comes from the numerical solution of a simple, transcendent equation.

6. Conclusions

We presented in the previous sections several examples of free wave packets that are solutions
of the LS equation without potentials (14). We started by generalizing the relation between
Brownian motion and Schrödinger equation, and by associating the kinetic energy of a
physical system with the generator of a symmetric Lévy process, namely to a pseudo-
differential operator whose symbol is the lch η of an id law. This amounts to supposing
that the LS equation is based on an underlying Lévy process that can have both Gaussian
(continuous) and non-Gaussian (jumping) components. The use of all the id, even non-
stable, processes on the other hand is important and physically meaningful because there
are significant cases that are in the domain of our LS picture, without being in that of the
stable (fractional) Schrödinger equation. In particular, as discussed in [1, 6], the simplest
form of a relativistic, free Schrödinger equation can be associated with a particular type of
sd, non-stable process acting as background noise. Moreover, in many instances of the LS
equation, the new energy–momentum relations can be seen as corrections to the classical
relations for small values of certain parameters [1]. It must also be remembered that—at
variance with the stable, fractional case—our model is not tied to the use of background noises
with infinite variances: these can be finite even in purely non-Gaussian models—as in the case
of the relativistic, free Schrödinger equation—and can then be used as a legitimate measure
of the dispersion. Finally, let us recall that a typical non-stable, Student Lévy noise seems
to be suitable for applications in the models of halo formation in intense beam of charged
particles in accelerators [8, 18, 22].

It was then important to explore the general behavior of the diffusing LS wfs: we
systematically approached this problem by defining a procedure allowing us to analyze several
combinations of initial wfs and background Lévy noises, and by comparing Lévy processes
and free LS wave packets. We have then remarked that virtually in all our examples we
witnessed a similar qualitative behavior: first of all the LS wave packets diffuse, in the sense
that they broaden in a very regular way. As it is known the variance of a Lévy process—
when it exists—grows linearly with time, exactly as in the usual diffusions. Of course for
stable, non-Gaussian noises there is no variance, and we get instead an anomalous sub- and
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super-diffusive behaviors. The corresponding LS wave packets show a similar qualitative
behavior, but it is not always easy to calculate their variances.

A second feature is represented by the multimodality of the LS wfs even when the initial
wf is unimodal. In fact, we found that in virtually all our examples the wave packet splits into
sub-packets symmetrically and smoothly drifting away from the center: a behavior which—
in similar conditions—is present neither in the free Lévy processes considered nor in the
(Gaussian) free Schrödinger wfs. It is interesting to remark, then, that the unique instance
with a similar bimodal behavior that has been found earlier [12] deals with confined Lévy
flights. In our opinion, the bimodality found in our examples could then be connected to
the combined effect of Nelson dynamics, and Lévy jumps in the background noise, and it
would be interesting to explore if this behavior shows up again in the form of rings and shells
respectively for the two- and three-dimensional LS equation.

It would be important now to explicitly give in full detail the formal association between
LS wfs and the underlying Lévy processes, namely a true generalized stochastic mechanics.
In particular, we would need to show that with every wf solution of the LS equation we can
associate a well defined Lévy process: the techniques of the stochastic calculus applied to
Lévy processes are today in full development [13, 14, 23], and to the best of our knowledge
there is no apparent, fundamental impediment along this road. Finally, it would be relevant
to explore this Lévy–Nelson stochastic mechanics by adding suitable potentials to our LS
equation, and by studying the corresponding possible stationary and coherent states: all that
will be the subject of future papers.

Appendix A. Compound Poisson laws

Among the id, non-sd laws the Poisson case stands as the most important example, but the
simple Poisson law P(λ) is neither symmetric nor ac with probability concentrated on the
integer numbers according to the usual Poisson distribution:

f (x) =
∞∑

k=0

e−λ λk

k!
δk(x), ϕ(u) = eλ(eiu−1), �(x) = λδ1(x).

Since P(λ) is neither centered nor symmetric the generator of the corresponding Lévy process
will not be self-adjoint. Take then a symmetric (not necessarily ac or id) law H with chf
ϑ(u) = eζ(u) and build the compound Poisson law P(λ,H) with chf

ϕ(u) = e−λ

∞∑
k=0

λk

k!
ϑk(u) = eλ[ϑ(u)−1], η(u) = λ[ϑ(u) − 1].

When H is also ac with pdf h(x) the law of P(λ,H) is

f (x) = e−λ

∞∑
k=0

λk

k!
h∗k(x), h∗k =

⎧⎪⎨
⎪⎩

k times︷ ︸︸ ︷
h ∗ · · · ∗ h, k = 1, 2, . . .

δ0, k = 0.

This compound Poisson law P(λ,H) has as Lévy triplet L = (0, 0, λh), but it is still not ac
even if H has a density: in fact for k = 0 we always have a degenerate law δ0. The laws of the
increments of the corresponding compound Poisson process P(ωt,H) with ω = λ/τ are then
the time-dependent mixtures

p(x, t) = e−ωt

∞∑
k=0

(ωt)k

k!
h∗k(x),
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while its self-adjoint generator (without singularities at x = 0) is

[Av](x) = λ

∫ +∞

−∞
[v(x + y) − v(x)]h(y) dy.

Its sample trajectories are now up and down staircase functions, with steps at Poisson random
times, and random jump heights distributed according to the symmetric law H. Since however
for k = 0 the law is degenerate in x = 0, these sample trajectories stick at x = 0 for a finite
time (with probability 1), and the marginal distribution of the process is not ac.

In order to overcome this problem, take another independent, symmetric, ac, id law H0

with pdf h0(x), chf ϑ0(u) = eζ0(u) and Lévy triplet L0 = (0, β0, �0), and consider the law
H0 ∗ P(λ,H) obtained by addition (convolution) so that

ϕ(u) = ϑ0(u) eλ(ϑ(u)−1), η(u) = ζ0(u) + λ(ϑ(u) − 1),

while the pdf is

f (x) = e−λ

∞∑
k=0

λk

k!
(h0 ∗ h∗k)(x),

namely a mixture of ac laws. The law H0 ∗ P(λ,H) will have the Lévy triplet L =
(0 , β0 , λh + �0) and will also be symmetric if both h and h0 are symmetric. The laws
of the increments of the corresponding Lévy process will then be

ϕ(t) = ϑ
t/τ

0 eλt(ϑ−1)/τ , η(u, t) = t

τ
ζ0(u) + ωt[ϑ(u) − 1]

so that the process will be the superposition of two independent processes: an H0–Lévy
process plus a P(ωt, H) compound Poisson process. Its trajectories are now the paths of the
H0–Lévy process, interspersed with Poisson random jumps with size law H. If then h0(x, t)

is the pdf of ϑ
t/τ

0 (u), the t-increment pdfs of our process will be

p(x, t) = e−ωt

∞∑
k=0

(ωt)k

k!
[h0(t) ∗ h∗k](x)

and the self-adjoint process generator

[Av](x) = β2
0

2
∂2
x v(x) +

∫
y �=0

[v(x + y) − v(x)][λh(y) + �0(y)] dy.

The relevant particular case of a Gaussian H0 is discussed in section 2.4.

Appendix B. Initial states

We define here a list of possible initial pdfs and wfs. To simplify our calculations we will
choose the initial pdfs to be centered and symmetric, and whenever convenient we will take
pairs f0, ψ0 satisfying the relation f0 = |ψ0|2. To evidence the meaning of the involved
quantities the space a, b and time τ scaling parameters will be explicitly taken into account.

Initial laws and wfs with f0 = |ψ0|2 are in the Gauss N b case

f0(x) = e−x2/2b2

√
2πb2

, ϕ0(u) = e−b2u2/2, (B.1)

ψ0(x) = e−x2/4b2

4
√

2πb2
, ψ̂0(u) = 4

√
2b2

π
e−b2u2

. (B.2)
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We remark that, while ψ0 is just the square root of f 0, ψ̂0 is the FT of ψ0 and its relation to
ϕ0 is given by equation (12). The two wfs, moreover, are both normalized in L2.

In the Cauchy C b = T b(1) case initial laws and wfs are

f0(x) = 1

bπ

b2

b2 + x2
, ϕ0(u) = e−b|u|, (B.3)

ψ0(x) = 1√
bπ

√
b2

b2 + x2
, ψ̂0(u) =

√
2b

π
K0(b|u|), (B.4)

where K0 is the modified Bessel function of order 0.
For the 3-Student T b(3) case the initial laws and wfs are

f0(x) = 2

bπ

(
b2

b2 + x2

)2

, ϕ0(u) = e−b|u|(1 + b|u|) (B.5)

ψ0(x) =
√

2

bπ

b2

b2 + x2
, ψ̂0(u) =

√
b e−b|u|. (B.6)

It is also very easy to show that ψ̂0 is the right FT of ψ0 and that ϕ0 = ψ̂0 ∗ ψ̂0.
In the general variance-Gamma case VG b(ν), to make calculations possible, we will not

always choose pairs of initial pdfs and wfs satisfying ψ0 = √
f0. A possible example then is

f0(x) = 2

2ν�(ν)
√

2π b

( |x|
b

)ν− 1
2

Kν− 1
2

( |x|
b

)
, (B.7)

ϕ0(u) =
(

1

1 + b2u2

)ν

, (B.8)

ψ0(x) =
√

2�
(
ν + 1

2

)
bπ�(ν)�

(
2ν − 1

2

) ( |x|
b

)ν− 1
2

Kν− 1
2

( |x|
b

)
, (B.9)

ψ̂0(u) =
√

b �(2ν)√
π�

(
2ν − 1

2

) (
1

1 + b2u2

)ν

, (B.10)

where the functions are chosen in order to have an evolution easy to calculate. As a matter
of fact, the usual relation f0 = |ψ0|2 could be easily restored in the particular case of ν = 1,
namely for an initial Laplace law L b = VG b(1). This particular case, however, is not really
easier than the general case of the variance-Gamma process. In fact, as we will see in (C.7),
the parameter affected by the time evolution is exactly ν, so that it is of no help to start with
ν = 1 if it immediately becomes ν �= 1.

In the relativistic qm Rb(ν) case we will choose as initial chf and wf FT respectively

f0(x) = νeνK1(
√

ν2 + x2/b2)

bπ
√

ν2 + x2/b2
, ϕ0(u) = eν(1−

√
1+b2u2), (B.11)

ψ0(x) = νK1(
√

ν2 + x2/b2)√
πbK1(2ν)(ν2 + x2/b2)

, (B.12)

ψ̂0(u) =
√

b

2K1(2ν)
e−ν

√
1+b2u2

, (B.13)

which are in a relation similar to that of (B.7)–(B.10).
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Appendix C. Transition laws and propagators

We will list here a few examples of background Lévy noises by paying attention to pick up
processes with a known transition pdf associated with the evolution equation (9) and a known
propagator associated with the free LS equation (14).

Take first a N a law with Lévy triplet L = (0, a, 0)

f (x) = e−x2/2a2

√
2πa2

, ϕ(u) = e−a2u2/2.

The transition law of the corresponding Lévy (Wiener) process is then N(2Dt) with
D = a2/2τ , namely

q(x, t) = e−x2/4Dt

√
4πDt

, χ(u, t) = e−Dtu2
(C.1)

and the pdf evolution equation (9) is the usual Fokker–Planck equation

∂tp(x, t) = D∂2
xp(x, t).

The corresponding LS propagator N(2iDt) is again formally normal albeit with an imaginary
variance:

g(x, t) = e−x2/4iDt

√
4π iDt

, γ (u, t) = e−iDtu2
(C.2)

and hence the LS equation (14) is the usual free Schrödinger equation

i∂tψ(x, t) = −D∂2
xψ(x, t).

From the Cauchy law C a , a typical stable, non-Gaussian law with Lévy triplet L =
(0, 0, a/πx2) and with

f (x) = 1

aπ

a2

a2 + x2
, ϕ(u) = e−a|u|,

we get the transition law C ct of the Cauchy process with c = a/τ :

q(x, t) = 1

πct

c2t2

c2t2 + x2
, χ(u, t) = e−ct |u| (C.3)

and the corresponding process equation (9):

∂tp(x, t) =
∫

y �=0
[p(x + y, t) − p(x, t)]

c

πy2
dy. (C.4)

On the other hand the LS propagator C ict is

g(x, t) = 1

iπ

ct

c2t2 − x2
, γ (u, t) = e−ict |u| (C.5)

and the LS equation (14)

i∂tψ(x, t) = −
∫

y �=0
[ψ(x + y, t) − ψ(x, t)]

c

πy2
dy. (C.6)

Remark that, at variance with the transition pdf (C.3), the Cauchy–Schrödinger propagator
(C.5) has two simple poles in x = ±ct drifting away from the center x = 0 with velocity c.

Take now a sd, non-stable variance-Gamma law VGa(λ) with symmetric Lévy triplet
L = (0, 0, λe−|x|/a/|x|) and with

f (x) = 2

2λ�(λ)
√

2πa

( |x|
a

)λ− 1
2

Kλ− 1
2

( |x|
a

)
, ϕ(u) =

(
1

1 + a2u2

)λ

.
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The transition law will then be VGa(ωt) with ω = λ/τ :

q(x, t) = 2

2ωt�(ωt)
√

2π a

( |x|
a

)ωt− 1
2

Kωt− 1
2

( |x|
a

)
(C.7)

χ(u, t) =
(

1

1 + a2u2

)ωt

(C.8)

and the corresponding process equation (9):

∂tp(x, t) = ω

∫
y �=0

[p(x + y, t) − p(x, t)]
e−|y|/a

|y| dy

so that the evolution will only affect the parameter λ, while a will always be the same. Then
for the LS propagator VGa(iωt) we have

g(x, t) = 2

2iωt�(iωt)
√

2π a

( |x|
a

)iωt− 1
2

Kiωt− 1
2

( |x|
a

)
(C.9)

γ (u, t) =
(

1

1 + a2u2

)iωt

, (C.10)

while the LS equation (14) becomes

i∂tψ(x, t) = −ω

∫
y �=0

[ψ(x + y, t) − ψ(x, t)]
e−|y|/a

|y| dy.

We will consider then two examples of id, non-sd background noise: for notations and
details see section 2.4 and appendix A. Take first the law Nσ ∗ P (λ,Na) discussed in
section 2.4. From its chf we see that, with ω = λ/τ and D = σ 2/2τ , the transition law
N(2Dt) ∗ P (ωt,Na) is

q(x, t) = e−ωt

∞∑
k=0

(ωt)k

k!

e−x2/2(ka2+2Dt)√
2π(ka2 + 2Dt)

(C.11)

χ(u, t) = eωt(e−a2u2/2−1) e−Dtu2
. (C.12)

The corresponding Wiener–Poisson process pdfs have then an elementary form as time-
dependent Poisson mixtures of time-dependent normal laws and the corresponding process
equation (9) will become

∂tp(x, t) = D∂2
xp(x, t) + ω

∫ +∞

−∞
[p(x + y, t) − p(x, t)]

e−y2/2a2

√
2πa2

dy.

The LS propagator N (2iDt) ∗ P (iωt,Na) is now

g(x, t) = e−iωt

∞∑
k=0

(iωt)k

k!

e−x2/2(ka2+2iDt)√
2π(ka2 + 2iDt)

(C.13)

γ (u, t) = eiωt(e−a2u2/2−1) e−iDtu2
(C.14)

and the LS equation (14) becomes

i∂tψ(x, t) = −D∂2
xψ(x, t) − ω

∫ +∞

−∞
[ψ(x + y, t) − ψ(x, t)]

e−y2/2a2

√
2πa2

dy.
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Take then the law Nσ ∗P (λ,Da) discussed in section 2.4: from its lch η(u, t) = ωt(cos au−
1) − Dtu2 we see that the law of the corresponding Lévy process is N(2Dt) ∗ P(ωt,Da) and
hence

q(x, t) = e−ωt

∞∑
k=0

(ωt)k

k!

1

2k

k∑
j=0

(
k

j

)
e−[x−(k−2j) a]2/4Dt

√
4πDt

χ(u, t) = eωt(cos au−1)−Dtu2
,

(C.15)

while the process equation (9) is

∂tp(x, t) = D∂2
xp(x, t) + ω

p(x + a, t) − 2p(x, t) + p(x − a)

2
.

The LS propagator N(2iDt) ∗ P(iωt,Da) instead is

g(x, t) = e−iωt

∞∑
k=0

(iωt)k

k!

1

2k

k∑
j=0

(
k

j

)
e−[x−(k−2j) a]2/4iDt

√
4π iDt

γ (u, t) = e iωt(cos au−1)−iDtu2

(C.16)

and the LS equation (14) is

i∂tψ(x, t) = −D∂2
xψ(x, t) − ω

ψ(x + a, t) − 2ψ(x, t) + ψ(x − a)

2
.

Finally from the relativistic qm chf of Ra(λ) we see that the corresponding Lévy process
Ra(ωt) will have as transition law

q(x, t) = ωt eωtK1(
√

ω2t2 + x2/a2)

πa
√

ω2t2 + x2/a2
, (C.17)

χ(u, t) = eωt(1−
√

1+a2u2), (C.18)

with ω = λ/τ as usual. We can also explicitly write the process equation (9) as

∂tp(x, t) = ω

∫
y �=0

[p(x + y, t) − p(x, t)]
K1(|y|/a)

π |y| dy.

On the other hand the LS propagator Ra(iωt) will be given by

g(x, t) = iωt eiωtK1(
√

−ω2t2 + x2/a2)

πa
√

−ω2t2 + x2/a2
, (C.19)

γ (u, t) = eiωt(1−
√

1+a2u2) (C.20)

with singularities in x = ±aωt and corresponds to the LS equation

i∂tψ(x, t) = −ω

∫
y �=0

[ψ(x + y, t) − ψ(x, t)]
K1(|y|/a)

π |y| dy.

We remember here, as remarked in section 2.5, that—after reabsorbing an irrelevant constant
term mc2 in a phase factor of the wf—this is essentially the integro-differential form of the
relativistic, free Schrödinger equation (15) with ω = λ/τ = mc2/h̄, a = h̄/mc.

26



J. Phys. A: Math. Theor. 44 (2011) 165305 N Cufaro Petroni

References

[1] Cufaro Petroni N and Pusterla M 2009 Physica A 388 824
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[16] Loève M 1977–1978 Probability Theory I and II (Berlin: Springer)
[17] Schneider W R 1986 Lecture Notes in Physics vol 262 (Berlin: Springer) p 497

Hatzinikitas A and Pachos J K 2008 Ann. Phys. 323 3000
[18] Cufaro Petroni N 2007 J. Phys. A: Math. Theor. 40 2227
[19] Berg C and Vignat C 2008 J. Phys. A: Math. Theor. 41 265004
[20] Heyde C C and Leonenko N N 2005 Adv. Appl. Probab. 37 342
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p 89
[22] Vivoli A, Benedetti C and Turchetti G et al 2006 Nucl. Instrum. Methods A 561 320
[23] Protter Ph E 2005 Stochastic Integration and Differential Equations (Berlin: Springer)
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